Introduction to Tosca Fluid

Tosca 2018
Course objectives
Upon completion of this course, you will be able to:

- Solve fundamental topology optimization problems for internal flow applications
- Postprocess results and perform surface smoothing
- Follow-up and transfer results into the CAE environment

Targeted audience
CFD Analysts

Prerequisites
Basic familiarity with CFD
Day 1

- **Lesson 1:** Methodology

- **Lesson 2:** Overview, Setup and Execution
 - Workshop 1: Back step flow

- **Lesson 3:** Postprocessing and Results Extraction
 - Workshop 2: Flow splitter
 - Workshop 3: Inlet tank (optional)
Appendix 1: Tosca Fluid Tips and Tricks
SIMULIA is the Dassault Systèmes brand for Realistic Simulation solutions

- Portfolio of established, best-in-class products
 - Abaqus, Isight, Tosca, fe-safe, Simpack

- Design Optimization, Tosca Structure *
 - Simulation-driven design refinement to improve performance

- Durability Assessment, fe-safe *
 - Accurate life estimation to achieve certification

- FEA Stress Analysis, Abaqus *
 - Detailed stress analysis using extracted load history from MBS

- Multibody Simulation, Simpack
 - System analysis to extract virtual load history of complete working cycle

- CAD Geometry, CATIA
 - Fully parameterized 3D geometry; FEA model generation via associative interface

- Mesh Calibration, Isight *
 - Automated mesh calibration; sufficient mesh quality for accurate results

* Included in extended licensing pool
SIMULIA's Power of the Portfolio

Abaqus
- Routine and Advanced Simulation
- Linear and Nonlinear, Static and Dynamic
- Fluid, Thermal, Electrical, Acoustics
- Extended Physics through Co-simulation
- Model Preparation and Visualization

Isight
- Process Integration
- Design Optimization
- Parametric Optimization
- Six Sigma and Design of Experiments

Tosca
- Non-Parametric Optimization
- Structural and Fluid Flow Optimization
- Topology, Sizing, Shape, Bead Optimization

fe-safe
- Durability Simulation
- Low Cycle and High Cycle Fatigue
- Weld, High Temperature, Non-metallics

Simpack
- 3D Multibody Dynamics Simulation
- Mechanical or Mechatronic Systems
- Detailed Transient Simulation (Offline and Realtime)

Modules
- **Realistic Human Simulation**
 - High Speed Crash & Impact
 - Noise & Vibration
- **Material Calibration**
 - Workflow Automation
 - Design Exploration
- **Conceptual/Detailed Design**
 - Weight, Stiffness, Stress
 - Pressure Loss Reduction
- **Safety Factors**
 - Creep-Fatigue Interaction
 - Weld Fatigue
- **Complete System Analyses**
 - (Quasi-)Static, Dynamics, NVH, Flex Bodies, Advanced Contact
Join the Community!

How can you maximize the robust technology of the Simulia Portfolio?
Connect with peers to share knowledge and get technical insights

Go to www.3ds.com/slc to log in or join!
SIMULIA Training

http://www.3ds.com/products-services/simulia/services/training-courses/

SIMULIA SERVICES
PROVIDING HIGH QUALITY SIMULATION AND TRAINING SERVICES TO ENABLE OUR CUSTOMERS TO BE MORE PRODUCTIVE AND COMPETITIVE.

Training Schedule & Registration
We offer regularly scheduled public seminars as well as training courses at customer sites. An extensive range of courses are available, ranging from basic introductions to advanced courses that cover specific analysis topics and applications. On-site courses can be customized to focus on topics of particular interest to the customer, based on the customer's prior specification. To view the worldwide course schedule and to register for a course, visit the links below.

North American
- By Location
- By Course

International
- By Location
- By Course

Live Online Training
- Full Schedule
The software described in this documentation is available only under license from Dassault Systèmes or its subsidiaries and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiaries.

© Dassault Systèmes, 2018

Printed in the United States of America.

Abaqus, the 3DS logo, and SIMULIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the SIMULIA User Assistance.
Revision Status

<table>
<thead>
<tr>
<th>Component</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 1</td>
<td>2/18</td>
<td>Updated for Tosca Fluid 2018</td>
</tr>
<tr>
<td>Lesson 2</td>
<td>2/18</td>
<td>Updated for Tosca Fluid 2018</td>
</tr>
<tr>
<td>Lesson 3</td>
<td>2/18</td>
<td>Updated for Tosca Fluid 2018</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>2/18</td>
<td>Updated for Tosca Fluid 2018</td>
</tr>
<tr>
<td>Workshop 1a</td>
<td>2/18</td>
<td>Updated for Tosca Fluid 2018</td>
</tr>
<tr>
<td>Workshop 1b</td>
<td>2/18</td>
<td>Updated for Tosca Fluid 2018</td>
</tr>
<tr>
<td>Workshop 2a</td>
<td>2/18</td>
<td>Updated for Tosca Fluid 2018</td>
</tr>
<tr>
<td>Workshop 2b</td>
<td>2/18</td>
<td>Updated for Tosca Fluid 2018</td>
</tr>
<tr>
<td>Workshop 3a</td>
<td>2/18</td>
<td>Updated for Tosca Fluid 2018</td>
</tr>
<tr>
<td>Workshop 3b</td>
<td>2/18</td>
<td>Updated for Tosca Fluid 2018</td>
</tr>
</tbody>
</table>
Lesson content:

- Introduction
 - Topology optimization
 - Optimality criteria (OC) method
 - “Optimization” versus “Improvement”
- Topology Optimization Approach in Tosca Fluid
 - Optimality criterion and optimization approach
- Optimization Results
 - What is a Tosca Fluid result?
 - Approaches for result extraction
- Optimization Workflow
- Cell Sedimentation and Backflow Tolerance

1 hour
Lesson 1: Methodology
Lesson 2: Overview, Setup and Execution

Lesson content:

- Overview and Preparation
 - Software components
 - Working with Tosca Fluid
 - Preparation of the CFD model

- Defining the Optimization Job
 - Using the GUI
 - Optimization problem definition
 - Parameter file

- Running Tosca Fluid
 - Running an optimization job using the GUI
 - Files and results

1.5 hours
Workshop 1a: Back step flow (ANSYS Fluent)

1. Content
 a. Simple optimization example
 b. Setup and running
 c. Flow behavior after the optimization run

45 minutes
Workshop 1b: Back step flow (STAR-CCM+)

1. Content
 a. Simple optimization example
 b. Setup and running
 c. Flow behavior after the optimization run
Lesson 3: Postprocessing and Results Extraction

Lesson content:

- Result Extraction
 - Introduction
 - Files and results
 - Velocity extraction method
 - Sedimentation-based results
 - Particle Track
- Running Tosca Fluid.smooth using the GUI
 - Smoothing

1.5 hours
1. Content
 a. Complex optimization example
 b. Basic postprocessing steps
 c. Result smoothing
Workshop 2b: Flow splitter (STAR-CCM+)

1. Content
 a. Complex optimization example
 b. Basic postprocessing steps
 c. Result smoothing

1 hour
Workshop 3a: Inlet tank (ANSYS Fluent)

1. Content
 a. Complex optimization example
 b. Basic postprocessing steps
 c. Result smoothing

1 hour
Workshop 3b: Inlet tank (STAR-CCM+)

1. Content
 a. Complex optimization example
 b. Basic postprocessing steps
 c. Result smoothing
Appendix 1: Tosca Fluid Tips & Tricks

Appendix content:
- Objectives
- Physics
- Tosca Fluid Geometry
- Inflow Conditions
- Tosca Fluid Optimization for Multiple Regions
- Reference Streamline
- Design Space
- Porous Zones
- Potential Applications
- Tosca Fluid Installation
- 3DS Knowledge Base
- Linux
- Stability Issues of CFD solver
- Predefined High Viscous Run