Transportation & Mobility Simulation Solutions

DRIVE VEHICLE INNOVATION TOWARD THE MOBILITY OF THE FUTURE

The entire Transportation & Mobility(T&M) industry is in revolution: Customers are demanding new & customized experiences. New companies and competitors are emerging at a rapid pace. Electric, connected, and autonomous vehicles are beginning to enter the market with many others on the drawing board.  Regulatory requirements for energy consumption, safety, and sustainability in the global marketplace are growing. Complexity is increasing. Cost pressures are greater than ever. 

How is a company to compete? Digital engineering is at the core of the strategy to meet these challenges, including virtual testing and simulation in every aspect of vehicle concept, design, engineering, manufacture, and use. An industry process approach in which multiscale-multidisciplinary simulation powers discovery, innovation, and optimization to get to the market quickly – with predictable cost, reduced risk, and an exciting product that consumers want – is essential for incumbents and disruptors alike.

Driving the T&M Industry

WLTP

The Worldwide Harmonized Light Vehicles Test Procedure (WLTP) determines not only how to evaluate vehicle emissions and consumption but has also expanded to include how to report expected range for electric vehicles. In order to better reflect what consumers experience when driving their vehicles, WLTP introduces much more realistic testing conditions, including higher average and maximum speeds, a greater range of driving situations, longer test distances, and more dynamic and representative accelerations and decelerations.

Learn more about WLTP simulation

Electric Vehicles

Electric vehicles are ushering in a new era of travel that is efficient, affordable, clean and green. They will transform travel in the years to come and shape the future of mobility connected with smart cities, and interactive communities. Bringing this new generation of cars onto the road requires new vehicle innovators, OEM leaders and suppliers alike to rethink the way vehicles are engineered. To meet the demand now, this needs to happen quickly.

Learn more about Electric Vehicle simulation

Crashworthiness

Over the last decade, crash test regulations have become more stringent, requiring a higher level of performance to achieve a good safety rating. OEMs needed to increase the study of the structure, materials and restraint systems in order to achieve five star ratings again and this is where crashworthiness simulation plays a vital role.

Learn more about Crashworthiness simulation

Solution Capabilities for the T&M Industry

Vehicle Dynamics

Develop, optimize and validate typical vehicle dynamics performance criteria such as handling, driveability, and ride comfort using offline and real-time Multi Body System (MBS) simulation. This also includes advanced MBS simulation related workflows for durability assessment, component and system-level noise and vibration studies as well as the validation of the overall mechatronic system experience.

Explore the Vehicle Dynamics solution

Cabin Comfort

Address a range of engineering objectives through simulation on a digital platform to meet the vehicle occupant’s thermal, acoustic, visual, and ergonomic comfort levels. Provide a holistic cabin experience to customers while controlling energy consumption.   

Explore the Cabin Comfort solution

Electric Drive Engineering

Multiphysics simulation enables engineers to predict and verify the system performance across multiple design objectives and in all possible operating scenarios. Finding the best trade-offs for competing requirements like electromagnetic performance, durability, noise and vibration control, as well as lubrication requirements is a challenge, best to solve in a collaborative environment. 

Explore the Electric Drive Engineering solution

 

 

Performance Driven Architecture

The Performance Driven Architecture Industry Process enables early design performance assessments across different disciplines to be brought together in a common environment that fully supports requirement capture, architecture definition, system modeling and virtual simulation. Architects and simulation experts can better work together to virtually evaluate their ideas, converging quicker to better trade-offs at conceptual level before moving to detailed design.

Explore the Performance Driven Architecture solution

Chassis & Suspension Strength, Durability & Vibration

Key objectives of Chassis & Suspension Strength, Durability & Vibration are 1) to guarantee the structural integrity of the vehicle chassis and suspension for supporting the vehicle body, 2) to improve the ride and handling of the vehicle and 3) to make sure that the vehicle meets all the regulation and quality requirements. 

Explore the Chassis & Suspension Strength, Durability & Vibration solution

Powertrain Strength, Durability & Vibration

Powertrain Strength , Durability & Vibration is a process enabling unified end-to-end workflows of internal combustion powertrain structural simulations, with high efficiency even for very large models. This is a crucial piece of the engineering process of developing and optimizing powertrains of cars, trucks or any other vehicle containing an Internal Combustion Engine (ICE) thanks to virtual validations of their structural performance using Abaqus Finite Element Analysis (FEA) technology.

Explore the Powertrain Strength, Durability & Vibration solution

Brake System Engineering

The simulation reproduces 3D physical effects of stress, heat, and fluid flow in the interactions with other vehicle systems such as controls and suspensions. The simulations with high fidelity physics based model and fast turnaround methodologies allow the engineers to quickly assess large sets of designs and improve the design. Design and validation work can be done at the full vehicle and at the subsystem levels.

Explore the Brake System Engineering solution

Additional applications: