Linear Dynamics with Abaqus

Abaqus 2020
Course objectives
Upon completion of this course you will be able to:

- Extract eigenmodes about a certain frequency
- Determine whether the number of extracted eigenmodes is sufficient to represent the structure's response adequately
- Perform transient, steady-state, response spectrum and random response analyses using the eigenmodes
- Use multiple base motions
- Apply damping in linear problems

Targeted audience
Simulation Analysts

Prerequisites
This course is recommended for engineers with experience using Abaqus

About this Course
2 days
Day 1

- **Lesson 1** Introduction to Linear Dynamics in Abaqus
- **Lesson 2** Modal-Based Solutions
- **Lesson 3** Extracting Real Eigenvalues
 - **Workshop 1** Eigenvalue Natural Frequency Extraction
- **Lesson 4** Damping
- **Lesson 5** Base Motion Excitation
- **Lesson 6** Modal Transient Dynamics
 - **Workshop 2** Modal Transient Dynamics of a Layered Beam
Day 2

- Lesson 7 Response Spectrum Analysis
 - Workshop 3 Response Spectrum Analyses of a Layered Beam and Storage Rack
- Lesson 8 Steady-State Dynamics
 - Workshop 4 Steady-State Dynamics of a Mounted Circuit Board
- Lesson 9 Complex Eigenvalue Analysis
- Lesson 10 Introduction to Random Response
 - Workshop 5 Random Response Analysis of a Mounted Circuit Board
Additional Material

- Appendix 1 Introduction to Nonlinear Dynamics
- Appendix 2 Nonlinear Dynamics: Abaqus Usage
- Appendix 3 Nonlinear Dynamics Examples
SIMULIA is the Dassault Systèmes brand for Realistic Simulation solutions

Portfolio of established, best-in-class products

- Abaqus, Isight, Tosca, fe-safe, Simpack

* Included in extended licensing pool
Join the Community!

How can you maximize the robust technology of the SIMULIA Portfolio?
Connect with peers to share knowledge and get technical insights

Go to www.3ds.com/slc to log in or join!

Let the SIMULIA Learning Community be Your Portal to 21st Century Innovation

Discover new ways to explore how to leverage realistic simulation to drive product innovation. Join the thousands of Abaqus and Isight users who are already gaining valuable knowledge from the SIMULIA Learning Community.

For more information and registration, visit 3ds.com/simulia-learning.

SIMULIA SERVICES
PROVIDING HIGH QUALITY SIMULATION AND TRAINING SERVICES TO ENABLE OUR CUSTOMERS TO BE MORE PRODUCTIVE AND COMPETITIVE.

Training Schedule & Registration
We offer regularly scheduled public seminars as well as training courses at customer sites. An extensive range of courses are available, ranging from basic introductions to advanced courses that cover specific analysis topics and applications. On-site courses can be customized to focus on topics of particular interest to the customer, based on the customer's prior specification. To view the worldwide course schedule and to register for a course, visit the links below.
The software described in this documentation is available only under license from Dassault Systèmes or its subsidiaries and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiaries.

© Dassault Systèmes, 2019

Printed in the United States of America.

Abaqus, the 3DS logo, and SIMULIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the SIMULIA User Assistance.
Revision Status

<table>
<thead>
<tr>
<th>Component</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 1</td>
<td>3/20</td>
<td>Minor edits</td>
</tr>
<tr>
<td>Lesson 2</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Lesson 3</td>
<td>3/20</td>
<td>Minor edits</td>
</tr>
<tr>
<td>Lesson 4</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Lesson 5</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Lesson 6</td>
<td>3/20</td>
<td>Minor edits</td>
</tr>
<tr>
<td>Lesson 7</td>
<td>3/20</td>
<td>Minor edits</td>
</tr>
<tr>
<td>Lesson 8</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Lesson 9</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Lesson 10</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Workshop 1</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Workshop 2</td>
<td>11/19</td>
<td>New for Abaqus 2020</td>
</tr>
<tr>
<td>Workshop 3</td>
<td>3/20</td>
<td>Minor edits</td>
</tr>
<tr>
<td>Workshop 4</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Workshop 5</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
</tbody>
</table>
Lesson 1: Introduction to Linear Dynamics in Abaqus

Lesson content:

- Dynamic Response
- When to Consider Dynamic Effects
- Linear Dynamics Procedures
- Linear Dynamics Software Architecture
Lesson content:

- Introduction
- Modal Superposition
- Example: Modal Reduction and Superposition
- Example: Cantilever Beam
- Subspace Projection vs. Modal Superposition
- Solution Architectures for Mode-Based Solutions
Lesson content:

- Problem Formulation
- Eigenvalue Solution Methods
- Lanczos Eigensolver – Engine Block Example
- AMS Eigensolver – Mounted Circuit Boards Example
- Frequency Output
- Frequencies of Preloaded Structures
- Extracting Repeated Eigenfrequencies
- Residual Modes
- Workshop Model Description
- Workshop Preliminaries
- Workshop 1: Eigenvalue Natural Frequency Extraction (IA)
- Workshop 1: Eigenvalue Natural Frequency Extraction (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.

2.5 hours
Lesson 4: Damping

Lesson content:

- Introduction
- Damping Concepts
- Damping in Direct Solutions
 - Material Damping
 - Element Damping
 - Global Damping
- Damping Controls
- Damping in Modal Superposition Procedures
 - Modal Damping
 - Composite Modal Damping
- Damping in Modal Subspace Projection Solutions
- Summary
Lesson 5: Base Motion Excitation

Lesson content:

- Introduction
- Primary Base Motion
- Secondary Base Motions
- Usage
- Example: Double Cantilever

45 minutes
Lesson 6: Modal Transient Dynamics

Lesson content:

- Introduction
- Excitation and Output
- Example
- Subspace Projection Solution for Transient Dynamics
- Workshop 2: Modal Transient Dynamics of a Layered Beam (IA)
- Workshop 2: Modal Transient Dynamics of a Layered Beam (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson 7: Response Spectrum Analysis

Lesson content:

- Introduction
- The Response Spectrum
- Spectrum Definition
- Determining Peak Modal Response
- Modal Summation Methods
- Combining Response Spectrum Results from Multiple Directions
- Response Spectrum Usage
- Missing Mass
- Periodic and Rigid Responses – USNRC Regulatory Guide 1.92
- Workshop 3: Response Spectrum Analyses of a Layered Beam and Storage Rack (IA)
- Workshop 3: Response Spectrum Analyses of a Layered Beam and Storage Rack (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson 8: Steady-State Dynamics

Lesson content:

- Introduction
- Steady-State Dynamics Solution Procedures
- Excitation and Output
- Steady-State Dynamics Usage
- Example – Mounted Circuit Boards
- Workshop 4: Steady-State Dynamics of a Mounted Circuit Board (IA)
- Workshop 4: Steady-State Dynamics of a Mounted Circuit Board (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson 9: Complex Eigenvalue Analysis

Lesson content:

- Overview
- Implementation
- Example: Brake Squeal Analysis

60 minutes
Lesson content:

- Overview
- Implementation
- Random Response Output
- Correlation Example – Cantilever Beam
- Base Motion Excitation Example
- Steady-State Dynamics Alternative Approach
- Workshop 5: Random Response Analysis of a Mounted Circuit Board (IA)
- Workshop 5: Random Response Analysis of a Mounted Circuit Board (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Appendix 1: Introduction to Nonlinear Dynamics

Appendix content:

- Introduction
- Equations for Dynamic Problems
- Time integration of the equations of motion
- Automatic time incrementation
- Dynamic Contact
- Comparing Abaqus/Standard and Abaqus/Explicit
Appendix 2: Nonlinear Dynamics: Abaqus Usage

Appendix content:

- Implicit Dynamics
- Explicit Dynamics
- Algorithmic Details
- Initial Conditions and Loads
- Stability and Accuracy of the Trapezoidal Rule
- Material Damping
- Half-Increment Residual Tolerance

75 minutes
Appendix 3: Nonlinear Dynamics Examples

Appendix content:

- Damped shallow arch
- Ball impact
- Tennis racket and ball
- Crimp forming
- Blade containment
- Inertia relief