Semiconductor companies use ENOVIA® Synchronicity® DesignSync® Central™ to manage the hardware and software data in their products, and provide a collaborative and secure environment for resolving product development issues and defects amongst geographically dispersed development teams. Data can be managed at both the detailed file/directory level, and at a “modular” level of abstraction.

Key Benefits

- Connect and manage your entire design chain with a unified DDM system
- Significantly boost design productivity for a rapid payback and strong return on investment (ROI)
- Maximize your ability to reuse existing designs and embedded software
- Manage your design hierarchy as part of the design process
- Utilize the intuitive built-in SITaR workflow
- Reduce time-to-market by increasing collaboration efficiency
- Win the first-to-market advantage
- Manage complex data types from a variety of EDA tool vendors
Product Overview

The creation of complex electronic products is not an easy proposition, and is becoming increasingly complex with the proliferation of globally dispersed teams. Since 1998, integrated circuit (IC) design teams have relied on ENOVIA® Synchronicity® DesignSync® Data Manager to help manage the hardware and software data in their products. Today, over 120 development organizations, including 13 of the top 15 semiconductor companies, take advantage of ENOVIA Synchronicity DesignSync Data Manager to boost design productivity. ENOVIA Synchronicity DesignSync Data Manager was designed specifically for the design data management (DDM) of complex integrated circuits, and continues to evolve as challenges facing the semiconductor industry evolve. ENOVIA Synchronicity DesignSync Central combines the capabilities of ENOVIA Synchronicity DesignSync Data Manager with ENOVIA’s world class PLM collaboration platform extending collaborative connections from local design teams to the global enterprise.

Local Optimization versus Global Efficiency

Today, designing an IC often requires integrating a multitude of datasets contributed by multiple, and often geographically dispersed, design teams. As ICs become more complex, design teams are required to specialize because no one individual, or even a team of individuals, can do it all. Specialization results in the segregation of design tasks along specific lines such as analog or digital design – and then within those teams, further segregation occurs. For example, in analog design, different design teams perform schematic capture and physical layout. In digital design, specialties exist in the areas of register transfer level (RTL) design, design compilation, physical place and route, simulation and verification. ICs also include ever-increasing amounts of embedded software, which is yet another area of specialization. All components contributed by the different design teams need to come together into one chip design. An integration team manages this daunting task.

While individual teams are focused on the details of the design data for which they are responsible, and are thus focused at the file level, the integration team needs to be able to manipulate data sets at a higher level of abstraction. Glue logic at the top-level instantiates configurations, or releases, of lower-level modules. This sounds straightforward, but in many cases is not. This is because individual design teams are often using independent and unconnected DDM systems that require that the integration team extract data sets for different component parts from different systems. Extremely high rates of change for individual components make the maintenance of a consistent amalgamation at the chip level very difficult. While the various SCM (Software Configuration Management) and DDM tools in use by the individual design teams may satisfy local requirements, design data management breaks down at the integration level. As a result, manual procedures are used which lead to errors and inefficiencies. For this reason, many companies are attempting now to plot a roadmap that leads from a policy of local optimization into the realm of global design efficiency. ENOVIA Synchronicity DesignSync Central enables collaboration between local design teams and the corporate enterprise.

Designing With Modules

ENOVIA Synchronicity DesignSync Central enables design teams to manage data at both the detailed file/directory level, and at a “modular” level of abstraction. It is the ability to efficiently manage design data at both of these levels of abstraction, which differentiates ENOVIA Synchronicity DesignSync Central from other DDM systems. Design data contributed by individual teams can be seamlessly integrated into higher-level designs.

At the heart of the architecture is the “module.” A module represents a single coherent and consistent collection of files and folders. While the revision history of individual files is maintained at the file level, a revision history of the context, or structure, in which the files exist is maintained at the “module” level. A module version is stored in a “manifest” which represents a “bill of materials”. The manifest for a module version stores a list of individual
file versions along with the associated directory structure, and, if hierarchy is included, references to sub-modules. The revision history of a module records a complete genealogy, making it possible to resurrect the design as it existed at any previous point in time. Storage of module versions in a manifest also eliminates the need to tag individual files in order to manage and maintain consistent data configurations.

The architecture under which module versions are stored in ENOVIA Synchronicity DesignSync Central affords many advantages:

Change Set Processing
Because “manifests” are stored for each module version, update operations employ a “change-set” paradigm, eliminating the need to enumerate over all objects in a directory structure to determine which subset needs updating.

High Performance
Change set processing also enables high performance, and high performance substantially increases the probability of the successful deployment of a DDM tool, which in turn encourages the use of best practices.

Atomic Operation
Operations such as checkin are “atomic” meaning that transactions involving multiple files are not committed to the data repository unless all the individual files have been checked in successfully. Sophisticated recovery mechanisms allow an interrupted checkin to proceed where it left off, without having to start over.

Directory Versioning
Creation, deletion or renaming of directories and files is captured in the module version history, providing a complete genealogy of changes to the design.

Distributed Data Repositories
Design data can be distributed over multiple repositories, thus maximizing local efficiencies.

Managing a Design Hierarchy
ENOVIA Synchronicity DesignSync Central enables the management of a design hierarchy of modules. In addition to file versions organized in folders, a module version may contain one or more “hierarchical references” (hrefs) to other module versions that may be stored in the same server or in another server located anywhere across the globe. Hrefs are processed when design data is fetched into a workspace. If a module version that contains an href is fetched, the href is resolved and the referenced module version is fetched as well. In this manner, a hierarchical design is assembled in the workspace. By establishing containment relationships (hrefs) to other modules in modules themselves, ENOVIA Synchronicity DesignSync Central captures the design hierarchy and actively manages it throughout the evolution of the design. Thus, all of the individual design elements are managed, and interrelationships are maintained in a consistent manner, whether the entire dataset is stored in a single server, or distributed across servers around the world. Using ENOVIA Synchronicity DesignSync Central an entire design hierarchy that is distributed across multiple servers can be fetched with a single command. Without using a DDM tool that can efficiently manage a hierarchy of constituent components in a complex IC, many companies are struggling with capturing the “hierarchy” of a design even after it has been completed. If the components come from disparate and unconnected DDM systems, it can be very difficult to determine which components even ended up in a given design release.

Because ENOVIA Synchronicity DesignSync Central allows users to manage a design hierarchy, a company gains advantages including:

Task-based Workspace Creation
Workspaces can be tailored to particular tasks such as verification of an immutably released design hierarchy, a hierarchy containing work in progress, or a mixture of both.
Single Command Builds or Updates an Entire Hierarchy
There is no need to fetch individual components of a design; ENOVIA Synchronicity DesignSync Central will fetch an entire hierarchy automatically.

Overlapping Module Data
A module hierarchy can be created to allow data from different modules to be fetched into the same directory in a workspace.

Filters
Sophisticated filtering can be applied to files, directories or hrefs to provide fine-grained control over what data is fetched or operated upon. Filters allow designers to construct workspaces comprised of consistent subsets of data, which eliminates fetching unnecessary data.

File-based designs can also be included in a design hierarchy
ENOVIA Synchronicity DesignSync Central still includes the file-based storage mechanisms that existed prior to the introduction of module-based storage. Design configurations based on tags, or HCM (Hierarchical Configuration Manager) releases, can also be referenced into a module. (HCM is the predecessor to modules, but is file-based.) This provides a smooth transition to a module-based integration methodology because there is no requirement that ALL components be designed using module based storage. Design teams with well-established file-based methodologies can continue to use that approach, but their contributions can be integrated into higher-level systems easily.

Where Used
It is often important to be able to answer the question “where has this block of design data been used in other design blocks?” A common scenario is when a bug has been discovered in a design block that has already been included in delivered product. Determining which versions of which products contain the faulty block then becomes vitally important. If design hierarchies are managed using ENOVIA Synchronicity DesignSync Central hrefs, the “whereused” command provides the answers. Given a module version, HCM release, or tagged configuration of files, the “whereused” command will trace hrefs upwards, reporting all design hierarchies in which the block has been included. Because design reuse is common, a single component might find its way into many other designs or finished products. Countless hours can be saved determining where a given design block has been used by leveraging this capability to extract the answers automatically.

Submit, Integrate, Test, and Release – SITaR
ENOVIA Synchronicity DesignSync Central provides an intuitive built-in workflow called SITaR (Submit, Integrate, Test, and Release). SITaR consists of a set of commands that leverage the power of module-based design in an environment consisting of multiple design modules aggregated together by an integrator into a higher-level system. Though individual design blocks (modules) may be contributed by different teams, design at the block level cannot occur in a vacuum. Simulations must include interactions with the other blocks in the design.

SITaR is based on the notion that there are two fundamental “roles” in play in such a design: A “Designer” is someone who is contributing at the block level. An “Integrator” is responsible for integrating blocks together into a top level design, testing the system, and releasing the stable “baseline” (a system level configuration of blocks) from which all subsequent block level development occurs.

Working within such a flow, a Designer would fetch the current stable baseline into a workspace. The block the designer is working on would then be put in an “edit” mode, and design activities proceed. All simulation takes place in the context of the baseline consisting of all the other blocks. The key here is that design work and simulation is NOT done with work-in-progress configurations of other blocks, but only in the context of the stable baseline. When work is complete, the Designer “submits” his module for possible integration into a newer baseline. The Integrator monitors the submission
queue, which could contain submissions for multiple blocks, and is able to build a workspace containing any mixture of submitted blocks. This is the “Integrate” step in SITaR. Regression tests are performed against the newly integrated set of blocks (the “Test” step in SITaR), and if deemed stable by the integrator, can be released as a new stable baseline (the “Release” step in SITaR). Designer workspaces could then be updated, fetching the baseline for all blocks for which editing activity is not occurring.

Thus, ALL design work at the block level is performed in the context of a stable baseline of the rest of the blocks in the design. All this activity is performed using simple and intuitive commands such as “sitr submit”, or “sitr integrate”, alleviating the need to educate the contributing teams in the use of the more fundamental module design command set, or with complicated handoff and tagging schemes. SITaR commands wrap the underlying module commands such that the power of the module based DDM architecture is leveraged in the context of this well-defined use model.

EDA Data Awareness and Third Party Tool Integrations

Because of the tight focus on integrated circuit design, ENOVIA Synchronicity DesignSync Data Manager, the functionality of which has been incorporated into ENOVIA Synchronicity DesignSync central, has been the industry leader in integrating DDM capabilities into the highly specialized design environments in which design work is performed from leading vendors such as Cadence and Synopsys. Electronic design automation (EDA) integrations are comprised of two components: An “EDA data recognition” capability, and a plug-in for the EDA tools graphic environment.

EDA data recognition enables ENOVIA Synchronicity DesignSync Central to manage complex data types, such as the collections of files and directories which might represent an object such as a schematic diagram as “atomic” objects. For example, the end user would checkout a version of a schematic diagram, causing ENOVIA Synchronicity DesignSync Central to fetch the appropriate co-managed collection of files and directories that define the schematic on disk.

Integrations for EDA tools provided by Cadence and Synopsys are available as add-ons to ENOVIA Synchronicity DesignSync Data Manager. For other EDA tools, ENOVIA Synchronicity DesignSync Central supports a “Custom Types System” (CTS) as an add-on product. It provides an API for creation of custom complex data types. Using the CTS, one can enable EDA data awareness for any EDA tool, whether developed in-house, or commercially available.

A Unified DDM System is a Major Competitive Advantage

The majority of data management problems associated with integrating large designs can be eliminated if all the data is managed in a single unified DDM system, which could exist at a single design center, or could be distributed around the world. ENOVIA Synchronicity DesignSync Central is the collaborative platform of choice to make such a vision a reality. In 13 of the top 15 global semiconductor companies and in hundreds of other organizations, ENOVIA Synchronicity DesignSync Data Manager is the standard for management of complex EDA data created by hardware design tools from companies such as Cadence, Synopsys and Mentor Graphics. And the platform is also uniquely suited for the management of RTL Verilog or VHSC Hardware Description Language (VHDL) design, cell library development, or even documentation development. Plug-ins for the Microsoft Visual Studio IDE and Eclipse IDEs (Integrated Development Environment) are included with ENOVIA Synchronicity DesignSync Central for use by software designers.

ENOVIA Synchronicity DesignSync Central enables individual design teams to release IP modules independently, while the integration of multiple modules can be managed at a higher level of abstraction. A single command can fetch an entire design hierarchy, and another single command can create an immutable release of the same hierarchy. Inefficient and error prone manual integration procedures can be eliminated.
Extending the Infrastructure to the Enterprise

ENOVIA Synchronicity DesignSync Central provides capabilities to address a number of key business challenges specific to the semiconductor industry. Companies who deploy this product gain:

- Competitive advantage through accelerated development and shortened time-to-market through the ability to create/link issues easily and other business objects to work in process design data stored in DesignSync
- Better separation of problem and solution by enabling the linkage of customer facing issues with development facing defects
- More precise definition of the problem/solution as well as enabling more granular control over independent elements of the correction by providing a one-to-many linkage of issue to defect to defect action
- Decreased development costs through reduced design cycles, shorten design cycle time, and formalized best practices
- Improved collaboration by enabling team members across the enterprise to find and add their own data to overall product knowledge

Chip development today is based on shorter lifecycles, more competitive environments, and less forgiving technology than ever before. Product complexity and density continue to increase while average sales prices and margins continue to shrink. Problems that increase the length or number of design cycles or mistakes that cause additional re-spins of a die can make the difference between profit and loss for a new product or even result in project cancellation. Consider these facts from a recent industry study:

- Only 45% of new product launches meet their original launch date
- More than 60% of all semiconductor designs require at least one re-spin
- Only 59% of semiconductor designs make it into production
- Over 40% of development projects exceed the planned budget
- Less than 60% of semiconductor projects hit their product cost targets
- 83% of issues identified during validation are design-related

Companies looking to be better than these industry norms and positively impact design cycle time need well-managed team collaboration, issue management, structured data sharing, and tools to allow them to react to issues rapidly. Key to this is the ability to relate and track issues directly to design data as well as any other relevant product content throughout the enterprise. All teams, not just engineering, must be able to get rapidly involved because well-documented design decisions are essential in today’s business environment where audit traceability is mandatory.

1Source: Kalypso Partners LLC, Semiconductor research 2006.
Product Highlights

Client/Server Architecture
The client/server architecture allows for design work to proceed without connection to the server. Communication occurs for data management operations or status reporting only. The architecture is suited uniquely to support geographically dispersed design teams. Servers may be globally distributed, and accessible from client applications anywhere.

Multisite Version Control
A “single source of the truth” is maintained, and made available to designers regardless of their physical location.

Distributed Data Storage
Data repositories (SyncServers) can be hosted at any design site for maximum local efficiencies. Data from multiple servers can be aggregated in a workspace automatically.

Transfer Diffs
A transfer mode allows only “diffs” (i.e. file deltas) to be transferred during checkin and checkout operations for both ASCII and binary data files. This capability provides maximum benefit in environments in which geographically dispersed design teams collaborate over high latency networks. File transfer options are configurable between client and server combinations.

Data Replication
Sophisticated caching mechanisms support data replication and minimize disk space usage by creating workspaces using symbolic links to shared read-only data files. Static and dynamic caching mechanisms are supported. If a workspace is constructed using a static cache, updates are controlled by the user. If a dynamic cache is used, updates occur automatically, so the workspace is always up to date. Caches make efficient use of disk space, because workspaces consist of links to read-only copies of shared files. Physical copies need only be fetched for edit operations.

Module Linkages via Mcaches
The Mcache is an efficient data sharing mechanism that enables copies of modules to be shared by local teams. This greatly reduces file storage requirements as well as providing a tremendous savings in terms of development time over fetching individual copies. The Mcache provides version context directly in the user’s local workspace, making it easier and quicker to determine that one is working with the correct module versions.

Foreign Configuration Management Modules
In many organizations, circumstances mandate that design data is managed in a variety of systems. ENOVIA Synchronicity DesignSync Central provides the ability to integrate data from other Configuration Management systems and allows developers to easily retrieve a complete design hierarchy across all the systems managing data for project-wide functions such as system test or tape-out.

Security
Whether transferring data internally or externally, security is ensured using commercial grade 128 bit SSL encryption.

Internet Based Transfer Protocols
Data transactions use standard internet protocols and work seamlessly with existing firewalls.

Audit Trails
Detailed revision control activity is captured in a database, which may be queried using a standard Web browser.

Sophisticated Access Controls
Protection of valuable design data is ensured by setting configurable access controls. Data access is controlled in the server, and does not rely on UNIX® permissions. Access to data can be controlled based on a user’s identity, the data the user wishes to access, and the command the user wishes to run to operate on the data. An intuitive graphical user interface is provided for definition and administration of access controls.
Sophisticated Workspace Management
Multiple methods are provided for the creation and maintenance of designer workspaces supporting differing work styles. For example, workspaces can be configured to incorporate changes made by others either on demand, or automatically.

Configurable Use Models
Both the “locking” model and the “non-locking” model are supported to suit either design team or individual preferences. An intuitive built-in SITaR workflow facilitates design collaboration, and increases quality by ensuring that all design work is performed in the context of a stable project, or system, baseline.

Built-in SITaR Workflow
A standard workflow in which all design work proceeds in the context of a stable system baseline is included. SITaR facilitates project setup and collaboration by providing a simplified and intuitive command set for use by designers and integrators. SITaR enables design teams to leverage the power of modular design, while minimizing the learning curve. This is because SITaR wraps underlying DM commands in the context of a welldefined work flow.

Where Used Capability
A design hierarchy can be traced from the bottom up, providing answers to the question: “where has this design block been used in other design blocks or products?”

Version History Reporting
Brief or detailed reports of the version history of an entire module, or an individual design object, provide a complete genealogical record.

Vault Browser
A sophisticated vault browser provides a graphical display of the history of a managed object.

Annotations
An ASCII file can be graphically annotated with information about who last changed each line in the file, and when.

Diff and Merge Tools
Both graphical and command line diff and merge tools are provided, including TkDiff.

Comparison Utilities
Sophisticated utilities allow for the comparison of module versions, releases, hierarchies and workspaces. A workspace can be compared with a known configuration, or even with another workspace. Comparison of file content makes use of checksums so that file versions with identical content, but which are stored as different versions, are reported as being identical.

Graphical User Interface
The user interface of ENOVIA Synchronicity DesignSync data management allows for the navigation and manipulation of data at both the detailed file level and at the more abstract module level. Comparison utilities, diff tools and a command line interface are included.

Command Line Interfaces
Two command line interfaces are provided. The “dssc” shell runs ENOVIA Synchronicity DesignSync Central data management commands. The “stclc” shell is a Tcl interpreter, into which the ENOVIA Synchronicity DesignSync Central data management commands have been linked, providing programmatic capabilities and access to other utilities.

Extensible Architecture
The command set can be easily extended by creating aliases or auto-loaded Tcl procedures.

Client Side Triggers
You can easily introduce process automation to increase efficiency and decrease errors by creating Tcl procedures that are registered to intercept operations and perform other operations. For example, if a layout object is checked in, a Design Rule Check procedure could be run automatically, and if clean, the checkin operation is allowed to proceed.
C-API
ENOVIASynchronicity DesignSync Central can be easily integrated with other tools using a fully documented C-API.

Plug-in for Source Code Control for Software Components
ENOVIASynchronicity DesignSync Central includes a plug-in for the Microsoft Visual Studio IDE (Integrated Development Environment).

Integrations with EDA Design Tools
Integrations for EDA tools provided by Cadence and Synopsys are available as add-ons to ENOVIA Synchronicity DesignSync Data Manager. For detailed information, please see product information for ENOVIA® Synchronicity® for DFII (Cadence integration), ENOVIA® Synchronicity® for Milkyway (Synopsys Milkyway integration), and ENOVIA® Synchronicity® for Synopsys CD (Synopsys Custom Designer integration).

Integrations with SW Development Environments
Integrations for the popular Eclipse and Microsoft Visual Studio SW development environments are provided as part of ENOVIA DesignSync Central. These integrations allow developers to quickly and easily interact with DesignSync to manage design data without leaving their editing environment.

EDA Tool integration API
ENOVIASynchronicity® for CTS (Custom Types System) provides an API for creation of custom complex data types. ENOVIA Synchronicity for CTS is used to enable EDA data awareness for arbitrary data types in ENOVIA Synchronicity DesignSync Central. Using ENOVIA Synchronicity for CTS, one can enable EDA data awareness for any EDA tool, whether developed in house, or commercially available.

Cross-functional Enterprise Collaboration
ENOVIASynchronicity DesignSync Central exposes semiconductor design data to the extended enterprise so companies can crossfunctionally collaborate to resolve product development issues. It leverages the following standard capabilities from the ENOVIA Collaboration Platform to offer a secure, structured, virtual semiconductor design workplace for geographically dispersed teams.

Collaborate Securely
Easily create secure collaborative workspaces that allow suppliers and partners to be involved with the DesignSync project team early and throughout the product development process; assign responsibilities with default and access rights to members and teams.

Define Virtual Teams
Add team members, assign roles and responsibilities, and provide default access online to assemble cross-functional teams in virtual workspaces quickly and easily.

Manage and Track Defects
Easily raise defects against design data or any other object in the enterprise system. Define change boards to sign-off on a defect’s implementation review and control the approval of defect actions.

Management Reports
Track design defect workloads and trends using configurable graphical metrics-based reports with data summaries and roll ups. Crystal Reports can be leveraged for more advanced formatting options.

Create Discussion Threads
Create multi-threaded discussions for sharing ideas and reference documents. Subscribe and automatically receive ongoing communication to keep abreast of developments and final decisions. Easily sort discussions by workspace, folder or content, or search them to find exactly the information required to answer the question at hand.
Implement Company Best Practices
Implementing the company’s best practices is essential. Create routing templates and folders, add files and content to folders, and generate routing paths, approval lists, and actions using delegation rules, task escalation rules, and additional route logic. Implement checks that enable the automation and enforcement of standard practices across the entire enterprise.

Decision/History Capture
Automatically capture the dialog that solved tough designs and discussions in order to retain team knowledge. All information is kept in a managed, easy-to-search and auditable system.

Cross Team Collaboration
Teams beyond engineering can easily add their own content to the overall product knowledge. This provides the ability to classify the non-engineering data in the same classification system alongside the engineering data, or in its own libraries using a bookshelf and document organization.

Automatic Notifications
Enable users to subscribe to standard notifications, content owners to send push notifications, and administrators to customize system notifications by company.

Secure Access
Allow workspace leads to set default access definition for the workspace, including folders and subfolders. Assign granular access for specific content. Administrators can assign company-specific vaults and file stores.

Defect Management
Users can define defects with attributes and characteristics targeted at Semiconductor and Software development processes, and associated to design data managed in ENOVIA DesignSync Data Manager. In addition, defects may be created from issues. This allows the separation of the customer facing discussion and the internal facing discussion about the implementation problem and its correction. This enables better definition of the problem and solution as well as isolation of proprietary internal concerns. An issue may be associated with multiple defects and a defect may be refined into multiple defect actions. Change boards are defined to create and sign-off on a defect’s implementation review and control the approval of defect actions. Dashboards are provided to review defects, defect actions, and implementation reviews.

The Role of ENOVIA V6 and PLM 2.0
ENOVIA Synchronicity DesignSync Central supports PLM 2.0, product lifecycle management online for everyone, and the ENOVIA V6 values: global collaborative innovation, single PLM platform for intellectual property (IP) management, online creation and collaboration, ready to use PLM business processes, and lower cost of ownership.
As a world leader in 3D and Product Lifecycle Management (PLM) solutions, Dassault Systèmes brings value to more than 100,000 customers in 80 countries. A pioneer in the 3D software market since 1981, Dassault Systèmes develops and markets PLM application software and services that support industrial processes and provide a 3D vision of the entire lifecycle of products from conception to maintenance. The Dassault Systèmes portfolio consists of CATIA for designing the virtual product—SolidWorks for 3D mechanical design—DELMIA for virtual production—SIMULIA for virtual testing—ENOVIA for global collaborative lifecycle management, and 3DVIA for online 3D lifelike experiences.

As a world leader in 3D and Product Lifecycle Management (PLM) solutions, Dassault Systèmes brings value to more than 100,000 customers in 80 countries. A pioneer in the 3D software market since 1981, Dassault Systèmes develops and markets PLM application software and services that support industrial processes and provide a 3D vision of the entire lifecycle of products from conception to maintenance. The Dassault Systèmes portfolio consists of CATIA for designing the virtual product—SolidWorks for 3D mechanical design—DELMIA for virtual production—SIMULIA for virtual testing—ENOVIA for global collaborative lifecycle management, and 3DVIA for online 3D lifelike experiences. For additional information, contact us at: Dassault Systèmes ENOVIA Corp., 900 Chelmsford Street, Lowell, MA, USA 01851, +1 978 442 2500

Visit us at
3ds.com/ENOVIA