Course objectives
Upon completion of this course you will be able to:

- Understand all necessary elements for railway modeling
- Set up railway vehicles according to common concepts
- Set up, run and analyze typical applications for railway models

Targeted Audience
- Simulation analysts and design engineers in the railway industry
- Multibody simulation experts with no previous experience of railway simulation in Simpack

Prerequisites
- Before undertaking this course, you should have completed the Introduction to Simpack training course
- Some familiarity with fundamental railway theory
Day 1

- Lesson 1 Basic Elements
 - Workshop 1 Single Wheelset
- Lesson 2 Plots and Outputs
- Lesson 3 Track Settings
 - Workshop 2 Track Definition
- Lesson 4 Suspension Modeling
 - Workshop 3 Full Vehicle
- Lesson 5 Finalize Model Setup
 - Workshop 4 Preloads and Solver
Day 2

- Lesson 6 Quasilinearization
 - Workshop 5 Calculate Eigenvalues

- Lesson 7 Critical Speed
 - Workshop 6 Root Loci (Linear Critical Speed)
 - Workshop 7 Nonlinear Critical Speed

- Lesson 8 Typical Applications
 - Workshop 8 Derailment
 - Workshop 9 Comfort Analysis
 - Workshop 10 Roll Coefficient

- Lesson 9 Additional Rail Topics (optional)
 - Workshop 11 Independent Wheels (optional)
 - Workshop 12 Roller Rig (optional)
 - Workshop 13 Elastic Track Foundation (optional)
SIMULIA is the Dassault Systèmes brand for Realistic Simulation solutions

- Portfolio of established, best-in-class products
 - Abaqus, Isight, Tosca, fe-safe, Simpack

- Design Optimization, Tosca Structure *
 - Simulation-driven design refinement to improve performance

- Durability Assessment, fe-safe *
 - Accurate life estimation to achieve certification

- FEA Stress Analysis, Abaqus *
 - Detailed stress analysis using extracted load history from MBS

- CAD Geometry, CATIA
 - Fully parameterized 3D geometry; FEA model generation via associative interface

- Multibody Simulation, Simpack
 - System analysis to extract virtual load history of complete working cycle

- Mesh Calibration, Isight *
 - Automated mesh calibration; sufficient mesh quality for accurate results

* Included in extended licensing pool
SIMULIA’s Power of the Portfolio

<table>
<thead>
<tr>
<th>Software</th>
<th>Features</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abaqus</td>
<td>• Routine and Advanced Simulation
• Linear and Nonlinear, Static and Dynamic
• Thermal, Electrical, Acoustics
• Extended Physics through Co-simulation
• Model Preparation and Visualization</td>
<td>Realistic Human Simulation
High Speed Crash & Impact
Noise & Vibration</td>
</tr>
<tr>
<td>Isight</td>
<td>• Process Integration
• Design Optimization
• Parametric Optimization
• Six Sigma and Design of Experiments</td>
<td>Material Calibration
Workflow Automation
Design Exploration</td>
</tr>
<tr>
<td>Tosca</td>
<td>• Non-Parametric Optimization
• Structural and Fluid Flow Optimization
• Topology, Sizing, Shape, Bead Optimization</td>
<td>Conceptual/Detailed Design
Weight, Stiffness, Stress
Pressure Loss Reduction</td>
</tr>
<tr>
<td>fe-safe</td>
<td>• Durability Simulation
• Low Cycle and High Cycle Fatigue
• Weld, High Temperature, Non-metallics</td>
<td>Safety Factors
Creep-Fatigue Interaction
Weld Fatigue</td>
</tr>
<tr>
<td>Simpack</td>
<td>• 3D Multibody Dynamics Simulation
• Mechanical or Mechatronic Systems
• Detailed Transient Simulation (Offline and Realtime)</td>
<td>Complete System Analyses (Quasi-)Static, Dynamics, NVH
Flex Bodies, Advanced Contact</td>
</tr>
</tbody>
</table>

- **Safety Factors**
- **Creep-Fatigue Interaction**
- **Weld Fatigue**
- **Durability Simulation**
- **Low Cycle and High Cycle Fatigue**
- **Weld, High Temperature, Non-metallics**
- **Realistic Human Simulation**
- **High Speed Crash & Impact**
- **Noise & Vibration**
- **Material Calibration**
- **Workflow Automation**
- **Design Exploration**
- **Conceptual/Detailed Design**
- **Weight, Stiffness, Stress**
- **Pressure Loss Reduction**
- **Safety Factors**
- **Creep-Fatigue Interaction**
- **Weld Fatigue**
- **Complete System Analyses (Quasi-)Static, Dynamics, NVH**
- **Flex Bodies, Advanced Contact**
SIMULIA SERVICES
PROVIDING HIGH QUALITY SIMULATION AND TRAINING SERVICES TO ENABLE OUR CUSTOMERS TO BE MORE PRODUCTIVE AND COMPETITIVE.

Training Schedule & Registration
We offer regularly scheduled public seminars as well as training courses at customer sites. An extensive range of courses are available, ranging from basic introductions to advanced courses that cover specific analysis topics and applications. On-site courses can be customized to focus on topics of particular interest to the customer, based on the customer’s prior specification. To view the worldwide course schedule and to register for a course, visit the links below.

North American
- By Location
- By Course

International
- By Location
- By Course

Live Online Training
- Full Schedule
The software described in this documentation is available only under license from Dassault Systèmes or its subsidiaries and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiaries.

© Dassault Systèmes, 2018

Printed in the United States of America.

Abaqus, the 3DS logo, and SIMULIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the SIMULIA User Assistance.
Revision Status

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 1</td>
<td>11/18</td>
<td>Updated for Simpack 2019x</td>
</tr>
<tr>
<td>Lesson 2</td>
<td>11/18</td>
<td>Updated for Simpack 2019x</td>
</tr>
<tr>
<td>Lesson 3</td>
<td>11/18</td>
<td>Updated for Simpack 2019x</td>
</tr>
<tr>
<td>Lesson 4</td>
<td>11/18</td>
<td>Updated for Simpack 2019x</td>
</tr>
<tr>
<td>Lesson 5</td>
<td>11/18</td>
<td>Updated for Simpack 2019x</td>
</tr>
<tr>
<td>Lesson 6</td>
<td>11/18</td>
<td>Updated for Simpack 2019x</td>
</tr>
<tr>
<td>Lesson 7</td>
<td>11/18</td>
<td>Updated for Simpack 2019x</td>
</tr>
<tr>
<td>Lesson 8</td>
<td>11/18</td>
<td>Updated for Simpack 2019x</td>
</tr>
<tr>
<td>Lesson 9</td>
<td>11/18</td>
<td>Updated for Simpack 2019x</td>
</tr>
<tr>
<td>Workshop 1</td>
<td>11/18</td>
<td>Updated for Simpack 2019x</td>
</tr>
<tr>
<td>Workshop 2</td>
<td>11/18</td>
<td>Updated for Simpack 2019x</td>
</tr>
<tr>
<td>Workshop 3</td>
<td>11/18</td>
<td>Updated for Simpack 2019x</td>
</tr>
<tr>
<td>Workshop 4</td>
<td>11/18</td>
<td>Updated for Simpack 2019x</td>
</tr>
<tr>
<td>Workshop 5</td>
<td>11/18</td>
<td>Updated for Simpack 2019x</td>
</tr>
<tr>
<td>Workshop 6</td>
<td>11/18</td>
<td>Updated for Simpack 2019x</td>
</tr>
<tr>
<td>Workshop 7</td>
<td>11/18</td>
<td>Updated for Simpack 2019x</td>
</tr>
<tr>
<td>Workshop 8</td>
<td>11/18</td>
<td>Updated for Simpack 2019x</td>
</tr>
<tr>
<td>Workshop 9</td>
<td>11/18</td>
<td>Updated for Simpack 2019x</td>
</tr>
<tr>
<td>Workshop 10</td>
<td>11/18</td>
<td>Updated for Simpack 2019x</td>
</tr>
<tr>
<td>Workshop 11</td>
<td>11/18</td>
<td>Updated for Simpack 2019x</td>
</tr>
<tr>
<td>Workshop 12</td>
<td>11/18</td>
<td>New for Simpack 2019x</td>
</tr>
<tr>
<td>Workshop 13</td>
<td>11/18</td>
<td>Updated for Simpack 2019x</td>
</tr>
</tbody>
</table>
Lesson 1: Basic Elements

Lesson content:

- Simpack Rail
- Track Joints
- Specific Modeling Elements
- Model Setup Strategy
- Rail-Wheel Pairs
- Rail Element
- Geometry Data
- Profile Position and Projection
- Possible Configurations for Wheel Setup
- Possible Configurations for Rail Setup
- Contact Search
- Normal Contact Evaluation
- Creepage
- Tangential Forces
- Wheelset
- Basic Rail Elements Overview
- Typical Rail Vehicle Model
- Data Handling

1 Hour
Workshop 1: Single Wheelset

Aim:

1. Understand how a Wheelset is set up
2. Become familiar with the Railway Specific Elements
3. Learn how Rail-Wheel Pairs are used
4. Create a Wheelset Element
Lesson 2: Plots and Outputs

Lesson content:

- General
- Rail-Wheel Pair Plots
- Rail Plots
- Wheelset Plots
- Result Elements
Lesson content:

- Track Types
- Superelevation
- General Track Settings
- Cartographic Track
- Measured Track
- Plots
- Follow Track Joint Marker
- Active Track
Aim:

1. Become familiar with the set-up of a Cartographic Track

2. Understand the different settings for the **Follow Track Joint** Marker
Lesson 4: Suspension Modeling

Lesson content:

- Overview
- Rubber Spring
- Shear Spring
- Coil Spring
- Damper
- Graphical Representation of Force Elements
Workshop 3: Full Vehicle

Aim:

1. Build up a Bogie (Truck) model in Simpack
2. Build up a full train model in Simpack
3. Understand and use common rail modeling elements

2 hours
Lesson 5: Finalize Model Setup

Lesson content:

- Model Check – Graphical
- Model Check – Test Call
- Vehicle Globals
- Static Equilibrium and Preload
- Preload
- Solver Settings

40 minutes
Workshop 4: Preloads and Solver

Aim:

1. Understand how to check model plausibility
 a. Graphical
 b. Test Call

2. Understand the Vehicle Globals

3. Understand how to bring a rail vehicle model into equilibrium

45 minutes
Lesson content:

- Principle of a Guided Wheelset
- Quasilinearization
- Linearization Process
Workshop 5: Calculate Eigenvalues

Aim:

1. Learn how to use the Online Eigenvalues calculator
2. Learn how to adjust the linear arc profiles

20 minutes
Lesson 7: Critical Speed

Lesson content:

- DoE
- Critical Speed
- Track Excitations
- Model Setup
- Stop Integration Force Element
Aim:

1. Understand how to perform a Root Loci calculation using:
 a. the Simpack DoE and/or
 b. a Simpack Post Script

Workshop 6: Root Loci (Linear Critical Speed)

30 minutes

Damping [-]
Frequency [Hz]
Workshop 7: Nonlinear Critical Speed

Aim:

1. Understand how to perform a simple nonlinear critical speed analysis in Simpack
Lesson 8: Typical Applications

Lesson content:

- Derailment
- Mover Bodies
- Comfort
- Roll coefficient
Aim:

1. Understand how to perform a Derailment analysis in Simpack
Aim:

1. Understand how to perform a simple Comfort Analysis in Simpack
Aim:

1. Understand how to determine the Roll Coefficient using Simpack
Lesson 9 : Additional Rail Topics

Lesson content:

- Generating Wheel/Rail Profiles
- Variable Rail Profiles
- Independent Wheels
- Roller Rigs
- Elastic Foundation
- Rail–Wheel Wear

This lecture and workshops 11-13 are optional.
Workshop 11: Independent Wheels

Aim:

1. Understand the influence of Rail-Wheel Pairs in Simpack
2. Learn how to setup independent Wheels in a Wheelset

20 minutes
Workshop 12: Roller Rig

Aim:

1. Learn how to define a basic roller rig in Simpack
2. Convert a Rail-mounted wheelset to roller-mounted
3. Create a roller Body and its Primitives
4. Define Rail-Wheel Pairs for a roller rig

20 minutes
Workshop 13: Elastic Track Foundation

Aim:

1. Learn how to set up an Elastic Track Foundation in Simpack