Introduction to fe-safe/Rubber

fe-safe 2019
Course objectives
Upon completion of this course you will be able to:

- Understand rubber physics and fatigue crack growth behavior of rubber.
- Use Abaqus/CAE to create and run models for use in fe-safe/Rubber.
- Use fe-safe/Rubber to create complete rubber component fatigue analysis models.
- Use fe-safe/Rubber to submit and monitor rubber fatigue analysis jobs.
- Use Abaqus/Viewer and other tools to view and evaluate fe-safe/Rubber results.

Targeted audience
Simulation Analysts

Prerequisites
Introduction to Abaqus
Introduction to fe-safe

2 days
<table>
<thead>
<tr>
<th>Lesson 1</th>
<th>Overview of fe-safe/Rubber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demo 1</td>
<td>A First Look at fe-safe/Rubber</td>
</tr>
<tr>
<td>Workshop 1</td>
<td>Solid Rubber Model Life Prediction</td>
</tr>
<tr>
<td>Lesson 2</td>
<td>Rubber Physics and Rubber Fatigue</td>
</tr>
<tr>
<td>Demo 2</td>
<td>Stress-Strain Definition in Abaqus for Rubber</td>
</tr>
<tr>
<td>Lesson 3</td>
<td>Fatigue Crack Growth (FCG) Behavior I</td>
</tr>
<tr>
<td>Lesson 4</td>
<td>Fatigue Crack Growth (FCG) Behavior II</td>
</tr>
<tr>
<td>Demo 3</td>
<td>Handling Material Parameters in fe-safe/Rubber</td>
</tr>
<tr>
<td>Workshop 2</td>
<td>Editing Materials in fe-safe/Rubber</td>
</tr>
<tr>
<td>Lesson 5</td>
<td>FEA Modeling for fe-safe/Rubber</td>
</tr>
<tr>
<td>Workshop 3</td>
<td>Bushing Model Construction for fe-safe/Rubber</td>
</tr>
</tbody>
</table>
Day 2

Lesson 6 Using fe-safe/Rubber

Demo 4 fe-safe/Rubber Model with Bushing Component (optional)

Workshop 4 fe-safe/Rubber Set-up for Bushing Component

Lesson 7 Loading Definition for Rubber Fatigue

Demo 5 Fatigue Loading Scenarios

Workshop 5 Complex Loading for the Bushing Component

Lesson 8 Postprocessing fe-safe/Rubber Results

Demo 6 Additional Postprocessing Examples and Insights

Workshop 6 Postprocessing Jobs and Exports using the Bushing Model

Lesson 9 Additional Tips for using fe-safe/Rubber

Demo 7 Bushing Workflow with fe-safe/Rubber, Isight and Tosca (optional)
Additional Material

Appendix 1 The fe-safe and fe-safe/Rubber GUI
Appendix 2 Rubber Elasticity Models: Formulations
SIMULIA is the Dassault Systèmes brand for Realistic Simulation solutions

- Portfolio of established, best-in-class products
 - Abaqus, Isight, Tosca, fe-safe, Simpack

* Included in extended licensing pool
SIMULIA’s Power of the Portfolio

Abaqus
- Routine and Advanced Simulation
- Linear and Nonlinear, Static and Dynamic
- Thermal, Electrical, Acoustics
- Extended Physics through Co-simulation
- Model Preparation and Visualization

Isight
- Process Integration
- Design Optimization
- Parametric Optimization
- Six Sigma and Design of Experiments

Tosca
- Non-Parametric Optimization
- Structural and Fluid Flow Optimization
- Topology, Sizing, Shape, Bead Optimization

fe-safe
- Durability Simulation
- Low Cycle and High Cycle Fatigue
- Weld, High Temperature, Non-metallics

Simpack
- 3D Multibody Dynamics Simulation
- Mechanical or Mechatronic Systems
- Detailed Transient Simulation (Offline and Realtime)

Realistic Human Simulation
High Speed Crash & Impact
Noise & Vibration

Material Calibration
Workflow Automation
Design Exploration

Conceptual/Detailed Design
Weight, Stiffness, Stress
Pressure Loss Reduction

Safety Factors
Creep-Fatigue Interaction
Weld Fatigue

Complete System Analyses
(Quasi-)Static, Dynamics, NVH
Flex Bodies, Advanced Contact
Join the Community!

How can you maximize the robust technology of the SIMULIA Portfolio?
Connect with peers to share knowledge and get technical insights

Go to www.3ds.com/slc to log in or join!

Let the SIMULIA Learning Community be Your Portal to 21st Century Innovation
Discover new ways to explore how to leverage realistic simulation to drive product innovation. Join the thousands of Abaqus and Isight users who are already gaining valuable knowledge from the SIMULIA Learning Community.

For more information and registration, visit 3ds.com/simulia-learning.

©2013 Dassault Systèmes. All rights reserved.
SIMULIA SERVICES
PROVIDING HIGH QUALITY SIMULATION AND TRAINING SERVICES TO ENABLE OUR CUSTOMERS TO BE MORE PRODUCTIVE AND COMPETITIVE.

Training Schedule & Registration
We offer regularly scheduled public seminars as well as training courses at customer sites. An extensive range of courses are available, ranging from basic introductions to advanced courses that cover specific analysis topics and applications. On-site courses can be customized to focus on topics of particular interest to the customer, based on the customer’s prior specification. To view the worldwide course schedule and to register for a course, visit the links below.

North American
- By Location
- By Course

International
- By Location
- By Course

Live Online Training
- Full Schedule
The software described in this documentation is available only under license from Dassault Systèmes or its subsidiaries and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiaries.

© Dassault Systèmes, 2019

Printed in the United States of America.

Abaqus, the 3DS logo, and SIMULIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the SIMULIA User Assistance.
Revision Status

<table>
<thead>
<tr>
<th>Lesson 1</th>
<th>5/19</th>
<th>Updated for fe-safe 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 2</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Lesson 3</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Lesson 4</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Lesson 5</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Lesson 6</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Lesson 7</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Lesson 8</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Lesson 9</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Demonstration 1</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Demonstration 2</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Demonstration 3</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Demonstration 4</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Demonstration 5</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Demonstration 6</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Demonstration 7</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Workshop 1</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Workshop 2</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Workshop 3</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Workshop 4</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Workshop 5</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
<tr>
<td>Workshop 6</td>
<td>5/19</td>
<td>Updated for fe-safe 2019</td>
</tr>
</tbody>
</table>
Lesson 1: Overview of fe-safe/Rubber

Lesson content:

- What is fe-safe/Rubber?
- Starting fe-safe/Rubber
- Overview of fe-safe/Rubber GUI
- Running fe-safe/Rubber Analysis
- Documentation
- Useful Resources on the Web by Endurica on fe-safe/Rubber
- Workshop Preliminaries
- Demonstration 1: A First Look at fe-safe/Rubber
- Workshop 1: Solid Rubber Model Life Prediction
Lesson 2: Rubber Physics and Rubber Fatigue

Lesson content:

- Overview of Elastomers
- Types of Elastomers
- Solid Rubber
- Thermoplastics
- Rubber Foams
- Characteristics of Rubber
- Overview of Rubber Fatigue
- Material Tests for Rubber
- Material Models for Rubber
- Using the Ogden Model in Abaqus
- Material Parameter Calibration Methods
- Useful Tips
- References
- Demonstration 2: Stress-strain Definition in Abaqus for Rubber
Lesson content:

- Overview of Fatigue Process in fe-safe/Rubber
- Crack Growth Models
- Tearing Energy
- Two Extremes of Tearing Energy
- Critical Tearing Energy
- Intrinsic Strength of Rubber
- Loading Ratio
- Crack Growth Under Fully Relaxing Loading
- Material Parameters in fe-safe/Rubber Database
- References
Lesson content:

- Strain Crystallization
- Crack Growth Models
- Crack Growth Under Non-Relaxing Loading
- Material Parameters in fe-safe/Rubber Database
- Fatigue Life of Rubber
- Crack Precursor Size Calibration
- Other Effects
 - Creep Crack Growth
 - Ozone Attack
 - Treatment of Time-dependent Crack Growth
- The fe-safe/Rubber Material Database
- References
- Demonstration 3: Handling Material Parameters in fe-safe/Rubber
- Workshop 2: Editing Materials in fe-safe/Rubber
Lesson 5: FEA Modeling for fe-safe/Rubber

Lesson content:

- Key Ingredients for Rubber Component FEA
- Element Types and Mesh
- Material Models
- Analysis Procedures
- Loading and Boundary Conditions
- Output
- Workshop 3: Bushing Model Construction for fe-safe/Rubber
Lesson 6: Using fe-safe/Rubber

Lesson content:

- Steps for fe-safe/Rubber Analysis
- Reading FEA Solution Files
- Import Options
- Fatigue from FEA
- Specifying a Material
- Assigning a Plug-in Algorithm
- Defining Fatigue Loading
- Requesting Output
- Parallel Processing
- Running fe-safe/Rubber
- Damage Sphere Settings
- Factors for Computation Time and Accuracy
- Demonstration 4: fe-safe/Rubber Model with Bushing Component (optional)
- Workshop 4: fe-safe/Rubber Set-up for Bushing Component

30 Minutes
Lesson 7: Loading Definition for Rubber Fatigue

Lesson content:

- Loading Definition Options for fe-safe and fe-safe/Rubber
- Typical Fatigue Loading for fe-safe/Rubber
- Defining Time in a Fatigue Loading
- Loading Definition File
- Multiple Block Loading
- Repeats
- Transitions
- Calculating the Effect of Transitions for Rubber
- Mullins Effect and Multi-block Loading
- Order of Blocks in Multi-Block Loading
- Effect of Number of Datasets between peaks
- Useful Tips on Loading Definition
- Demonstration 5: Fatigue Loading Scenarios
- Workshop 5: Complex Loading for the Bushing Component
Lesson 8: Postprocessing fe-safe/Rubber Results

Lesson content:

- Steps for Postprocessing fe-safe/Rubber Analyses:
 - fe-safe Built-in Export and Output
 - fe-safe/Rubber Plug-in Export
 - Endurica Viewers
 - Postprocessing using Abaqus/Viewer
 - Useful Tips
 - Workshop 6: Postprocessing Jobs and Exports Using the Bushing Model
 - Demonstration 6: Additional Postprocessing Examples and Insights

Contact: support@endurica.com to request a download of the Endurica viewers if you want to try them!
Lesson 9: Additional Tips for Using fe-safe/Rubber

Lesson content:

- LCF vs. HCF
- Types of Rubber
- Rubber Material Database included with fe-safe/Rubber Installation
- Severe Loading and Element Types
- Case Study: Bushing Workflow using Abaqus, fe-safe, Isight and Tosca
- Demonstration 7: Bushing Workflow with fe-safe/Rubber, Isight and Tosca (optional)

30 Minutes
Appendix 1: The fe-safe and fe-safe/Rubber GUI

Appendix content:

- Starting fe-safe
- GUI Components
- Documentation
- Project Directory
- Message Log Window
- View FEA Fatigue Results Log
- Loaded Data Files Window
- Adding Data Files
- Removing Data Files
- Plotting Data Files
- Plot Types
- Interacting with Plots
- Copying, Printing and Saving Plot Images
- Adding Data
- Zooming
- Panning
- Display of Max/Min Tags
- Displaying Cursor Values
- Displaying Range Extremes
- Plot Properties
- Data File Editing
- Material Databases Window
- Materials Databases
- Materials Sorting
- Copying Materials
- Extended Materials Database
- Current FE Models Window
- Opening a Model & Pre-scanning
- Abaqus ODB Interface Options
- Pre-scanning and the Select Datasets to Read Dialog
- Loaded FE Model Units
- Expanded Tree View
- FED Directory: Proprietary, Binary File Structure
- Reload All Models
- Groups & Group Files
- Using Project Directories to Repeat or Automate FEA Fatigue Analysis
- Analysis Options

60 Minutes
Appendix 2: Rubber Elasticity Models: Math. Forms

Appendix content:

- Energy Functions for Solid Rubbers (Isotropic)
 - Polynomial Model
 - Mooney-Rivlin Model
 - Reduced Polynomial Model
 - Neo-Hookean Model
 - Yeoh Model
 - Ogden Model
 - Marlow Model
 - Arruda-Boyce Model
 - Van der Waals Model
- Foam Rubber Model
- Mullins Effect