Modeling Extreme Deformation and Fluid Flow with Abaqus

Abaqus 2018

3DEXPERIENCE®
Course objectives
Upon completion of this course you will be able to:

- Create Eulerian meshes and define the initial material location within an Eulerian mesh
- Specify initial conditions, boundary conditions and loads to materials in the Eulerian domain
- Use general contact to model Eulerian-Lagrangian interactions
- Create SPH meshes
- Automatically convert conventional continuum elements to SPH particles
- Define initial conditions, boundary conditions, and loads on SPH particles
- Define contact interactions between SPH particles an element-based or analytical surfaces
- Understand the differences between the CEL and SPH approaches

Targeted audience
Simulation Analysts

Prerequisites
This course is recommended for engineers with experience using Abaqus

About this Course
2 days
Day 1

- Lecture 1 Introduction
- Lecture 2 Overview of CEL (Coupled Eulerian-Lagrangian) Analysis
- Lecture 3 Creating a CEL Model
 - Workshop 1 Deformation of an Elastic Dam under Time-dependent Water Pressure
- Lecture 4 Abaqus/CAE Volume Fraction Tool
- Lecture 5 CEL Modeling Techniques
 - Workshop 2 Bird Strike Impact on Double-walled Aircraft Fuselage
Day 2

- Lecture 6 CEL for Fluid Applications
- Lecture 7 Overview of SPH (Smoothed Particle Hydrodynamics)
- Lecture 8 SPH Modeling Techniques
- Workshop 3 Bird Strike on an Airplane Engine Blade
- Lecture 9 Comparison of CEL and SPH
SIMULIA is the Dassault Systèmes brand for Realistic Simulation solutions

Portfolio of established, best-in-class products
- Abaqus, Isight, Tosca, fe-safe, Simpack

- Design Optimization, Tosca Structure *
 Simulation-driven design refinement to improve performance

- Durability Assessment, fe-safe *
 Accurate life estimation to achieve certification

- FEA Stress Analysis, Abaqus *
 Detailed stress analysis using extracted load history from MBS

- Multibody Simulation, Simpack
 System analysis to extract virtual load history of complete working cycle

- CAD Geometry, CATIA
 Fully parameterized 3D geometry; FEA model generation via associative interface

- Mesh Calibration, Isight *
 Automated mesh calibration, sufficient mesh quality for accurate results

* Included in extended licensing pool
SIMULIA’s Power of the Portfolio

Abaqus
- Routine and Advanced Simulation
- Linear and Nonlinear, Static and Dynamic
- Thermal, Electrical, Acoustics
- Extended Physics through Co-simulation
- Model Preparation and Visualization

Isight
- Process Integration
- Design Optimization
- Parametric Optimization
- Six Sigma and Design of Experiments

Tosca
- Non-Parametric Optimization
- Structural and Fluid Flow Optimization
- Topology, Sizing, Shape, Bead Optimization

fe-safe
- Durability Simulation
- Low Cycle and High Cycle Fatigue
- Weld, High Temperature, Non-metallics

Simpack
- 3D Multibody Dynamics Simulation
- Mechanical or Mechatronic Systems
- Detailed Transient Simulation (Offline and Realtime)

Realistic Human Simulation
- High Speed Crash & Impact Noise & Vibration

Material Calibration
- Workflow Automation
- Design Exploration

Conceptual/Detailed Design
- Weight, Stiffness, Stress Pressure Loss Reduction

Safety Factors
- Creep-Fatigue Interaction
- Weld Fatigue

Complete System Analyses
- (Quasi-)Static, Dynamics, NVH
- Flex Bodies, Advanced Contact
Join the Community!

How can you maximize the robust technology of the SIMULIA Portfolio?
Connect with peers to share knowledge and get technical insights

Go to www.3ds.com/slc to log in or join!

Let the SIMULIA Learning Community be Your Portal to 21st Century Innovation

Discover new ways to explore how to leverage realistic simulation to drive product innovation. Join the thousands of Abaqus and Isight users who are already gaining valuable knowledge from the SIMULIA Learning Community.

For more information and registration, visit 3ds.com/simulia-learning.

©2013 Dassault Systèmes. All rights reserved.
SIMULIA Training

http://www.3ds.com/products-services/simulia/services/training-courses/

SIMULIA SERVICES
PROVIDING HIGH QUALITY SIMULATION AND TRAINING SERVICES TO ENABLE OUR CUSTOMERS TO BE MORE PRODUCTIVE AND COMPETITIVE.

Training Schedule & Registration
We offer regularly scheduled public seminars as well as training courses at customer sites. An extensive range of courses are available, ranging from basic introductions to advanced courses that cover specific analysis topics and applications. On-site courses can be customized to focus on topics of particular interest to the customer, based on the customer's prior specification. To view the worldwide course schedule and to register for a course, visit the links below.

North American
- By Location
- By Course

International
- By Location
- By Course

Live Online Training
- Full Schedule
Legal Notices

The software described in this documentation is available only under license from Dassault Systèmes or its subsidiaries and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiaries.

© Dassault Systèmes, 2017

Printed in the United States of America.

Abaqus, the 3DS logo, and SIMULIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the SIMULIA User Assistance.
<table>
<thead>
<tr>
<th>Lecture/Workshop</th>
<th>Date</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 1</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Lecture 2</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Lecture 3</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Lecture 4</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Lecture 5</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Lecture 6</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Lecture 7</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Lecture 8</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Lecture 9</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Workshop 1</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Workshop 2</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
<tr>
<td>Workshop 3</td>
<td>11/17</td>
<td>Updated for Abaqus 2018</td>
</tr>
</tbody>
</table>
Lesson content:

- Multiphysics / Multiscale Simulation
- SIMULIA Multiphysics
- Abaqus Multiphysics
- Coupled Eulerian-Lagrangian (CEL) approach
- Smoothed Particle Hydrodynamics (SPH) approach
Lesson content:

- CEL Analysis Technique
- CEL Examples
- Detailed case study: Tire Hydroplaning/Aquaplaning
Lesson 3: Creating a CEL Model

Lesson content:

- Case Study Introduction: Front-load washing machine
- Defining the Eulerian Domain
- Eulerian-Lagrangian Coupling
- Postprocessing—Basic tips
- Postprocessing—Additional suggestions
- Summary
- Workshop Preliminaries
- Workshop 1: Deformation of an Elastic Dam under Time-dependent Water Pressure
Lesson 4: Abaqus/CAE Volume Fraction Tool

Lesson content:

- Introduction
- Using the volume fraction tool
- Tips
Lesson content:

- Element types and procedures
- Initial conditions, boundary conditions, and loads
- Eulerian mesh motion
- Contact
- Mesh density
- Adaptive mesh refinement
- Materials and material instances
- Output and postprocessing
- Tracer particles
- Comparison to Lagrangian analysis
- Limitations
- Workshop 2: Bird Strike Impact on Double-walled Aircraft Fuselage
Lesson 6: CEL for Fluid Applications

Lesson content:

- EOS Materials
- CEL and Flow Problems
- Flow Benchmarks
- Hourglass Control
- Boundary Reflections
- Tips
- Troubleshooting Checklist
Lesson 7: Overview of SPH (Smoothed Particle Hydrodynamics)

Lesson content:

- Introduction
- Examples
 - Water-wave impact
 - Priming a Pump
 - Bottle Drop
 - Garden Hose
 - Taylor Test
 - Projectile Impact on a Plate
 - Hail Impact
- SPH Basics
- SPH Interpolation

1 hour
Lesson 8: SPH Modeling Techniques

Lesson content:

- Overview
- Particle elements
- Model definition
- Optional controls
- Converting finite elements to SPH particles
- Inflow and outflow
- Limitations
- Workshop 3: Bird Strike on an Airplane Engine Blade

2 hours
Lesson 9: Comparison of CEL and SPH

Lesson content:

- Abbreviations
- Material considerations
- Contact considerations
- Geometry and mesh considerations
- Analysis type considerations
- Computational considerations
- Summary tables
 - Functionality-based comparison
 - Application-based comparison

45 minutes