FEA Modelling of Stress Distributions in Concrete Test Specimens Compressed through Rubber Sheets

Ismaliza Ismail1, Julia Gough2

1Engineering and Products Design Unit
Malaysian Rubber Board, Sungai Buloh, 47000 Selangor, Malaysia
Tel:+603-61561121, Fax:+603-61564418, Email: Ismaliza@lgm.gov.my

2Tun Abdul Razak Research Centre
Brickendonbury, Hertford, SG138NL, United Kingdom
Tel:+44(0)1992584966, Fax:+44(0)1992554837, Email:jgough@tarrc.co.uk

Abstract: An FE study of the behaviour of concrete blocks compressed against rubber sheets was conducted. The results were compared to experimental tests of the same assembly reported in the literature. It was found that tensile stresses developed within the concrete due to non-uniform compression of the rubber and were likely to have been the cause of failure of the concrete except where the rubber sheet was very thin or absent. The effect disappeared if contact between the rubber and concrete was frictionless.

1. Introduction

Unbonded rubber pads are sometimes used to provide compliance between concrete or steel elements of engineering structures. Compliant elements might be needed to reduce transmission of vibration, to allow for thermal expansion and subsidence movements, or to reduce local stresses arising from misalignment of the surfaces. An example of a floating slab light-rail track, in which the railtrack is mounted on rubber bearings to reduce ground-borne noise and vibration, is shown in Figure 1.

A theoretical investigation of the stresses in concrete blocks loaded through rubber pads was carried out by Coveney et al. (1990). Recent work (Gough et al., 2011), has uncovered an error in this treatment but also showed that the stress state in the concrete strongly depended on the boundary conditions; in other words on the relative dimensions of the rubber and concrete and how they were supported.

Newman and Lachance (1964) made an experimental study of the effect of different packing materials, interposed between steel platens and cylindrical or cuboidal concrete test specimens, on the lateral deformation and failure load. They found that the crushing strength of concrete cubes
decreased with increasing thickness of an interposed rubber sheet and the mode of failure changed from an apparent compression failure to a vertical splitting failure. They suggested that as the rubber tended to squeeze out at the sides, the vertical load was concentrated towards the centre of the concrete specimen and that soft materials introduced a complex stress distribution near the ends of the concrete specimen, radically altering its failure mode.

Griffith (1920) postulated that failure in brittle solids is caused by the growth of a small flaw, such as might reasonably be expected to exist in porous materials such as concrete, and fracture mechanics calculations, based on Griffith’s hypothesis, may be used to relate the applied stresses to the energy released as the flaw grows. It is assumed that there are many randomly oriented flaws so that one of them will be oriented in the most damaging direction. In this way Sack (1946) has shown, by considering a tensile stress acting perpendicular to the plane of a penny-shaped crack in an elastic medium, that the tensile strength of brittle materials is not affected by the stresses acting in the plane of the crack. A similar suggestion has been attributed to Rankine and is known as the maximum principal stress or Rankine failure criterion (Timoshenko, 1956). Fracture mechanics is also helpful in explaining why the strength of concrete in uniaxial tension is much smaller than in uniaxial compression; crack opening under tensile stress is a more effective means of releasing energy than crack shearing which might occur under a system of unequal triaxial compressive stresses.

The strength of concrete in uniaxial tension is typically only of the order of one tenth of its value in compression (Neville, 1973) and thus concrete is virtually never put in tension; careful design and the use of rebars and tendons ensure that only compressive stresses develop under load. In this case Sack’s equation is no longer useful and recourse is made to various empirical failure
criteria, such as the Mohr-Coulomb (1776) failure criteria, to describe a failure envelope for triaxial compressive stress systems.

The purpose of this work is to simulate the Newman and Lachance experiment in order to understand the stress and strain profiles and failure mechanisms of concrete blocks compressed through rubber sheets. Attention has focused on the maximum principal stress because, according to Sack’s or Rankine’s hypothesis, it is this stress, if tensile, that is likely to lead to failure of the concrete.

2. Analysis method

Abaqus/Standard version 6.9 was used for the analysis. A schematic diagram of the FE model is shown in Figure 2. It consisted of a concrete block, 102mm wide, compressed by a steel platen with a rubber sheet interposed between them. The heights of the concrete blocks and thickness of the rubber sheets were varied and corresponded to those used by Newman and Lachance (1964). Although Newman and Lachance tested blocks of square cross-section, two dimensional plane strain analyses were carried out to reduce the need for complex meshing and minimize the run times of the models. It was expected that 2D and 3D analyses would give qualitatively similar results. The rubber material was represented by a neo-Hookean strain energy function (Rivlin, 1948) with a shear modulus of 1 MPa and bulk modulus of 2000 MPa using hybrid linear reduced integration elements type CPE4RH. The concrete was modelled as a linear elastic material with Young’s modulus of 36.3 GPa and Poisson’s ratio of 0.15, in accordance with the properties reported by Newman and Lachance, with linear, reduced integration (CPE4R) elements. The steel was modelled as a linear elastic material with Young’s Modulus of 210 GPa and Poisson’s ratio of 0.3 with CPE4R elements. For simplicity, one quarter of the compression test system was modelled and appropriate symmetry boundary conditions were applied to represent the rest of the system. The compression was applied at the bottom of the steel platen as shown in Figure 2 as a fixed displacement.

The coefficient of friction for rubber falls with increasing normal load so that for high loads the frictional force is constant (Schallamach, 1958), and depends on sliding speed, as well as on the roughness of the contact surfaces. However, since no direct experimental measurement of the friction coefficient was made for the Newman and Lachance experiment a simple friction model with constant coefficient of friction was assumed. Friction coefficients of 0.6 and 0.45 between the rubber and concrete were modelled with a Coulomb friction model with the default penalty friction formulation available in Abaqus/Standard. These values were thought to be reasonable for normal stresses of the order of 10MPa, as used in Newman and Lachance’s experiments (Gough et al., 2001). A no-slip condition, imposed with a tying constraint, and frictionless interfaces were also modelled. The friction coefficient between the rubber and steel was always assumed to be the same as that between the rubber and concrete. It would be straightforward to introduce a pressure dependency of the coefficient of friction into the model if suitable data were available.

Figure 3 shows a typical FEA model. The mesh density was much finer near the contact region where the stress gradients were expected to be highest.
Figure 2. Schematic diagram of plane strain FEA model for compression of concrete block with rubber sheet. Blue dashed lines represent symmetry planes. Dimensions in mm.

Figure 3. FEA plane strain model of concrete block, rubber sheet and steel platen.
3. Results and discussions

3.1 Effect of rubber thickness

The behavior of a 102mm thick concrete plane strain block, loaded through rubber sheets of various thicknesses was simulated. A coefficient of friction of 0.6 between the rubber and concrete and between the rubber and steel was assumed. The compressive load was the same per unit area as the failure load reported by Newman and Lachance (1964) in compression experiments on 102mm concrete cubes. The cubes, after failure, are shown in Figure 4 and the failure loads are given in Table 1.

![Figure 4. Variation of mode of failure in 102mm concrete cubes with thickness of rubber sheet, shown in mm. From Newman and Lachance (1964)](image)

For the geometry under consideration the maximum principal stress was found to be almost coincident with the lateral stress, S_{11}, where the 1 direction is parallel to the contact surface. The lateral stress distributions, S_{11}, are shown in Figure 5. The position of the crack observed by Newman and Lachance is superimposed on the Figures for comparison. The vertical stress distributions, S_{22} are shown in Figure 6. The maximum principal tensile stress is reported in Table 1.

The mean lateral strain, $\bar{\varepsilon}_x$, was calculated as

$$\bar{\varepsilon}_x = \frac{u_x}{D}$$

(1)

where D is the half-width of the block and u_x is the maximum lateral displacement (ie U_{11} of points at $x = D$). It is plotted in Figure 7 for plane strain blocks compressed to a load of 455N/mm over the half-width, corresponding to a load of 93kN on 102mm cubes.
Figure 5. Lateral stress (S11) distributions in a concrete plane strain block loaded through rubber sheets under compressive loads corresponding to failure loads in experiments of Newman and Lachance (1964). The rubber sheet thicknesses and compressive load are shown above each plot. Concrete deformations are scaled by a factor of 500. For clarity the rubber and steel are not shown on the plots.
Figure 6: Vertical stress (S22) distributions in a concrete plane strain block loaded through rubber sheets under compressive loads corresponding to failure loads in experiments of Newman and Lachance (1964). The rubber sheet thicknesses and compressive load are shown above each plot. Concrete deformations are scaled by a factor of 500. For clarity the rubber and steel are not shown on the plots.
Table 1. Maximum principal stress in 102mm concrete plane strain blocks or cubes

<table>
<thead>
<tr>
<th>Rubber thickness (mm)</th>
<th>Experimental failure load Newman and Lachance (1964) (kN)</th>
<th>Maximum tensile principal stress (FEA) (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.35</td>
<td>99</td>
<td>2.01</td>
</tr>
<tr>
<td>3.18</td>
<td>128</td>
<td>2.60</td>
</tr>
<tr>
<td>0.79</td>
<td>194</td>
<td>1.44</td>
</tr>
<tr>
<td>0.18</td>
<td>258</td>
<td>0.95</td>
</tr>
<tr>
<td>0</td>
<td>354</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Figure 7. Lateral strain profiles of 102mm thick concrete plane strain blocks compressed through rubber sheets of different thicknesses under a compressive load corresponding to 93kN on 102mm cubes.

The position of the main crack in the Newman and Lachance experiments coincides with the location of the maximum lateral stress in the simulations and moves from the centre of the concrete for compression through thick rubber sheets to the side when the rubber is thin. The failure load reported by Newman and Lachance decreased markedly as the rubber sheet thickness was increased. For the three thickest rubber sheets investigated, the maximum principal stress under the failure load is about 2MPa. This is in satisfactory agreement with literature values for the tensile strength of concrete (e.g., Neville, 1973) and suggests that these blocks failed in tension.
The reduction in load at failure can be explained by noting the comparatively large compression of the thicker rubber under relatively modest loads and that the thickness of the deformed sheet is very non-uniform – being thicker in the centre than at the sides. The tensile stress in the concrete appears to arise from this non-uniform compression, rather than due to lateral spread of the rubber inducing tensile stresses at the rubber-concrete interface as was suggested previously (Newman and Lachance, 1964; Coveney et al 1990). In fact, the lateral stress at the rubber-concrete interface is compressive; the maximum tensile stress occurs at the mid-height of the concrete block.

As the rubber thickness is reduced the rubber deformation for a given strain reduces and the rubber stiffness increases relative to the concrete. The compression stiffness per unit depth of a plane strain rubber sheet of thickness, \(t \), bonded between two rigid surfaces, is given to a good approximation by (Gent and Lindley, 1959)

\[
k_r = \frac{8GKD(1+S^2)}{\pi[4G(1+S^2)+K]} \tag{2}
\]

where \(G \) is the shear modulus and \(K \) is the bulk modulus of the rubber, and \(S \) is the shape factor of the block, given by \(D/t \). The stiffness per unit depth of the concrete is given by

\[
k_c = \frac{2ED}{T} \tag{3}
\]

where \(E \) is Young’s modulus of the concrete and \(T \) is its thickness. This gives stiffnesses of the 6.35mm and 3.18mm thick rubber sheets of about 10% and 60% respectively of that of the concrete. Equation 2 breaks down when the rubber stiffness is of the same order of that of the concrete because the assumption of rigidity of the bounding surfaces is no longer valid, but it is clear that for thin sheets, if there is no lateral slip, the rubber is stiffer than the concrete. Consequently, the differential compression of the rubber across its width becomes negligible and the tensile stress in the concrete diminishes. A different failure mechanism, such as splitting along planes at 45°C to the loading direction, is likely to have occurred in the block where no rubber sheet was present because even under very large compressive loads the tensile stress was negligible. This is supported by the absence of a central vertical crack in this block.

Figure 7 shows that the mean lateral strain in the concrete under a fixed load was greatest for loading through thick rubber sheets and occurred at the mid-height of the concrete. This also supports the suggestion that these blocks failed in tension at their mid-height.

3.2 Effect of concrete thickness

A friction coefficient of 0.6 between the rubber and concrete and between the rubber and steel was used and a compressive load of 455N/mm over the half-width, corresponding to a load of 93kN on 102mm x 102mm cubes was applied. Plots of the lateral tensile strain for various heights of concrete loaded through a 6.35mm rubber sheet are shown in Figure 8. The lateral strain profiles for a 305mm high concrete plane strain block compressed between various thicknesses of rubber are shown in Figure 9. The lateral strain measurements of Newman and Lachance for a 305mm high square block compressed to 93kN through a 3.18mm rubber sheet are also shown in Figure 9 for comparison. The lateral strain profiles for different heights of concrete are shown in Figure 10.
Figure 8: Lateral stress (S11) distributions in concrete plane strain blocks of various heights, as shown above the plots, loaded through 6.35mm thick rubber sheets to a load corresponding to 93kN on 102mm cubes. Concrete deformations are scaled by a factor of 500.
Figure 9. (a) Lateral strain profiles for 305mm high concrete plane strain block compressed through various thicknesses of rubber sheet to a load corresponding to 93kN on 102mm cubes. (b) (Dashed line): measured profile of 305mm high concrete prism compressed to 93kN through 3.18mm thick rubber sheets. From Newman and Lachance (1964).

Figure 10. Lateral strain profiles for concrete plane strain blocks of various heights compressed through 6.35mm thick rubber sheets to a load corresponding to 93kN on 102mm cubes.

2011 SIMULIA Customer Conference
For concrete blocks taller than their width, the maximum tensile strain no longer occurs at the mid-height of the block, but at a height approximately equal to half of the width. The profile of the deformed plane strain block compressed through a 3.18mm rubber sheet agrees well with the measurements of Newman and Lachance although the strains were somewhat larger in the simulations. This is due at least in part to the use of a plane strain model; because no strain is permitted perpendicular to the measurement we would expect the lateral strains to be larger than for a block of cubic cross-section as used by Newman and Lachance. A 3D simulations was carried out and gave adequate agreement with the measurements, though the strain now varied through the depth of the concrete.

3.3 Effect of friction

A 102mm thick concrete plane strain block compressed under a 6.35mm rubber sheets, with various levels of friction at the rubber-concrete interface, was simulated. When the interface was frictionless the model only converged for a small applied load. This was attributed to high distortion of the elements at the edge of the contact region as the rubber squeezed out. In order to aid comparison between the results under different normal loads the stresses were normalised by dividing by the average normal pressure over the contact region. The maximum tensile stress was found to occur in the centre of the block for friction coefficients of 0.45, 0.6 and infinity (tied). In the case of frictionless contact the normalised lateral stress was very small everywhere.

The variation of normalised lateral stress with position across the width of the block at its centre-height is shown in Figure 11. The lateral position from the centre of the block has been normalised by dividing by the half-width, D. The tensile stress reaches a maximum at an intermediate level of friction, corresponding to the greatest thickness variation of the deformed rubber sheet. As the friction level is reduced from a fully bonded interface, slip occurs at the edges of the sheet and, due to the near incompressibility of rubber, the rubber becomes thinner as it squeezes out laterally. The region of slip increases as the friction coefficient is reduced so that with a near-frictionless condition slip occurs across the full width. The strain distribution in the rubber is then uniform and there is no differential thinning across the width of the sheet. Hence, the differential compression of the concrete, and consequently the maximum principal stress, decreases.

Coveney et al. (1990) derived an expression for the position of the slip / no slip boundary for a plane strain elastic sheet squeezed between two rigid surfaces. Their expression is

\[
\frac{3d}{2t} = \mu \exp \left[\frac{2\mu}{t} (D - d) \right]
\]

where \(\mu \) is the coefficient of friction and \(d \) is the distance from the centre of the interface to the slip / no slip boundary. The theoretical values calculated from Equation 4 are compared in Table 2 with those obtained from the FEA for a small applied load. There was good agreement, although the theory cannot predict the subsequent stick-slip behavior as the load is increased.
Figure 11. Effect of friction on normalised lateral stress at the centre-height of a plane strain concrete block compressed by 6.35mm thick rubber sheet

Table 2. Position of slip / no-slip boundary for a rubber-concrete interface of half-width 51mm and coefficient of friction of 0.6 under a small compression.

<table>
<thead>
<tr>
<th>Rubber thickness (mm)</th>
<th>Position from centre of slip / no-slip boundary (Equation 4) (mm)</th>
<th>Position from centre of slip / no-slip boundary (FEA) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.35</td>
<td>36.7</td>
<td>38.1</td>
</tr>
<tr>
<td>3.18</td>
<td>41.6</td>
<td>41.9</td>
</tr>
<tr>
<td>0.79</td>
<td>47.5</td>
<td>47.6</td>
</tr>
<tr>
<td>0.18</td>
<td>49.8</td>
<td>49.5</td>
</tr>
</tbody>
</table>

4. Conclusions

When concrete is loaded through rubber sheets a complex non-uniform stress distribution is produced near the ends of the concrete. Unless the rubber sheet is very thin, the coefficient of friction is very low, or the concrete block is extremely large (Gough et al, 2011) non-uniform compression of the rubber sheet causes tensile stresses to develop in the concrete. The maximum tensile stress occurs at a distance of around half the concrete width into the concrete. Under sufficient compressive load, these tensile stresses are likely to cause tensile fracture of the concrete. Intermediate levels of friction give rise to the highest tensile stresses.

2011 SIMULIA Customer Conference
5. References

6. Acknowledgement

The authors wish to thank Dr. A. H. Muhr for suggesting this area of work, helpful discussions and for commenting on the manuscript.