Low Frequency and Static Simulation

The SIMULIA suite of specialized simulation tools for low-frequency (LF) and statics can tackle challenges including magnet design, high-voltage power device and electrical machine development. Industries including energy, transportation and mobility, marine and offshore, and industrial equipment use low-frequency simulation to design cutting-edge products and innovative systems.

The flexibility of SIMULIA’s tools in adapting to user requirements has seen it being used successfully for a wide range of applications in different industries. The accuracy they provide is of paramount importance when looking at field homogeneities of parts-per-million in medical devices or particle accelerators. Advanced material modeling and solution procedures enable detailed studies of devices containing permanent magnets or superconducting coils. Application-specific front-ends help guide the users through the complex task of simulating and optimizing high-efficiency, high-performance motors, generators and transformers.

Low-frequency simulation cuts development time, cost and risk in product development, and allows engineers to understand and optimize large, complex systems on the scale of generators, ships and particle accelerators.

The advanced hysteresis and demagnetization material modeling provides the required level of accuracy that allows designers and engineers to rely on virtual prototyping. It significantly reduces the time from design to production.

The strong coupling of electromagnetic effects with thermal and mechanical ones is a feature of most low frequency devices. SIMULIA provides best-in-class tools for the in-depth analysis of coupled physics behavior required to obtain a complete view of the systems’ performance and reliability.

Low Frequency Applications

Power Generation and Transmission Simulation

Transformers, switchgears, bus bars and similar components must conduct large currents safely, without dangerous flashover or current leakage. Simulation shows fields and currents around components, including eddy currents, and heat generation, allowing designers to verify that high-power systems operate safely even under extreme loads.

Power Generation and Transmission Simulation > Dassault Systèmes

Sensor Design

From capacitive touchscreens to non-destructive testing, many sensors use static or low-frequency fields to detect and measure targets. Simulation can analyze and optimize the response of sensors to different test targets, even in the presence of interference or soiling.

Sensor Design > Dassault Systèmes

Magnet Design

Magnets form the basis of many precision instruments in fields such as medical imaging, particle research and material science. Simulation provides standard magnet KPIs including:

  • Field distribution
  • Field homogeneity and gradients
  • Fourier analysis coefficients
  • Associated Legendre polynomial coefficients
  • Peak fields on coils and shielding effectiveness
  • Multiphysics results including forces, heating and stress
Magnet Design > Dassault Systèmes

Superconducting Magnet Simulation

Superconducting magnets can produce strong magnetic fields efficiently, but their operation relies on the presence of cryogenic coolant. If the magnet fails, it can undergo a violent “quench” as the coolant boils and the superconductor transitions to resistive. Simulation can model superconducting magnet performance, including quench propagation.

Superconducting Magnet > Dassault Systèmes

MRI Magnet Design

Magnetic resonance imaging (MRI) requires powerful magnets with precisely controlled magnetic fields. SIMULIA simulation tools have the accuracy needed to design MRI magnets. Our solvers can combine static and LF magnetic field analysis with radio frequency (RF) coil and patient safety simulations. Links to spin simulation tools complete the MRI design workflow.

MRI Magnet Simulation > Dassault Systèmes

Particle Beam Optics Simulation

Magnetic lenses and other beam-directing magnets are a crucial part of particle accelerators. Particle tracking simulation can model the movement of charged particles through magnetic fields to allow scientists to design and optimize accelerator components. For more information, see Particle Dynamics.

Particle Beam Optics Simulation > Dassault Systèmes

Magnetic Shielding Simulation

Stray magnetic fields can cause electromagnetic compatibility and interference (EMC/EMI) issues, including data loss in memory. They can also damage other electronic equipment, and cause risk to people with implanted pacemakers. With simulation, users can design magnetic shielding for permanent magnets and induction coils (for example, wireless electric vehicle charging) to safely contain the magnetic fields.

Magnetic Shielding > Dassault Systèmes

Cathodic Protection Simulation

To protect against corrosion from salt water, ocean-based equipment such as ships, oil rigs and offshore wind turbines use cathodic protection. In cathodic protection, a sacrificial or impressed current anode prevents the oxidation of the metal body. Simulation calculates the potential across the vessel to analyze the performance of cathodic protection systems and help optimize anode placement.

Cathodic Protection > Dassault Systèmes

Magnetic Signature and Degaussing Simulation

Mitigation of electric and magnetic field signatures is an important part of the design process for a naval vessel. SIMULIA’s LF solver technology has been widely used for many years as a simulation tool for both undegaussed and degaussed signature assessment. It shows excellent accuracy in validation exercises and flexibility in optimizing positions of degaussing coils.

Magnetic Signature and Degaussing > Dassault Systèmes

Start Your Journey

Explore the technological advancements, innovative methodologies, and evolving industry demands that are reshaping the world of Low frequency Electromagnetics Simulation. Stay a step ahead with SIMULIA. Discover now.

Also Discover

electric drive | Dassault Systèmes
Electrical Machine Simulation
Simulation of Electric Motors, Generator and Transformers
Gridded Gun > Dassault Systèmes
Particle Dynamics Simulation
Simulation of Particles in Electromagnetic Fields
EMC of a PCB > Dassault systèmes
Electromagnetic Compatibility Simulation
Virtually Test Compliance with EMC Standards
Mobile phone fields > Dassault Systèmes
Bioelectromagnetics Simulation
Analyze the Interaction of Electromagnetic Fields with the Human Body
reflectro antenna near-field > Dassault Systèmes
Antenna Design & Simulation
SIMULIA Electromagnetic Simulation for Efficient Antenna Design
cavity filter > Dassault Systèmes
Microwave/RF Filters & Components Simulation
Efficient Simulation of Highly Resonant Structures
Electric fields alon traces > Dassault Systèmes
Signal & Power Integrity Simulation
Integrate Simulation in Electronics Design Automation (EDA) Workflows
grating coupler simulation > Dassauls Systemes
Optical Device Simulation
Photonic Circuit, Graphene, Metamaterial and  Photonic Crystal Simulation

Learn What SIMULIA Can Do for You

Speak with a SIMULIA expert to learn how our solutions enable seamless collaboration and sustainable innovation at organizations of every size.

Get Started

Courses and classes are available for students, academia, professionals and companies. Find the right SIMULIA training for you. 

Get Help

Find information on software & hardware certification, software downloads, user documentation, support contact and services offering