Modeling Contact with Abaqus/Standard

Abaqus 2018
Course objectives
Upon completion of this course you will be able to:

- Define general contact and contact pairs
- Define appropriate surfaces (rigid or deformable)
- Model frictional contact
- Model large sliding between deformable bodies
- Resolve overclosures in interference fit problems

Targeted audience
Simulation Analysts

Prerequisites
This course is recommended for engineers with experience using Abaqus/Standard
Day 1

- Lecture 1 Introduction
- Lecture 2 Contact Workflow
 - Workshop 1 Compression of a Rubber Seal
- Lecture 3 Surface-based Contact
 - Workshop 2 Lap Joint Analysis
- Lecture 4 Contact Logic and Diagnostics Tools
 - Workshop 3 Bolted Flange Analysis
Day 2

- Lecture 5 Contact Properties
 - Workshop 4 Disk Forging Analysis
- Lecture 6 Interference Fits
 - Workshop 5 Interference Fit Analysis
 - Workshop 6 Syringe Analysis (optional)
- Lecture 7 Additional Features
 - Workshop 7 Pipe Reel Analysis
- Lecture 8 Modeling Tips
 - Workshop 8 Bolted Flange Analysis: Infinitesimal Sliding
 - Workshop 9 Snap Fit Analysis
 - Workshop 10 Analysis of a Radial Shaft Seal (optional)
Additional Material

- Appendix 1 Node-to-Surface Formulation
- Appendix 2 Contact Elements
- Appendix 3 Dynamic Contact using Implicit Integration
SIMULIA is the Dassault Systèmes brand for Realistic Simulation solutions

Portfolio of established, best-in-class products
- Abaqus, Isight, Tosca, fe-safe, Simpack

- **Design Optimization. Tosca Structure** *
 - Simulation-driven design refinement to improve performance

- **FEA Stress Analysis. Abaqus** *
 - Detailed stress analysis using extracted load history from MBS

- **Multibody Simulation. Simpack**
 - System analysis to extract virtual load history of complete working cycle

- **Durability Assessment. fe-safe** *
 - Accurate life estimation to achieve certification

- **CAD Geometry. CATIA**
 - Fully parameterized 3D geometry; FEA model generation via associative interface

- **Mesh Calibration. Isight** *
 - Automated mesh calibration; sufficient mesh quality for accurate results

* Included in extended licensing pool
Join the Community!

How can you maximize the robust technology of the SIMULIA Portfolio?
Connect with peers to share knowledge and get technical insights

Go to www.3ds.com/slc to log in or join!

Let the SIMULIA Learning Community be Your Portal to 21st Century Innovation
Discover new ways to explore how to leverage realistic simulation to drive product innovation. Join the thousands of Abaqus and Isight users who are already gaining valuable knowledge from the SIMULIA Learning Community.

For more information and registration, visit 3ds.com/simulia-learning.
SIMULIA SERVICES
PROVIDING HIGH QUALITY SIMULATION AND TRAINING SERVICES TO ENABLE OUR CUSTOMERS TO BE MORE PRODUCTIVE AND COMPETITIVE.

Training Schedule & Registration
We offer regularly scheduled public seminars as well as training courses at customer sites. An extensive range of courses are available, ranging from basic introductions to advanced courses that cover specific analysis topics and applications. On-site courses can be customized to focus on topics of particular interest to the customer, based on the customer’s prior specification. To view the worldwide course schedule and to register for a course, visit the links below.
The software described in this documentation is available only under license from Dassault Systèmes or its subsidiaries and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiaries.

© Dassault Systèmes, 2017

Printed in the United States of America.

Abaqus, the 3DS logo, and SIMULIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the SIMULIA User Assistance.
<table>
<thead>
<tr>
<th></th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 1</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Lecture 2</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Lecture 3</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Lecture 4</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Lecture 5</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Lecture 6</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Lecture 7</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Lecture 8</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Workshop 1</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Workshop 2</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Workshop 3</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Workshop 4</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Workshop 5</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Workshop 6</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Workshop 7</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Workshop 8</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Workshop 9</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Workshop 10</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
</tbody>
</table>
Lesson content:

- Defining General Contact
- Defining Contact Pairs
- Defining Surfaces for Contact Pairs
- Workshop Preliminaries
- Workshop 1: Compression of a Rubber Seal (IA)
- Workshop 1: Compression of a Rubber Seal (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson 3: Surface-based Contact

Lesson content:
- Contact Formulations
- Contact Discretization
- Contact Enforcement Methods
- Relative Sliding Between Bodies
- Contact Output
- Summary
- Workshop 2: Lap Joint Analysis (IA)
- Workshop 2: Lap Joint Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.

2 hours
Lesson 4: Contact Logic and Diagnostics Tools

Lesson content:

- Newton Method
- The Contact Algorithm
- Contact Diagnostics: Visual
- Contact Diagnostics: Text
- Workshop 3: Bolted Flange Analysis (IA)
- Workshop 3: Bolted Flange Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.

2 hours
Lesson 5: Contact Properties

Lesson content:

- Pressure-Overclosure Models
- Friction Models
- Friction Enforcement
- Workshop 4: Disk Forging Analysis (IA)
- Workshop 4: Disk Forging Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson content:

- Initial Overclosure
- Strain-free Adjustments
- Interference Fit Problems
- Interference Fit Techniques for General Contact
- Interference Fit Techniques for Contact Pairs
- Interference Fit Example
- Precise Specification of Clearances
- Geometric Smoothing for Curved Surfaces
- Workshop 5: Interference Fit Analysis (IA)
- Workshop 5: Interference Fit Analysis (KW)
- Workshop 6: Syringe Analysis (IA)
- Workshop 6: Syringe Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.

3 hours
Lesson 7: Additional Features

Lesson content:

- Beam Contact
- Tie Constraints
- Rigid Bodies and Contact
- Analytical Rigid Surfaces
- Pre-Tensioning of Cross-Sections
- Pressure Penetration
- Contact in Linear Perturbation Procedures
- Workshop 7: Pipe Reel Analysis (IA)
- Workshop 7: Pipe Reel Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson 8: Modeling Tips

Lesson content:

- Initial Rigid Body Motion
- Overconstraint
- Contact with Quadratic Elements
- Unsymmetric Matrices in Finite-Sliding Problems
- Dynamic Instabilities
- Modeling Corners and Edges
- Workshop 8: Bolted Flange Analysis: Infinitesimal Sliding (IA)
- Workshop 8: Bolted Flange Analysis: Infinitesimal Sliding (KW)
- Workshop 9: Snap Fit Analysis (IA)
- Workshop 9: Snap Fit Analysis (KW)
- Workshop 10: Analysis of a Radial Shaft Seal (IA)
- Workshop 10: Analysis of a Radial Shaft Seal (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.

2 hours
Appendix 1: Node-to-Surface Formulation

Appendix content:

- Discretization
- Finite Sliding: Surface Considerations
- Small Sliding Characteristics
- Small Sliding: Local Contact Plane
- Small Sliding: Surface Considerations
Appendix 2: Contact Elements

Appendix content:

- Surface-Based vs. Contact Element Approach
- Contact Elements
- Contact Element Output
- Contact Element Visualization
Appendix 3: Dynamic Contact using Implicit Integration

Appendix content:

- Time Integration Issues
- Implicit Dynamics
- Damping
- Impact Problems