
Product Key Customer Benefits 

In addition to the functionalities and benefits provided by Generative Part Structural Analysis (GPS), Thermal Analysis (ATH) offers: Thermal analysis ATH enables the temperature distribution in a part or an assembly to be determined, allowing designers to understand the thermal behavior of their designs. The calculated temperature distribution can be used to perform a thermal stress analysis in Nonlinear Analysis (ANL) to study the effect of thermalinduced stresses and potential fatigue problems that they may cause. The steadystate capability allows the longterm temperature distribution to be determined. ATH also has the ability to analyze the transient thermal response, such as the effect of a thermal shock or a startup event. Thermal loading A heat flux can be applied to a point, surface or volume, modeling the effect of direct heating. A film condition can also be applied to surfaces, modeling the effect of a fluid such as air or water next to the surface. The bulk temperature of the fluid and the heat transfer coefficient between the fluid and the structure must be defined. The temperature of the model parts can also be specified directly. Spatially varying thermal loads can be applied through the data mapping functionality. Thermal materials For a steadystate analysis, the conductivity of the material must be defined; for a transient analysis the density and specific heat is also required. The conductivity and specific heat can be specified to be temperature dependent, which is common for many materials. When temperaturedependent materials are included, the solution becomes nonlinear, and ATH will automatically perform a nonlinear analysis. Thermal analysis of assemblies A thermal analysis of an assembly can be performed. ATH will automatically locate surfaces on adjacent parts and create thermal contact between them. The thermal conductivity across these contacting surfaces can be defined so that the surfaces conduct heat appropriately, depending on the size of the gap and the temperature at each surface. Results interpretation Contours of the temperature distribution in the part or assembly can be plotted. For a transient analysis, the temperature distribution can be plotted at various times during the transient and then animated. XY plots showing the time variation of the temperature at points in the model can also be plotted. 
 