Automotive Powertrain Assembly Analysis with Abaqus
Course objectives
Upon completion of this course you will be able to:

- Simulate engine assembly and operation conditions including the effects of bolt loading, frictional contact, nonlinear gaskets, rubber components, etc.

Targeted audience
Simulation Analysts

Prerequisites
This course is recommended for engineers with experience using Abaqus/Standard.
Appendices

- Appendix 1 Maximizing Success with Contact in Abaqus/Standard
- Appendix 2 Large Model Management
- Appendix 3 Materials for Powertrain
Legal Notices

The Abaqus Software described in this documentation is available only under license from Dassault Systèmes and its subsidiary and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiary.

© Dassault Systèmes, 2012.

Printed in the United States of America

Abaqus, the 3DS logo, SIMULIA and CATIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the Abaqus 6.12 Release Notes and the notices at: http://www.3ds.com/products/simulia/portfolio/product-os-commercial-programs.
<table>
<thead>
<tr>
<th>Lecture</th>
<th>Revisions</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 1</td>
<td>8/12</td>
<td>Re-issued for 6.11</td>
</tr>
<tr>
<td>Lecture 2</td>
<td>8/12</td>
<td>Re-issued for 6.11</td>
</tr>
<tr>
<td>Lecture 3</td>
<td>8/12</td>
<td>Re-issued for 6.11</td>
</tr>
<tr>
<td>Lecture 4</td>
<td>8/12</td>
<td>Re-issued for 6.11</td>
</tr>
<tr>
<td>Lecture 5</td>
<td>8/12</td>
<td>Re-issued for 6.11</td>
</tr>
<tr>
<td>Lecture 6</td>
<td>8/12</td>
<td>Re-issued for 6.11</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>8/12</td>
<td>Re-issued for 6.11</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>8/12</td>
<td>Re-issued for 6.11</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>8/12</td>
<td>Re-issued for 6.11</td>
</tr>
</tbody>
</table>
Lesson 1: Introduction and Motivation

Lesson content:

- Background
- Powertrain Applications (not comprehensive)
 - Exhaust Manifold
 - Crank Bore Distortion
 - Four Pinion Differential Carrier
 - Cylinder Head and Block Thermal Structural Analysis
 - Valve Body Sealing
 - Sealing Systems
 - Water Pump Sealing—Paper/Silicone Gasket
 - Valve Cover Gasket—Elastomeric Seals
 - Hyperelastic Material Calibration
 - Sealing Analysis with Elastomeric Gaskets
 - Dynamic Park System Simulation
 - Composite Intake Manifold Analysis
 - Roller Rocker Arm Pedestal
 - Natural frequencies of engine-transmission assembly
- Summary of Relevant Abaqus Features for Powertrain

75 minutes
Lesson 2: Contact

Lesson content:

- Contact Analysis in Powertrain
- How to Approach Contact Analyses
- Application: Coolant Manifold Cover Assembly
 - *TIE
 - Adjusting surfaces
- Application: 3-D Rubber Seal
 - *CONTROLS
 - Contact output
- Application: Press Fit Analysis of Valve Seats
 - Submodeling
 - Interference fit problems
- Bolted Joints with Threads

90 minutes
Lesson 3: Gaskets and Bolt Loading

Lesson content:

- Introduction
- Gasket Element Formulations
- Gasket Element Library
- Defining Gasket Element Geometry
- Gasket Element Behavior
- Using Gasket Elements in a Model
- Application: Coolant Manifold Cover Gasket
- Application: Transmission Pan Gasket
- Application: Engine Bore Distortion
- Gasket Element Output Variables
- Practical Tips for Gasket Usage

2 ½ hours
Lesson 4: Thermal Stress Analysis

Lesson content:

- Thermal-Stress Procedures in Abaqus
- Sequentially Coupled Thermal-Stress Analysis
- Temperature Application
- Thermal Stress Example: Exhaust Manifold
- Using CFD Results with Abaqus
Lesson 5: Dynamics—NVH

Lesson content:

- Introduction
- Natural Frequency Extraction
- Steady-State Analysis
- Mode-Based Steady-State Analysis
- Direct Steady-State Analysis
- Frequency Domain Analysis with the Subspace Method
- Dynamic Gaskets
- Structural Acoustics

90 minutes
Lesson 6: Manufacturing Processing Effects

Lesson content:

- Introduction
- Example: Machining of a Coolant Manifold Assembly
 - Transferring results between Abaqus/Standard analyses
- Example: Oil Pan Vibration
 - Manufacturing process effects on steady-state vibration and fatigue life

45 minutes
Lesson content:

- Understanding Abaqus Solution Algorithms
- Overview of Contact in Abaqus/Standard
- Contact Discretization
- Relative Sliding Between Bodies
- The Contact Algorithm in Abaqus
- Understanding the Message File
- Contact Diagnostics (Visual)
- Systematic Modeling Practices
- Troubleshooting Contact Analyses

2 ¼ hours
Appendix 2: Large Model Management

Lesson content:

- What is a Large Model?
- Managing Computer Resources for Large Models
- Analysis Techniques to Manage Large Models
 - Restart
 - Output control
 - Parts and assemblies
 - Submodeling
 - Substructuring

30 minutes
Appendix 3: Materials for Powertrain

Lesson content:

- Introduction
- Linear Elasticity (Hooke’s Law)
- Abaqus Rubber Material Models
- Example: Curve Fitting Rubber Test Data
- Solid Metal Plasticity
- Abaqus Pressure-Dependent Plasticity Models
- Example: Application of a Crankshaft Seal
- Gray Cast Iron Plasticity

3 ½ hours