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Multi-pass Pipe Welding Analysis
using the Abaqus Welding Interface

Summary

Pipes and pipelines play a fundamental role in a wide va-
riety of industries. The cost effective operation of plants
and processes depends on the integrity of the necessary
piping sustems. The ability to accurately determine the
residual stress state in a welded pipe joint is thus im-
portant; with a predictive capability, engineers are better
able to reduce the possibility of in-service failures.

In this Technology Brief we discuss the application of the
Abaqus Welding Interface (AWI) [1,2] to model the multi-
pass welding of an SUS304 stainless steel pipe joint. We
will demonstrate that the AWI analysis methodology pro-
vides reasonably accurate predictions of the resulting
temperature history and residual stresses, with significant
time savings in the construction of complex 3-D weld
models. The Abaqus analysis results show a positive com-
parison with the experimental data reported in [3].

Background

Circumferential butt welds are commonly used to join
pipes in various industries, including such critical applica-
tions as nuclear power plants [4]. Tensile residual stresses
from welding play a major role in the integrity of pipe
joints because they increase the susceptibility to fracture,
fatigue failure, and stress corrosion cracking.

The residual stresses have a complex dependence on
many variables, including the geometry of the structure,
temperature-dependent thermal and mechanical proper-
ties of the base and weld metals, the sequencing in multi-
pass welding scenarios, inter-pass temperature condi-
tions, the boundary constraints on the parts being weld-
ed, and the energy input from the heat source.

The ability to accurately predict welding residual stresses
during the design process offers cost advantages not only
by saving on prototyping and experiments, but by reduc-
ing the chance of costly in-service failures. Abaqus, with
its advanced thermo-mechanical analysis capabilities,
material models, fracture capabilities, and the innovative
Abaqus Welding Interface (AWI) [1,2] extension to
Abaqus/CAE, is well-suited to meet this analysis need.

While Abaqus is widely used in welding simulations, the
model development can be time consuming because weld
bead deposition necessitates evolving geometry. Further,
this affects related modeling aspects such as loads,
boundary conditions, and convective film interactions—
each of which must be specified in a potentially large
number of steps.

Additionally, if the energy input from the torch is mod-
eled using a flux-based approach [3, 5, 6, 7], user subrou-
tines are needed to implement the chosen heat input
model. AWI automates most of the time consuming steps
associated with the welding model development, saving
valuable analyst time.
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Key Abaqus Features and Benefits

e The Abaqus Welding Interface extends the capa-
bilities of Abaqus/CAE for efficient multi-pass
welding simulation

— Axisymmetric and three-dimensional weld
deposition simulation

Sequentially coupled thermal-stress analysis

computes residual stresses and deformations
after each weld pass

Automated definition of steps, loads, and
boundary conditions for highly efficient
model building

SIMULIA capabilities in fracture, damage, fa-
tigue, and optimization that provide a broad
analysis framework for comprehensive workflow
solutions

Welding simulations built using AWI use a sequentially
coupled thermal-stress analysis, where the temperature
history from the welding is first determined using a pure
heat transfer analysis. This is then followed by static
stress analysis that uses the temperatures from the heat
transfer analysis in the loading history. The temperature
loading, together with the temperature-dependent elasto
-plastic and thermal expansion material properties and
boundary restraints on the part generate the residual
stress distribution.

AWI assumes a prescribed temperature approach to rep-
resent the heat input from the welding source. Specifical-
ly, for the given “torch step,” the interface between the
appropriate bead material volume and the surrounding
base is assigned a prescribed temperature boundary con-
dition. This is typically at a value higher than the melt
temperature.



Figure 1: Pipe cross section with thermocouple locations
highlighted

Finite Element Analysis

AWI Modeling Approach

The weld beads for each pass are assumed to be deposit-
ed in discrete chunks at the target torch temperature.
AWI supports both cell-based and element-based deposi-
tion in 3-D. For the present 3-D pipe model each bead is
subdivided circumferentially into 22 element based
chunks. When the model is constructed, all of the weld
beads are meshed. The bead chunks are then selectively
activated during the analysis sequence via the “model
change” feature in Abaqus.

Geometry and Material Properties

The pipe segments being welded are each 400 mm long,
with an outer diameter of 114.3 mm and wall thickness
of 6 mm [3]. The longitudinal pipe cross section showing
the two-pass weld geometry of the 3-D model is shown
in Figure 1, along with the locations of the experimental
thermocouples on the inside and outside surfaces. The
properties of the base metal (SUS304) are described in
[3]. The weld metal properties are assumed to be same as
those of the base metal (see [5] for a discussion of the
effect of different plasticity parameters for the base and
weld metal). Linear kinematic hardening plasticity is used
in the simulations.

Sequentially Coupled Thermal-Stress Analysis

The heat transfer model is completed in AWI in a few
easy steps. AWI creates all the needed interactions (such
as film coefficients and step dependent model changes),
analysis steps, and temperature boundary conditions. The
user-defined film coefficient option was used with a sim-
ple FILM subroutine to implement the film coefficients for
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Figure 2: Half-pipe showing bead chunks

convective cooling discussed in [3]. A torch step time of
11.6 seconds was estimated for each bead chunk, based
on the chunk size and the welding speed (80 mm/min,

[3]).

AWI also creates the corresponding stress analysis model
from scratch, with the user simply adding adequate
boundary conditions to represent the restraints on the
parts. For the present problem, boundary conditions were
applied only to prevent rigid body motion. The predefined
temperature field from the previous heat transfer analysis
is used by AWI automatically. The mesh of the 3-D model
is shown in Figure 2. The AWI GUI is shown in Figure 3.

Results

All predictions from the axisymmetric and 3-D AWI-
generated models are compared with the experimental
data reported in [3]. Further, the comparisons are made
at 180° from the weld start point. The axisymmetric
model, shown in Figure 3, used a finer mesh.

Figures 4 and 5 show the temperature histories from the
3-D model on the inside and outside surfaces, respective-
ly. The peak temperatures and cooling rates predicted by
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Figure 3: Abaqus Weld Interface dialog, axisymmetric model definition
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Figure 4: Temperature history, inner surface

Abaqus match well with the thermocouple data; note
that the model results include both weld passes, with a
reset of the temperatures to inter-pass conditions follow-
ing the deposition of the last chunk of the first pass. It
was also observed that there was no significant difference
between the temperature histories at different angular
locations around the circumference of the pipe in the 3-D
model, confirming that there is relatively little heat con-
duction occurring in the hoop direction for the given
welding speed.

Figures 6 and 7 show the axial and hoop stresses, respec-
tively, on the inside surface of the pipe across the weld
centerline. As with the temperatures, the 3-D stress re-
sults were found to be very similar at different angular
locations.

While the inside axial stress is in fairly good agreement
with the experimental values, the peak values of the hoop
stress are under predicted. As noted in [3] and [5], there
is a particular sensitivity of the circumferential analysis
results to the weld metal constitutive model and proper-
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Figure 6: Axial stress, inner surface
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Figure 5: Temperature history, outer surface

ties. The current analyses assume the same plasticity
model and properties for both the base and weld metals.
Even with this approximation, the character of the residu-
al stress pattern is captured.

The axial and hoop stresses on the outside surface of the
pipe are shown in Figures 8 and 9 respectively. As with
the inner surface results, the predicted hoop stress distri-
bution shows a wider variation with respect to the experi-
mental data than the axial stress distribution. The disa-
greement in the hoop stress magnitudes away from the
weld zone follows the pattern reported in [3, 5] for flux-
based simulation results. There, the authors postulated
that the experimental values are much higher due to the
initial residual stress introduced by the manufacturing
process.

Conclusions

The Abaqus Welding Interface extends the capabilities of
Abaqus/CAE to allow very rapid development of welding
simulations. Multi-pass welding analyses can often in-
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Figure 7: Hoop stress, inner surface
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Figure 8: Axial stress, outer surface

volve dozens of weld depositions; the AWI tools for auto-
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Figure 9: Hoop stress, outer surface

tion, AWI may also be used for final design simulations.

matically defining the associated Abaqus models, steps,
loads, and boundary conditions afford significant time
savings.

Additional SIMULIA analysis tools such as Isight can be
used in conjunction with AWI to study the various model-
ing parameters—torch temperature, temperature ramping
options, number of weld bead chunks, torch speed, etc.

The capabilities of AWI to generate residual stress results ) ] y ]
With this approach, different classes of welding analyses

have been presented in the context of a highly simplified ) >Nt ) I '
model. The reasonable accuracy points to the utility of can be calibrated and optimized; particular time savings
AWI as a means of efficiently performing design and trade can be realized with axisymmetric and plane strain mod-
-off studies, and with proper benchmarking and calibra- els.
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For additional information on the Abaqus capabilities referred to in this document please see the following:

e Abaqus extensions: http://www.3ds.com/products/simulia/portfolio/abaqus/abaqus-portfolio/abaqus-add-ons/extensions

About SIMULIA

SIMULIA is the Dassault Systemes brand that delivers a scalable portfolio of Realistic Simulation solutions including the Abaqus prod-
uct suite for Unified Finite Element Analysis, multiphysics solutions for insight into challenging engineering problems, and lifecycle
management solutions for managing simulation data, processes, and intellectual property. By building on established technology,
respected quality, and superior customer service, SIMULIA makes realistic simulation an integral business practice that improves
product performance, reduces physical prototypes, and drives innovation. Headquartered in Providence, RI, USA, with R&D centers in
Pr?jv(ijd_en_cbe and in Vélizy, France, SIMULIA provides sales, services, and support through a global network of over 30 regional offices
ana distributors.
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