Introduction to Abaqus/CFD for Multiphysics Applications
Course objectives
Upon completion of this course you will be able to:

- Set up and create CFD and FSI models with Abaqus
- Perform CFD analyses with Abaqus
- Perform FSI analyses with Abaqus
- Postprocess CFD and FSI results

Targeted audience
Simulation Analysts

Prerequisites
None
Day 1

- Lecture 1: Review of CFD Fundamentals
- Lecture 2: Introduction
- Lecture 3: Getting Started with Abaqus/CFD
- Workshop 1: Unsteady flow across a circular cylinder
- Lecture 4: CFD Modeling Techniques – Part 1
- Workshop 2: Fluid flow through a pipe with a constriction
Day 2

- Lecture 5 CFD Modeling Techniques – Part 2
- Lecture 6 Getting Started with FSI Using Abaqus/CFD
- Workshop 1 Unsteady flow across a circular cylinder (continued)
- Workshop 3 Antilock braking system
- Lecture 7 FSI Modeling Techniques
- Workshop 3 Antilock braking system
- Lecture 8 Postprocessing CFD/FSI Analyses
- Workshop 4 Heat transfer analysis of a component-mounted electronic circuit board
Join the Community!

How can you maximize the robust technology of Abaqus FEA and Isight?
Connect with peers to share knowledge and get technical insights

Let the SIMULIA Learning Community be Your Portal to 21st Century Innovation
Discover new ways to explore how to leverage realistic simulation to drive product innovation. Join the thousands of Abaqus and Isight users who are already gaining valuable knowledge from the SIMULIA Learning Community.

For more information and registration, visit 3ds.com/simulia-learning.

©2013 Dassault Systèmes. All rights reserved.
The Abaqus Software described in this documentation is available only under license from Dassault Systèmes or its subsidiary and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiary.

© Dassault Systèmes, 2014

Printed in the United States of America.

Abaqus, the 3DS logo, SIMULIA, and CATIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the Abaqus 6.14 Installation and Licensing Guide.
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 1</td>
<td>5/14</td>
<td>Updated for 6.14</td>
</tr>
<tr>
<td>Lecture 2</td>
<td>5/14</td>
<td>Updated for 6.14</td>
</tr>
<tr>
<td>Lecture 3</td>
<td>5/14</td>
<td>Updated for 6.14</td>
</tr>
<tr>
<td>Lecture 4</td>
<td>5/14</td>
<td>Updated for 6.14</td>
</tr>
<tr>
<td>Lecture 5</td>
<td>5/14</td>
<td>Updated for 6.14</td>
</tr>
<tr>
<td>Lecture 6</td>
<td>5/14</td>
<td>Updated for 6.14</td>
</tr>
<tr>
<td>Lecture 7</td>
<td>5/14</td>
<td>Updated for 6.14</td>
</tr>
<tr>
<td>Lecture 8</td>
<td>5/14</td>
<td>Updated for 6.14</td>
</tr>
<tr>
<td>Workshop 1</td>
<td>5/14</td>
<td>Updated for 6.14</td>
</tr>
<tr>
<td>Workshop 2</td>
<td>5/14</td>
<td>Updated for 6.14</td>
</tr>
<tr>
<td>Workshop 3</td>
<td>5/14</td>
<td>Updated for 6.14</td>
</tr>
<tr>
<td>Workshop 4</td>
<td>5/14</td>
<td>Updated for 6.14</td>
</tr>
</tbody>
</table>
Lesson 1: Review of CFD Fundamentals

Lesson content:

- Overview
- What is CFD?
- Numerical Simulation of Physical Phenomena
- Computational Solid Mechanics (CSM) vs. Computational Fluid Dynamics (CFD)
- CFD Basics
- Governing Equations
- Diffusion and Advection
- Flow Features
- Heat Transfer in Fluid Dynamics
- Non-dimensional Quantities in CFD
- Initial and Boundary Conditions
- Solution Methodology
- Turbulence Modeling
- References

1.5 hours
Lesson 2: Introduction

Lesson content:

- Multiphysics
- Abaqus Multiphysics
- Extended Multiphysics
- Multiphysics Coupling
- Abaqus/CFD
- Fluid-Structure Interaction (FSI)
- Native FSI using Abaqus
- Target Applications
- System and Licensing Requirements
- Execution Procedure

2 hours
Lesson content:

- CFD Simulation Workflow
- Setting up CFD Analyses
- Case Study 1: Flow around a Rigid Circular Cylinder
- Case Study 2: Flow around an Oscillating Rigid Circular Cylinder
- Modeling Heat Transfer
- Modeling Turbulence
- Workshop Preliminaries
- Workshop 1: Unsteady flow across a circular cylinder

2 hours
Lesson 4: CFD Modeling Techniques – Part 1

Lesson content:

- Material Properties
- Meshing
- Incompressible Flow Analysis Procedure
- Solution Algorithm
- Linear Equation Solvers
- Pressure Equation Solvers
- Momentum Equation Solvers
- Equation Solver Output
- Workshop 2: Fluid flow through a pipe with a constriction

2 hours
Lesson content:

- Initial Conditions
- Boundary Conditions
- Primary Turbulence Variables and Turbulence Flow Features
- Turbulence Modeling
- Body Forces
- Heat Sources
- Porous Media Modeling
- User Subroutines
- Output
- Deforming Meshes
- Monitoring a CFD Calculation
Lesson content:

- Setting up FSI Analyses
- Case Study 3: Flow around a Spring-loaded Rigid Circular Cylinder
- FSI Analyses with Shells/Membranes
- Conjugate Heat Transfer Analyses
- Workshop 1 (continued): Unsteady flow across a circular cylinder
Lesson content:

- FSI Analysis Workflow
- FSI Analysis Attributes
- Conjugate Heat Transfer
- Workshop 3: Antilock braking system
Lesson 8: Postprocessing CFD/FSI Analyses

Lesson content:

- Abaqus/CAE Tips
- Isosurfaces
- View Cuts
- Vector Plots
- Stream Toolset (Instantaneous Particle Traces)
- Workshop 4: Heat transfer analysis of a component-mounted electronic circuit board

2 hours