Tire Analysis with Abaqus: Fundamentals
Abaqus 2019
Course objectives
In this course you will learn about:

- Choosing appropriate elements
- Methods of modeling reinforcement
- Contact modeling details pertinent to tire modeling
- Fundamentals of material modeling-stress and strain measures, material directions
- Linear elasticity, hyperelasticity and viscoelasticity
- Efficient axisymmetric to three-dimensional model generation and results transfer

Targeted audience
This course is recommended for tire analysts with experience using Abaqus

Prerequisites
None
Day 1

- Lecture 1 Tire Modeling Tools in Abaqus
- Lecture 2 Axisymmetric Model Building
- Workshop 1 Modeling a Tire Cross-section
- Lecture 3 Symmetric Model Generation and Results Transfer
Day 2

- Lecture 4 Three-dimensional Model Building
 - Workshop 2 Three-dimensional Tire Models
 - Workshop 3 Visualization of Three-dimensional Tire Models
- Lecture 5 Elements and Reinforcement
- Lecture 6 Modeling Contact
- Lecture 7 Rubber Models for Tire Analysis
SIMULIA is the Dassault Systèmes brand for Realistic Simulation solutions

Portfolio of established, best-in-class products
- Abaqus, Isight, Tosca, fe-safe, Simpack

* Included in extended licensing pool
SIMULIA’s Power of the Portfolio

Abaqus
- Routine and Advanced Simulation
- Linear and Nonlinear, Static and Dynamic
- Thermal, Electrical, Acoustics
- Extended Physics through Co-simulation
- Model Preparation andVisualization

Isight
- Process Integration
- Design Optimization
- Parametric Optimization
- Six Sigma and Design of Experiments

Tosca
- Non-Parametric Optimization
- Structural and Fluid Flow Optimization
- Topology, Sizing, Shape, Bead Optimization

fe-safe
- Durability Simulation
- Low Cycle and High Cycle Fatigue
- Weld, High Temperature, Non-metallics

Simpack
- 3D Multibody Dynamics Simulation
- Mechanical or Mechatronic Systems
- Detailed Transient Simulation (Offline and Realtime)

Realistic Human Simulation
- High Speed Crash & Impact
- Noise & Vibration

Material Calibration
- Workflow Automation
- Design Exploration

Conceptual/Detailed Design
- Weight, Stiffness, Stress
- Pressure Loss Reduction

Safety Factors
- Creep-Fatigue Interaction
- Weld Fatigue

Complete System Analyses
- (Quasi-)Static, Dynamics, NVH
- Flex Bodies, Advanced Contact
Join the Community!

How can you maximize the robust technology of the SIMULIA Portfolio?
Connect with peers to share knowledge and get technical insights

Go to www.3ds.com/slc to log in or join!

Let the SIMULIA Learning Community be Your Portal to 21st Century Innovation
Discover new ways to explore how to leverage realistic simulation to drive product innovation. Join the thousands of Abaqus and Isight users who are already gaining valuable knowledge from the SIMULIA Learning Community.

For more information and registration, visit 3ds.com/simulia-learning. Connect. Share. Spark Innovation.

©2013 Dassault Systèmes. All rights reserved.
SIMULIA Services
Providing high quality simulation and training services to enable our customers to be more productive and competitive.

Training Schedule & Registration
We offer regularly scheduled public seminars as well as training courses at customer sites. An extensive range of courses are available, ranging from basic introductions to advanced courses that cover specific analysis topics and applications. On-site courses can be customized to focus on topics of particular interest to the customer, based on the customer's prior specifications. To view the worldwide course schedule and to register for a course, visit the links below.

North American
- By Location
- By Course

International
- By Location
- By Course

Live Online Training
- Full Schedule
The software described in this documentation is available only under license from Dassault Systèmes or its subsidiaries and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiaries.

© Dassault Systèmes, 2018

Printed in the United States of America.

Abaqus, the 3DS logo, and SIMULIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the SIMULIA User Assistance.
<table>
<thead>
<tr>
<th>Lecture/Workshop</th>
<th>Date</th>
<th>Revision Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 1</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Lecture 2</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Lecture 3</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Lecture 4</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Lecture 5</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Lecture 6</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Lecture 7</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 1a</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 1b</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 1c</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 1d</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 1e</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 2</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 3</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
</tbody>
</table>
Lesson 1: Tire Modeling Tools in Abaqus

Lesson content:

- Introduction
 - Prerequisites for the course (basic Abaqus/CAE and analysis knowledge)
- Tire Analysis Capabilities
- How Tires are Made
 - Green tire vs. cured tire
 - Effect on rebar specification in analysis models

30 minutes
Lesson content:

- Why Start with Axisymmetry?
- Creation of Rim, Carcass, Ply and Belt Geometries
- Workshop Preliminaries
- Workshop 1a: Modeling a tire cross-section – Modeling the tire cross-section
- Reinforcement Modeling
- Material Properties and Assignment
- Workshop 1b: Modeling a tire cross-section – Tire properties and rebar definitions
- Contact and Constraints
- Boundary Conditions and Loads
- Steps and Output Requests
- Workshop 1c: Modeling a tire cross-section – Contact, loads, and boundary conditions
- Meshing
- Workshop 1d: Modeling a tire cross-section – Axisymmetric mesh
- Job Submission
- Results Visualization
- Workshop 1e: Modeling a tire cross-section – Axisymmetric tire analysis

4.5 hours
Lesson content:

- Introduction
- Smooth/Ribbed Tires: Symmetric Model Generation
- Smooth/Ribbed Tires: Symmetric Results Transfer
- Treaded Tires

1 hour
Lesson content:

- **Introduction**
 - What is SMG/SRT? (flattened model requirement, etc.)
- **3D Model Definition**
 - Element types (general vs. cylindrical)
 - Circumferential discretization
 - Model generation (road, tread surface)
- **Step and Output Requests**
 - Equilibrating step
 - 2-step approach to footprint analysis (displacement control followed by load control)
- **Contact, Boundary Conditions, and Loads**
- **Job Submission and Results Visualization**
- **Tire Wizard Plug-In**
- **Workshop 2: Three-dimensional Tire Models**
- **Workshop 3: Visualization of Three-dimensional Tire Models**
Lesson content:

- Introduction
- Element Selection
- Modeling Reinforcement
- Rebar Layers
- Embedded Elements

Lesson 5: Elements and Reinforcement

2 hours
Lesson 6: Modeling Contact

Lesson content:

- Overview of Contact
- Contact Discretization
- Contact Enforcement
- Finite Sliding of Deformable Bodies against Each Other
- Finite Sliding of Deformable Bodies against Rigid Bodies
- Additional Features
- Friction Basics

1 hour
Lesson 7: Rubber Models for Tire Analysis

Lesson content:

- Introduction
- Stress and Strain Measures
- Material Directions
- Temperature and Field Variable Dependence
- Hyperelasticity

1 hour