Electromagnetic Analysis with Abaqus

Abaqus 2020
Course objectives
Upon completion of this course you will be able to:

- Set up and create electromagnetic models with Abaqus
- Perform low frequency eddy current analyses with Abaqus
- Perform transient eddy current analyses with Abaqus
- Perform magnetostatic analyses with Abaqus

Targeted audience
Simulation Analysts

Prerequisites
This course is recommended for engineers with experience using Abaqus
Day 1

- **Lesson 1** Introduction to Computational Electromagnetics
- **Lesson 2** Geometry, Material Properties, Elements and Meshing
 - Workshop 1 Heating of a Rod: Problem setup
 - Workshop 2 Sphere in a Magnetic Field: Problem setup
- **Lesson 3** Loads and Boundary Conditions
- **Lesson 4** Output and Transfer of Results
 - Workshop 1 (cont’d) Heating of a Rod: Thermal Response
 - Workshop 2 (cont’d) Sphere in a Magnetic Field: Electromagnetic Response
 - Workshop 3 Magnetostatic Analysis of a Solenoid Valve
 - Workshop 4 Magnetic Pulse Forming of a Metallic Tube
SIMULIA is the Dassault Systèmes brand for Realistic Simulation solutions

Portfolio of established, best-in-class products
- Abaqus, Isight, Tosca, fe-safe, Simpack

Design Optimization. Tosca Structure *
Simulation-driven design refinement to improve performance

Durability Assessment. fe-safe *
Accurate life estimation to achieve certification

FEA Stress Analysis. Abaqus *
Detailed stress analysis using extracted load history from MBS

CAD Geometry. CATIA
Fully parameterized 3D geometry; FEA model generation via associative interface

Multibody Simulation. Simpack
System analysis to extract virtual load history of complete working cycle

Mesh Calibration. Isight *
Automated mesh calibration; sufficient mesh quality for accurate results

* Included in extended licensing pool
SIMULIA’s Power of the Portfolio

<table>
<thead>
<tr>
<th>Abaqus</th>
<th>Isight</th>
<th>Tosca</th>
<th>fe-safe</th>
<th>Simpack</th>
</tr>
</thead>
</table>
| - Routine and Advanced Simulation
- Linear and Nonlinear, Static and Dynamic
- Thermal, Electrical, Acoustics
- Extended Physics through Co-simulation
- Model Preparation and Visualization | - Process Integration
- Design Optimization
- Parametric Optimization
- Six Sigma and Design of Experiments | - Non-Parametric Optimization
- Structural and Fluid Flow Optimization
- Topology, Sizing, Shape, Bead Optimization | - Durability Simulation
- Low Cycle and High Cycle Fatigue
- Weld, High Temperature, Non-metallics | - 3D Multibody Dynamics Simulation
- Mechanical or Mechatronic Systems
- Detailed Transient Simulation (Offline and Realtime) |

- Realistic Human Simulation
 High Speed Crash & Impact
 Noise & Vibration
- Material Calibration
 Workflow Automation
 Design Exploration
- Conceptual/Detailed Design
 Weight, Stiffness, Stress
 Pressure Loss Reduction
- Safety Factors
 Creep-Fatigue Interaction
 Weld Fatigue
- Complete System Analyses
 (Quasi-)Static, Dynamics, NVH
 Flex Bodies, Advanced Contact
Join the Community!

How can you maximize the robust technology of the SIMULIA Portfolio?
Connect with peers to share knowledge and get technical insights

Go to www.3ds.com/slc to log in or join!
SIMULIA SERVICES
PROVIDING HIGH QUALITY SIMULATION AND TRAINING SERVICES TO ENABLE OUR CUSTOMERS TO BE MORE PRODUCTIVE AND COMPETITIVE.

Training Schedule & Registration
We offer regularly scheduled public seminars as well as training courses at customer sites. An extensive range of courses are available, ranging from basic introductions to advanced courses that cover specific analysis topics and applications. On-site courses can be customized to focus on topics of particular interest to the customer, based on the customer’s prior specification. To view the worldwide course schedule and to register for a course, visit the links below.

North American
- By Location
- By Course

International
- By Location
- By Course

Live Online Training
- Full Schedule
The software described in this documentation is available only under license from Dassault Systèmes or its subsidiaries and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiaries.

© Dassault Systèmes, 2019

Printed in the United States of America.

Abaqus, the 3DS logo, and SIMULIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the SIMULIA User Assistance.
<table>
<thead>
<tr>
<th>Course</th>
<th>Date</th>
<th>Revision Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 1</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Lesson 2</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Lesson 3</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Lesson 4</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Workshop 1</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Workshop 2</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Workshop 3</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
<tr>
<td>Workshop 4</td>
<td>11/19</td>
<td>Updated for Abaqus 2020</td>
</tr>
</tbody>
</table>
Lesson 1: Introduction to Computational Electromagnetics

Lesson content:

- Motivation
- Basics of Electromagnetism
- Computational Electromagnetics in Abaqus
- Workflow of an Electromagnetic Analysis
- Examples
Lesson 2: Geometry, Material Properties, Elements and Meshing

Lesson content:

- Geometry Creation
- Material Properties
- Element Technology
- Meshing
- Workshop Preliminaries
- Workshop 1: Heating of a Rod: Problem setup
- Workshop 2: Sphere in a Magnetic Field: Problem setup
Lesson 3: Loads and Boundary Conditions

Lesson content:

- Introduction
- Loads
- Boundary Conditions
- Symmetry
- Motion
Lesson content:

- Analysis Procedures
- Co-simulation
- Sequential Mapping
- Output
- Workshop 1 (cont’d): Heating of a Rod: Thermal Response
- Workshop 2 (cont’d): Sphere in a Magnetic Field: Electromagnetic Response
- Workshop 3: Magnetostatic Analysis of a Solenoid Valve
- Workshop 4: Magnetic Pulse Forming of a Metallic Tube