Introduction to Abaqus
Abaqus 2019
Course objectives
Upon completion of this course you will be able to:

- Use Abaqus/CAE to create complete finite element models.
- Use Abaqus/CAE to submit and monitor analysis jobs.
- Use Abaqus/CAE to view and evaluate simulation results.
- Solve structural analysis problems using Abaqus/Standard and Abaqus/Explicit, including the effects of material nonlinearity, large deformation and contact.

Targeted audience
Simulation Analysts

Prerequisites
None
<table>
<thead>
<tr>
<th>Day 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 1</td>
</tr>
<tr>
<td>Demo 1</td>
</tr>
<tr>
<td>Workshop 1</td>
</tr>
<tr>
<td>Lesson 2</td>
</tr>
<tr>
<td>Demo 2</td>
</tr>
<tr>
<td>Workshop 2</td>
</tr>
<tr>
<td>Lesson 3</td>
</tr>
<tr>
<td>Demo 3a</td>
</tr>
<tr>
<td>Workshop 3a</td>
</tr>
<tr>
<td>Demo 3b</td>
</tr>
<tr>
<td>Workshop 3b</td>
</tr>
</tbody>
</table>
Day 2

Lesson 4 Material and Section Properties
 Demo 4 Creating Materials and Assigning Sections
 Workshop 4a Material and Section Properties: Pipe Creep Model
 Workshop 4b Material and Section Properties: Pump Model

Lesson 5 Assemblies in Abaqus
 Demo 5 Creating an Assembly
 Workshop 5 Pump Model Assembly

Lesson 6 Steps, Output, Loads, & Boundary Conditions
 Demo 6a Creating Steps
 Demo 6b Using the Load Module
 Workshop 6a Step Definition and Loads: Pipe Creep Model
 Workshop 6b Step Definition and Loads: Pump Model

Lesson 7 Meshing Imported and Native Geometry
 Demo 7 Using the Mesh Module
 Workshop 7a Structured Hex Meshing: Pipe Creep Model
 Workshop 7b Free and Swept Meshing: Pump Model
 Workshop 7c Meshing of Intersecting Pipes
<table>
<thead>
<tr>
<th>Day 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 8</td>
</tr>
<tr>
<td>Demo 8a</td>
</tr>
<tr>
<td>Demo 8b</td>
</tr>
<tr>
<td>Workshop 8</td>
</tr>
<tr>
<td>Lesson 9</td>
</tr>
<tr>
<td>Lesson 10</td>
</tr>
<tr>
<td>Demo 10</td>
</tr>
<tr>
<td>Workshop 10a</td>
</tr>
<tr>
<td>Workshop 10b</td>
</tr>
<tr>
<td>Lesson 11</td>
</tr>
<tr>
<td>Demo 11</td>
</tr>
<tr>
<td>Workshop 11</td>
</tr>
<tr>
<td>Lesson 12</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Workshop 12a</td>
</tr>
<tr>
<td>Workshop 12b</td>
</tr>
<tr>
<td>Lesson 13</td>
</tr>
<tr>
<td>Workshop 13</td>
</tr>
<tr>
<td>Lesson 14</td>
</tr>
<tr>
<td>Demo 14</td>
</tr>
<tr>
<td>Workshop 14</td>
</tr>
<tr>
<td>Lesson 15</td>
</tr>
<tr>
<td>Demo 15</td>
</tr>
<tr>
<td>Workshop 15</td>
</tr>
</tbody>
</table>
Additional Material

<table>
<thead>
<tr>
<th>Appendix 1</th>
<th>Element Selection Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 2</td>
<td>Analyzing Highly Nonlinear Quasi-Static Problems</td>
</tr>
<tr>
<td>Workshop A2</td>
<td>Single Pass Rolling of a Thick Plate</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>Heat Transfer and Thermal-Stress Analysis</td>
</tr>
<tr>
<td>Workshop A3</td>
<td>Thermal-Stress Analysis of Intersecting Pipes</td>
</tr>
</tbody>
</table>
SIMULIA is the Dassault Systèmes brand for Realistic Simulation solutions

- Portfolio of established, best-in-class products
 - Abaqus, Isight, Tosca, fe-safe, Simpack

* Included in extended licensing pool
SIMULIA’s Power of the Portfolio

- **Abaqus**
 - Routine and Advanced Simulation
 - Linear and Nonlinear, Static and Dynamic
 - Thermal, Electrical, Acoustics
 - Extended Physics through Co-simulation
 - Model Preparation and Visualization

- **Isight**
 - Process Integration
 - Design Optimization
 - Parametric Optimization
 - Six Sigma and Design of Experiments

- **Tosca**
 - Non-Parametric Optimization
 - Structural and Fluid Flow Optimization
 - Topology, Sizing, Shape, Bead Optimization

- **fe-safe**
 - Durability Simulation
 - Low Cycle and High Cycle Fatigue
 - Weld, High Temperature, Non-metallics

- **Simpack**
 - 3D Multibody Dynamics Simulation
 - Mechanical or Mechatronic Systems
 - Detailed Transient Simulation (Offline and Realtime)

Realistic Human Simulation
- High Speed Crash & Impact
- Noise & Vibration

Material Calibration
- Workflow Automation
- Design Exploration

Conceptual/Detailed Design
- Weight, Stiffness, Stress
- Pressure Loss Reduction

Safety Factors
- Creep-Fatigue Interaction
- Weld Fatigue

Complete System Analyses
- (Quasi-)Static, Dynamics, NVH
- Flex Bodies, Advanced Contact
Join the Community!

How can you maximize the robust technology of the SIMULIA Portfolio?
Connect with peers to share knowledge and get technical insights

Go to www.3ds.com/slc to log in or join!

Let the SIMULIA Learning Community be Your Portal to 21st Century Innovation
Discover new ways to explore how to leverage realistic simulation to drive product innovation. Join the thousands of Abaqus and Isight users who are already gaining valuable knowledge from the SIMULIA Learning Community.

For more information and registration, visit 3ds.com/simulia-learning. Connect. Share. Spark Innovation.

©2013 Dassault Systèmes. All rights reserved.
SIMULIA SERVICES
PROVIDING HIGH QUALITY SIMULATION AND TRAINING SERVICES TO ENABLE OUR CUSTOMERS TO BE MORE PRODUCTIVE AND COMPETITIVE.

Training Schedule & Registration
We offer regularly scheduled public seminars as well as training courses at customer sites. An extensive range of courses are available, ranging from basic introductions to advanced courses that cover specific analysis topics and applications. On-site courses can be customized to focus on topics of particular interest to the customer, based on the customer's prior specification. To view the worldwide course schedule and to register for a course, visit the links below.

North American
› By Location
› By Course

International
› By Location
› By Course

Live Online Training
› Full Schedule
Legal Notices

The software described in this documentation is available only under license from Dassault Systèmes or its subsidiaries and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiaries.

© Dassault Systèmes, 2018

Printed in the United States of America.

Abaqus, the 3DS logo, and SIMULIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the SIMULIA User Assistance.
<table>
<thead>
<tr>
<th>Lesson 1</th>
<th>11/18</th>
<th>Updated for Abaqus 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 2</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Lesson 3</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Lesson 4</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Lesson 5</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Lesson 6</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Lesson 7</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Lesson 8</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Lesson 9</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Lesson 10</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Lesson 11</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Lesson 12</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Lesson 13</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Lesson 14</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Lesson 15</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demonstration 1</th>
<th>11/18</th>
<th>Updated for Abaqus 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstration 2</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Demonstration 3a</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Demonstration 3b</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Demonstration 4</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Demonstration 5</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Demonstration 6a</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Demonstration 6b</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Demonstration 7</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Demonstration 8a</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Demonstration 8b</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Demonstration 10</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Demonstration 11</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Demonstration 14</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Demonstration 15</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop</td>
<td>Date</td>
<td>Status</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Workshop 1</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 2</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 3a</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 3b</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 4a</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 4b</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 5</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 6a</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 6b</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 7a</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 7b</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 7c</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 8</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 10a</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 10b</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 11</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 12a</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 12b</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 13</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 14</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop 15</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop A2</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
<tr>
<td>Workshop A3</td>
<td>11/18</td>
<td>Updated for Abaqus 2019</td>
</tr>
</tbody>
</table>
Lesson content:

- What is Abaqus FEA?
- Abaqus/CAE
- Abaqus/Standard and Abaqus/Explicit
- Abaqus Conventions
- Working with the Model Tree
- Other Abaqus/CAE Topics
- Documentation
- Learning Community
- Abaqus Environment Settings
- Abaqus Fetch Utility
- Workshop Preliminaries
- Demonstration 1: A First Look at Abaqus/CAE
- Workshop 1: Linear Static Analysis of a Cantilever Beam

2.5 hours
Lesson content:

- Abaqus/CAE: Part Module
- What are Parts?
- Creating Part Geometry
- Building a Part Using the Part Module Tools
- The Sketcher
- Adding Features
- Miscellaneous Topics
- Demonstration 2: Working with Native Geometry
- Workshop 2: Creating Native Geometry: Pipe Creep Model

2 hours
Lesson 3: Working with Geometry (Part 2)

Lesson content:

- Abaqus/CAE: Part Module
- Geometry Import and Repair
- Demonstration 3a: Generating a Shell From a Thin Solid
- Workshop 3a: Geometry Repair of Intersecting Pipes
- Part from an Orphan Mesh
- Creating Geometry from an Orphan Mesh
- Demonstration 3b: Importing and Editing an Orphan Mesh
- Workshop 3b: Importing and Editing an Orphan Mesh: Pump Model
Lesson 4: Material and Section Properties

Lesson content:

- Abaqus/CAE: Property Module
- Abaqus Material Definitions
- Abaqus Conventions
- Linear Elasticity
- Large Strain Elasticity
- Metal Plasticity
- Material Calibration
- Material Databases
- Section Properties
- Special Features: Skins and Stringers
- Demonstration 4: Creating Materials and Assigning Sections
- Workshop 4a: Material and Section Properties: Pipe Model
- Workshop 4b: Material and Section Properties: Pump Model

2 hours
Lesson 5: Assemblies in Abaqus

Lesson content:

- Abaqus/CAE: Assembly Module
- What is an Assembly?
- Positioning Instances
- Other Operations
- Subassemblies
- Sets
- Surfaces
- Display Groups
- Instance Types
- Demonstration 5: Creating an Assembly; Boolean Operations
- Workshop 5: Pump Model Assembly

2 hours
Lesson content:

- Abaqus/CAE: Step Module
- Analysis Steps and Procedures
- Demonstration 6a: Creating Steps
- Output Requests
- Output Files
- Abaqus/CAE: Load Module
- Amplitudes and Distributions
- Loads and Boundary Conditions
- Initial Conditions
- Demonstration 6b: Using the Load Module
- Workshop 6a: Step Definition and Loads: Pipe Creep Model
- Workshop 6b: Step Definition and Loads: Pump Model

2 hours
Lesson 7: Meshing Imported and Native Geometry

Lesson content:

- Abaqus/CAE: Mesh Module
- What is a Mesh?
- Elements in Abaqus
- Mesh Generation Workflow
- The Mesh Module
- Common Tools:
 - Density
 - Controls
 - Element Selection
 - Meshing
 - Local Fine-tuning
 - Quality Checks
- Advanced Topics:
 - Virtual Topology
 - Bottom-up Meshing
 - Mesh Compatibility
 - Mesh Convergence
 - Dependent and Independent Part Instances
 - Demonstration 7: Using the Mesh Module
 - Workshop 7a: Structured Hex Meshing: Pipe Creep Model
 - Workshop 7b: Free and Swept Meshing: Pump Model
 - Workshop 7c: Meshing of Intersecting Pipes

2 hours
Lesson 8: Job Management and Results Visualization

Lesson content:

- Abaqus/CAE: Job Module
- Analysis Jobs
- Creating a Job
- The Job Manager
- Monitoring the Progress of an Analysis
- Keywords Editor
- Demonstration 8a: Using the Keywords Editor
- Viewing and Interpreting Results
- Abaqus/CAE: Visualization Module
- Viewing and Interpreting Results
- Output
- Example 1: Overhead Hoist
- Example 2: Overhead Hoist – Dynamic Loading
- Example 3: Connecting Lug
- Additional Topics
 - Color Coding
 - Display Groups
 - Managing Viewports
 - Display Options
- Demonstration 8b: Visualizing Results
- Advanced Topics
 - Result Options
- Final Thoughts
- Workshop 8: Creep of a Pipe Intersection

3 hours
Lesson content:

- Is my problem nonlinear?
- What are the main sources of nonlinearities?
- Why are nonlinear problems hard to solve?
- How are nonlinear problems solved?
- Summary
Lesson content:

- Preliminaries
 - Abaqus Model and Analysis Steps
 - Analysis Procedures
- The *static, general* analysis procedure
- Finding a *converged* solution
- Demonstration 10: Nonlinear Static Analysis
- Workshop 10a: Linear Analysis of a Skew Plate
- Workshop 10b: Nonlinear Analysis of a Skew Plate

2 hours
Lesson content:

- Preliminaries: Analysis Procedures
- Linear Perturbation Procedures
- The *Static, Linear Perturbation* procedure
- Buckle procedure
- Frequency procedure
- Summary, so far...
- Multistep Analyses
- Demonstration 11: Load Cases and Multi-Step analysis
- Workshop 11: Linear Static Analysis of a Cantilever Beam (optional)
Lesson content:

- Preliminaries
 - Analysis Procedures
 - What Makes a Problem Dynamic?
 - Implicit vs Explicit time integration
- The *dynamic, explicit* analysis procedure
- Stability Limit
- Finding a solution … faster!
- Troubleshooting Abaqus/Explicit analyses
- Workshop 12a: Dynamic Analysis of a Skew Plate
- Workshop 12b: Pipe Whip Analysis
Lesson 13: Analysis Continuation Techniques

Lesson content:

- Analysis Continuation Techniques
- Restarting an Abaqus Analysis
- Workshop 13: Unloading Analysis of a Skew Plate

30 minutes
Lesson 14: Constraints and Connections

Lesson content:

- Introduction
- Rigid Body Constraint
- Tie Constraint
- Coupling Constraint
- Shell-to-Solid Coupling
- Connector Elements
- Mesh-independent Fasteners
- Demonstration 14: Defining a Rigid Body
- Workshop 14: Tie Constraints: Pump Model
Lesson 15: Contact

Lesson content:

- Introduction
- Mechanical Contact Properties
- Contact Domain
- Contact Formulation and Controls
- Summary
- Example 1: Shearing of a lap joint with contact pairs
- Example 2: Shearing of a lap joint with general contact
- Example 3: Crimp forming with general contact
- Additional Topics
 - Handling Initial Overclosures
 - Contact Output
 - Modeling Tips
- Demonstration 15: Using Automatic Contact Detection and General Contact
- Workshop 15: Nonlinear Static Analysis of a Pump Assembly

2 hours
Appendix 1: Element Selection Criteria

Appendix content:

- Elements
- Structural (Shells and Beams) vs. Continuum Elements
- Modeling Bending Using Continuum Elements
- Stress Concentrations
- Contact
- Incompressible Materials
- Mesh Generation
- Solid Element Selection Summary
Appendix 2: Analyzing Nonlinear Quasi-Static Problems

Appendix content:

- Introduction
- Solution Strategies
- Quasi-Static Simulations Using Explicit Dynamics
- Adaptive Meshing
- Workshop A2: Single Pass Rolling of a Thick Plate
Appendix 3: Heat Transfer and Thermal-Stress Analysis

Appendix content:

- Introduction
- Steady-State Heat Transfer
- Transient Heat Transfer
- Thermal Interfaces
- Thermal-Stress Analysis
- Workshop A3: Thermal-Stress Analysis of Intersecting Pipes