Heat Transfer and Thermal-Stress Analysis with Abaqus

Abaqus 2020
Course objectives
Upon completion of this course you will be able to:

- Perform steady-state and transient heat transfer simulations
- Solve cavity radiation problems
- Model latent heat effects
- Perform adiabatic, sequentially-coupled, and fully-coupled thermal-stress analyses
- Model contact in heat transfer problems

Targeted audience
Simulation Analysts

Prerequisites
This course is recommended for engineers with experience using Abaqus
Day 1

- **Lesson 1**
 Introduction to Heat Transfer

- **Lesson 2**
 Heat Transfer Basics

 - Demo 1:
 Heat Conduction through a Multilayered System

- **Lesson 3**
 Geometry, Material Properties, and Elements

 - Demo 2:
 Heat Transfer Analysis using Composite Layups

 - Workshop 1:
 Reactor: Properties and Elements

- **Lesson 4**
 Solver Procedures and Convergence

 - Workshop 2:
 Reactor: Analysis Procedures

- **Lesson 5**
 Boundary Conditions and Loads

 - Workshop 3:
 Reactor: Loads and Boundary Conditions

- **Lesson 6**
 Thermal Interfaces

 - Demo 3:
 Thermal Radiation

- **Lesson 7**
 Thermal Output and Postprocessing

 - Workshop 4:
 Reactor: Thermal contact and Analysis
Day 2

- Lesson 8 Thermal-Stress Analysis
- Lesson 9 Sequentially-Coupled Thermal-Stress Analysis
 - Demo 4: Thermally Insulated Bolted Joint
 - Workshop 5 Reactor: Stress Response
- Lesson 10 Fully-Coupled Thermal-Stress Analysis
- Workshop 6 Disc Brake Analysis
- Lesson 11 Adiabatic Analysis
SIMULIA is the Dassault Systèmes brand for Realistic Simulation solutions

- Portfolio of established, best-in-class products
 - Abaqus, Isight, Tosca, fe-safe, Simpack

* Included in extended licensing pool

- Design Optimization, Tosca Structure *
 - Simulation-driven design refinement to improve performance

- Durability Assessment, fe-safe *
 - Accurate life estimation to achieve certification

- FEA Stress Analysis, Abaqus *
 - Detailed stress analysis using extracted load history from MBS

- CAD Geometry, CATIA
 - Fully parameterized 3D geometry; FEA model generation via associative interface

- Multibody Simulation, Simpack
 - System analysis to extract virtual load history of complete working cycle

- Mesh Calibration, Isight *
 - Automated mesh calibration, sufficient mesh quality for accurate results
SIMULIA’s Power of the Portfolio

Abaqus
- Routine and Advanced Simulation
- Linear and Nonlinear, Static and Dynamic
- Thermal, Electrical, Acoustics
- Extended Physics through Co-simulation
- Model Preparation and Visualization

Isight
- Process Integration
- Design Optimization
- Parametric Optimization
- Six Sigma and Design of Experiments

Tosca
- Non-Parametric Optimization
- Structural and Fluid Flow Optimization
- Topology, Sizing, Shape, Bead Optimization

fe-safe
- Durability Simulation
- Low Cycle and High Cycle Fatigue
- Weld, High Temperature, Non-metallics

Simpack
- 3D Multibody Dynamics Simulation
- Mechanical or Mechatronic Systems
- Detailed Transient Simulation (Offline and Realtime)

Realistic Human Simulation
- High Speed Crash & Impact
- Noise & Vibration

Material Calibration
- Workflow Automation
- Design Exploration

Conceptual/Detailed Design
- Weight, Stiffness, Stress
- Pressure Loss Reduction

Safety Factors
- Creep-Fatigue Interaction
- Weld Fatigue

Complete System Analyses
- (Quasi-)Static, Dynamics, NVH
- Flex Bodies, Advanced Contact
Join the Community!

How can you maximize the robust technology of the SIMULIA Portfolio?
Connect with peers to share knowledge and get technical insights

Go to www.3ds.com/slc to log in or join!

Let the SIMULIA Learning Community be Your Portal to 21st Century Innovation
Discover new ways to explore how to leverage realistic simulation to drive product innovation. Join the thousands of Abaqus and Isight users who are already gaining valuable knowledge from the SIMULIA Learning Community.

For more information and registration, visit 3ds.com/simulia-learning.
SIMULIA SERVICES
PROVIDING HIGH QUALITY SIMULATION AND TRAINING SERVICES TO ENABLE OUR CUSTOMERS TO BE MORE PRODUCTIVE AND COMPETITIVE.

Training Schedule & Registration
We offer regularly scheduled public seminars as well as training courses at customer sites. An extensive range of courses are available, ranging from basic introductions to advanced courses that cover specific analysis topics and applications. On-site courses can be customized to focus on topics of particular interest to the customer, based on the customer's prior specification. To view the worldwide course schedule and to register for a course, visit the links below.
Legal Notices

The software described in this documentation is available only under license from Dassault Systèmes or its subsidiaries and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiaries.

© Dassault Systèmes, 2019

Printed in the United States of America.

Abaqus, the 3DS logo, and SIMULIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the SIMULIA User Assistance.
<table>
<thead>
<tr>
<th>Lesson 1</th>
<th>11/19</th>
<th>Updated for Abaqus 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 2</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Lesson 3</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Lesson 4</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Lesson 5</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Lesson 6</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Lesson 7</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Lesson 8</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Lesson 9</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Lesson 10</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Lesson 11</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Demonstration 1</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Demonstration 2</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Demonstration 3</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Demonstration 4</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Workshop 1</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Workshop 2</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Workshop 3</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Workshop 4</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Workshop 5</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Workshop 6</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Workshop 7</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Workshop 8</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
</tbody>
</table>
Lesson content:

- Motivation
- Abaqus Capabilities
- Thermal Stress Examples
- Course Overview
Lesson 2: Heat Transfer Basics

Lesson Content:

- Heat Transfer Definition
- Heat Transfer Modes
 - Conduction
 - Convection
 - Radiation
 - Combined
- Elements for Heat Transfer Analysis
- Demonstration 1: Heat Conduction through a Multilayered System
Lesson content:

- Thermal Material Properties
 - Main Thermal Material Properties (conductivity, specific heat, density)
 - Temperature-dependent Properties
 - Field-dependent Variables
 - Advanced Thermal Material Properties
 - Material-related Properties (thermal radiation, composites, skins)
- Demonstration 2: Heat Transfer Analysis using Composite Layups
- Geometry Considerations
- Element Technology
 - Element types
 - Element topology
 - Restrictions
- Workshop Preliminaries
- Workshop 1: Reactor: Properties and Elements (IA)
- Workshop 1: Reactor: Properties and Elements (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson 4: Analysis Procedures and Convergence

Lesson content:

- Overview
- Procedures
- Automatic Time Incrementation
- Reference Temperature Considerations
- Steady State Termination in Transient Analyses
- Convergence Difficulties
- Element Selection for Highly Nonlinear Problems
- Time Integration Accuracy
- Workshop 2: Reactor: Analysis Procedures (IA)
- Workshop 2: Reactor: Analysis Procedures (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson 5: Boundary Conditions and Loads

Lesson content:

- Overview
- Initial Conditions
- Prescribed Temperatures
- Prescribed Fluxes
- Prescribed Boundary Conditions and Loads
- Symmetry
- Film Conditions
- Radiation to the Ambient
- User Subroutines associated with Boundary Conditions
- Workshop 3: Reactor: Loads and Boundary Conditions (IA)
- Workshop 3: Reactor: Loads and Boundary Conditions (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson content:

- Heat Transfer across Interfaces
- Bonded Interfaces
- Thermal Contact
- Gap Conductance
- Gap Radiation
- Cavity Radiation
- Demonstration 3: Thermal Radiation
Lesson 7: Thermal Output and Postprocessing

Lesson content:

- Field and History Output Overview
- Output Variables
- Output Requests
- Postprocessing Examples
- Workshop 4: Reactor: Thermal Contact and Analysis (IA)
- Workshop 4: Reactor: Thermal Contact and Analysis (KW)

> Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson 8: Thermal-Stress Analysis

Lesson content:

- Thermal Stress Analysis Overview
- Thermal-Stress Procedures
- Element Selection
Lesson 9: Sequentially-Coupled Thermal-Stress Analysis

Lesson content:

- Sequentially-Coupled Analysis
- Thermal-Stress Modeling Considerations
- Methods for Assigning Temperature Data
- Temperature Application for Solid Elements
- Temperature Application for Shell Elements
- Temperature Application for Beam Elements
- Contact
- Summary
- Demonstration 4: Thermally Insulated Bolted Joint
- Workshop 5: Reactor: Stress Response (IA)
- Workshop 5: Reactor: Stress Response (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson 10: Fully-Coupled Thermal-Stress Analysis

Lesson content:
- Full Temperature-Displacement Coupling
- Element Selection
- Contact Interaction
- Examples of Fully Coupled Analyses
- Rigid Bodies in Thermal-Stress Analysis
- Heat Transfer Analysis with Abaqus/Explicit
- Workshop 6: Disc Brake Analysis (IA)
- Workshop 6: Disc Brake Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson 11: Adiabatic Analysis

Lesson content:

- Adiabatic Analysis
- Adiabatic Analysis Examples
Appendix 1: Heat Transfer Theory

Appendix content:

- Summary of Governing Equations for Conduction
- Constitutive Relation—Fourier's Law
- Thermal Energy Balance—Differential Form
- Thermal Energy Balance—Equivalent Variational Form
- Finite Element Approximation
- Transient Analysis
- Eulerian Formulation for Convection
- Thermal Radiation Formulation
- Adiabatic Thermal-Stress Analysis
- Nonlinear Solution Scheme
Appendix 2: Forced Convection

Appendix content:

- Example: 1-D Convective Heat Transfer
- Stabilization
- Convective/Diffusive Element Library
- Abaqus Usage
- Workshop 7: Continuous Casting (IA)
- Workshop 7: Continuous Casting (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Appendix 3: Cavity Radiation

Appendix content:

- Thermal Radiation
- Cavity Radiation
- Fully Implicit Cavity Radiation Approach
- Open vs. Closed Cavities
- Cavity Radiation and Viewfactor Calculations
- Radiation Symmetry
- Radiation Motion
- Cavity Radiation Output
- Approximate Cavity Radiation Approach
- Workshop 8: Radiation in a Finned Surface (IA)
- Workshop 8: Radiation in a Finned Surface (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Appendix 4: Thermal Fatigue

Appendix content:

- Thermal Fatigue
- Example

30 minutes