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ABSTRACT
GEOVIA Whittle has implemented a new pit optimization engine based on the 
pseudoflow algorithm. This pseudoflow algorithm creates the same optimal pits 
achieved using the traditional Lerchs-Grossmann algorithm (LG), but with far more 
time efficiency. The LG method of pit optimization has been the industry standard 
and it is understood that strategic mine planners will be reluctant to trust a new 
method. To address their concerns, this paper explains the mathematical concepts on 
which pseudoflow has been built and how this has been implemented to solve mining 
problems. A comparative study with LG is detailed, showing the improved performance 
of pit optimization using pseudoflow.
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FROM LERCHS-GROSSMANN TO PSEUDOFLOW: A SHORT REVIEW
The general pit optimization procedure works based on two inputs: block values and pit slopes, 
where the slopes introduce constraints on removal precedence of the blocks. The output of 
optimization is essentially a selection of blocks representing pits of valid slopes that yield 
maximum profit. Investigations for solving the pit optimization problem using a computer 
algorithm started in the 1960s. The Lerchs-Grossmann algorithm [1] was published in 1965 
and was one of the earliest methods to produce the optimal pit. In the 1980s, the first industrial 
package with the LG algorithm was implemented in Whittle Three-D. The LG method has become 
the industry standard for pit optimization and also part of the university syllabus for mining 
engineers. The main issue with the LG method is the significant amount of time that is required 
to determine the optimal pit as the block models and pits increase in size and scale.

After the publication of LG, finding the optimal pit was no longer a challenging task. In academia, 
significant effort has been focused on searching for more efficient pit optimization algorithms. 
Many promising alternatives have been delivered. In 1976, Picard proved that the pit optimization 
problem could be solved with more efficient maximum flow algorithms [2]. In 1988, Goldberg and 
Tarjan developed a highly efficient maximum flow algorithm called the Push-Relabel method [3]. 
Notably, in 2008, Hochbaum published a pseudoflow algorithm [4], which was demonstrated to 
be more efficient than the LG and other prevalent maximum flow algorithms, such as the Push-
Relabel method [5], [6]. GEOVIA has recognized the power of the pseudoflow algorithm and has 
developed a unique version for GEOVIA Whittle. 

MATHEMATICAL CONCEPTS BEHIND PSEUDOFLOW

Understanding how the pseudoflow algorithm works requires a deep knowledge of mathematics 
and computer science. It involves two layers of questions: 

1) How to model pit optimization with mathematical concepts, such as “set” and “graph” 

2) How the algorithm solves the mathematical (graph) problems 

Understanding the first question requires an introduction to some “graph” concepts. The second 
question is a specialized question in operational research and will not be covered in this paper. 
More detailed explanations of these questions can be found in reference papers [4] and [6].  
The following section addresses the first question.

Graph Concepts and Pit Optimization
The pit optimization process typically uses a block model with fixed block values as an input. 
The pit slopes requirement and mining sequence can be expressed by the dependencies among 
blocks. For example, in Figure 1-1, a simple 2D block model consists of 10 blocks indexed from 
“a” to “j” (the value is marked on the top-right corner of a block). To maintain 45 degree slopes, 
a typical block dependency is like that shown in Figure 1-2, i.e., to mine block “c”, the blocks “g”, 
“h”, and “i” must be removed first. The optimization problem is to find a set of blocks that respects 
the block dependency constraints and gives the highest total block value.

Figure 1. An example of block dependency in pit optimization

This problem is commonly represented by a mathematical concept called a “graph”. A graph is 
a conceptual structure consisting of nodes and arcs. In the pit optimization case, a node represents 
a block, and an arc between two nodes represents the dependency relation of two blocks for the 
excavation sequence and slope constraint. A node can carry a weight value, to represent the value 
of the block. Figure 2 shows a graph representation of the pit optimization problem in Figure 1. 
We will use this example to demonstrate how to use the graph-based method to get the optimal 
pit. The concept is general and can be extended to more complex cases. Even for creating pits 
with a large 3D block model, the same process applies, but with an increased dimension and 
number of nodes and arcs.
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Figure 2. A graph representation of pit optimization problem in Figure 1

Maximum Closure and Optimal Pit
The precise definition of a pit with valid slopes is termed a “closed set” or “closure”. It refers to 
a set of nodes that have no arcs out of the set. For example, in Figure 3, the set {b, f, g, h} is a closed 
set and {d, h, i, j} is another closed set; but set {b, c} is not closed, because “b” has available arcs to 
“f”, “g”, “h”; and “c” has an available arc to “g”, “h”, “i”. 

A closed set of blocks is free to be removed and does not depend on the removal of other 
blocks. So, finding an optimal pit is the process of finding a closure with maximum total value. 
This problem is called a maximum closure problem. It is easy to observe that the optimal pit 
consists of block {b, c, f, g, h, i}, which gives total value 3. The Lerchs-Grossmann algorithm works 
by directly searching for the maximum closure.

Figure 3. Closure and maximum closure in a graph

Maximum Flow Method—An Alternative to Generating an Optimal Pit
Research has proven that searching directly for the maximum closure is not the most efficient 
method of finding it. A more efficient method has been proven that involves solving a variant 
version of a graph, i.e., flow graph or flow network. For ease of understanding, an example of  
a flow graph would be a network of pipes for sending water from one city to another. A flow graph 
contains two additional special nodes, the source node (where the flow starts) and the sink node 
(where the flow finishes). Also, each arc, like a pipe, has a capacity property and allows a flow, 
up to the capacity limit, to pass through. The flow and capacity along an arc must be positive.  
The nodes represent a joining of pipes, so the amount of flow into a node must equal the total 
flow out of the node, which is called the flow balance criteria. In this network, searching for 
a flow distribution with maximum total flows that move into the sink node (or equally go out 
of the source node) is termed the maximum flow problem. It has been proved that the maximum 
flow problem is equivalent to the maximum closure problem [2].

To get a flow graph, we need to make a few changes to the graph in Figure 2: 

• Add two special nodes: source node and sink node

•  For all the existing arcs (blue), assign infinite capacities
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•  Add links from source to all positive nodes, with the capacities equal to the weight of  
the nodes

•  Add links from negative nodes to sink, with the capacities equal to the absolute weight value 
of the nodes

•  Remove the weights on nodes

The converted flow graph is shown in Figure 4-1. We also give an example of arbitrarily assigned 
flows that satisfy the flow balance, shown in Figure 4-2. 

The relation between the flow and mining concepts is not as straightforward as the relation 
between a closure and a pit. One way to describe this is to consider the ore as the water stored in 
a source city that as much as possible needs to be sent to a destination city through a pipe network. 
The source station connects all the ore blocks, and the destination connects all the wastes.  
In the network, the economic value of a block is not reflected on a node, but is measured by  
the capacity of the pipe (arc) that connects it with the source or the destination city. Since the 
pipes representing block dependency have unlimited capacity, the bottlenecks of the networks 
are the pipes connected to the source or destination. Three types of pipes can be identified: 
“waste-to-destination”, “source-to-ore”, and “block-to-block”. The flow assignment in each type 
of pipe can be interpreted in different mining senses, respectively:

1) Pushing flow from a “waste node” to a destination is similar to using the underlying ore 
value to pay for the waste block. When a flow saturates a pipe that links to the destination 
(flow amount equals the capacity), it means that the corresponding waste block can be paid 
off by its underlying ores, for example, the node “f”, “g” and “h” in Figure 4-2. Otherwise,  
if a “waste-to-destination pipe” is not saturated, then the waste block is not paid off by  
the ores, such as node “a”, “i”, “j” and “e” in Figure 4-2. The flow balance criteria imply that the 
flow that goes into a “waste node” cannot exceed its out-pipe capacity (absolute block value), 
thus guaranteeing that the waste block is not paid for multiple times.

2) Pushing flows from a source into an “ore node” means passing the ore value down, within 
the capacity limits, to pay for the necessary wastes. If a “source-to-ore” pipe is not saturated 
while at the same time the flow is balanced and no more can be pushed downstream, such as 
pipe “s-b” in Figure 4-2, this means that the ore is sufficient to pay off the overlying wastes and 
has residual value left. Otherwise, if an ore block is not high enough to pay for the linked wastes, 
then the pipe connected to the source would be saturated, such as pipe “s-d” in Figure 4-2.

3) The unlimited capacity pipes that link block-to-block guide the flow to the related “waste 
nodes”, and allow the ore value passing through freely to pay for all the overlying wastes.

When the maximum flow is found, it ensures that all the ores have been utilized to pay for 
the necessary wastes. As an opposite example, in Figure 4-2, the node “c” is not considered 
to be passing any flow through. So the total flow is 4 and has not reached the maximum flow 
of 5 (shown in the following section), therefore additional distribution is needed to reach  
the maximum flow. 

Figure 4. (1) Flow graph converted from the graph in Figure 2; (2) Arbitrarily distributed flows on Graph 4-1 that satisfies the flow balance criteria 
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Assume that a maximum flow solution is found as shown in Figure 5-1, by any possible 
method, say pseudoflow. To get the optimal pit, we still need to convert the maximum flow 
solution to a maximum closure. To do this, we first break the saturated arcs (blue dashed arcs 
in Figure 5-2). This separates the sink node from the waste blocks that can be paid off by the 
underlying ore blocks (such as blocks “f”, “g”, “h” and “i”), and also cuts the paths from the 
source node to the ore blocks that cannot afford the overlying wastes values (such as block 
“d”). Then we search all the nodes that can be reached by the source node, as shown in Figure 
5-2. Those nodes (except the source) are the maximum closure set. The reason for doing this 
relates to the “max-flow min-cut theorem” [7] and the proof of equivalency of maximum flow 
and maximum closure in the research paper [2].

Figure 5. Finding optimal pits by in maximum flow graph

Maximum Flow Problem and Pseudoflow Algorithm
In the description above, we introduced how to model a pit optimization problem with the graph 
concept, specifically using maximum closure and maximum flow representations. We also noted 
that LG is a method to solve the maximum closure problem. The remaining question is, what is 
the procedure to find a maximum flow solution? In general, the procedure is to iteratively change 
the flows along the paths until the maximum flow is found. There are many maximum flow 
algorithms, and each algorithm uses different ways to distribute the flow with varying efficiency. 
The pseudoflow algorithm has been demonstrated to be one of the most efficient methods to 
date with respect to the time used to solve a defined problem set.

Understanding the procedure of pseudoflow and the reason for its outstanding efficiency needs 
very specialized mathematical knowledge. This document is not designed to be an exhaustive 
explanation of the pseudoflow algorithm, and more details are available in reference [4].

Pseudoflow Engine in GEOVIA Whittle
GEOVIA Whittle is powered by a new implementation of the pseudoflow algorithm with an 
optimized data structure. The new engine significantly speeds up the pit generation process 
compared to our traditional LG engine. A computation comparison of pseudoflow vs. LG is 
discussed below. 

COMPUTATION COMPARISON AND APPLICATION CONCERNS

TESTING DATA AND PARAMETERS
To demonstrate the computation speed of the Whittle pseudoflow engine, a series of testing 
block models were used (see Table 1 and Figure 6). The 45 degree slope angle is adopted for all 
cases. The number of arcs created for this slope setting is listed in Table 1. Note that with Whittle, 
the actual number of blocks and arcs used in the optimization is called active blocks and active 
arcs. (Active blocks represent the blocks that contain parcels, and all the precedent blocks need 
to be removed to access the blocks with parcels). 
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Tests were done for two scenarios: one scenario uses one revenue factor (RF) to generate one pit 
shell; the other uses nine RFs to create nine pit shells. The creation of multiple pit shells is basically 
a repetition using the pseudoflow/LG across multiple RFs.

The test computer was a laptop with Intel Core i7 2.7GHz CPU and 32 GB RAM. 

Table 1. Testing Data descriptions

Figure 6. The size of testing data

Testing Results
The computation time for the datasets and parameters are plotted in Figures 7 and 8, and 
listed in Table 2. Note that the collected computation time reflects the overall process of pit 
optimization with Whittle, including reading and writing data, as well as pseudoflow/LG process. 
The pseudoflow engine is faster than LG in all cases. The boost of speed is more significant as the 
block model becomes larger, especially for the 21.3 million block case, with the time reduced from 
15 hours to 12 minutes using pseudoflow. Also, when creating nine pit shells, the speed gain from 
pseudoflow for creating each single pit shell accumulates and shows an even more remarkable 
overall improvement. 

Figure 7. Computation time comparison for one revenue factor

 

Data 1 Data 2 Data 3 Data 4 Data 5 Data 6
Model dimension 122x120x34  183x180x51 240x240x68 305x300x85 366x360x102 427x420x119

Number of Blocks 497,760 1,679,940 3,916,800 7,777,500 13,439,520 21,341,460

Number of Arcs 7,358,228 26,043,348 63,194,216 125,157,272 218,278,956 348,905,708

Number of Active Blocks 108,704 372,780 891,941 1,749,722 3,032,680 4,822,114

Number of Active Arcs 1,464,517 5,438,090 13,525,933 27,153,793 55,638,248 76,794,400
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Figure 8. Computation time comparison for 9 revenue factors

Table 2. Computation time of pseudoflow vs. LG

Factors Impacting the Speed of Optimization
In general, the computation time of the optimization process can be impacted by a variety of 
factors including:

• The number of blocks

• The number of arcs, related to slope setting and block size

• Distribution of block values 

• Computer hardware and system

The testing done here is not exhaustive for all factors, but focuses on showing the time 
comparison over different sized block models, which is usually the dominant factor. For some 
small or intermediate block models, the pseudoflow engine may not produce significant speed 
improvement over LG. The reason is that the LG engine is already very fast in solving these cases, 
and the majority of processing time is taken up by data reading/writing instead of optimization. 
But for larger sized block models, the speed improvements are significant.

Precision Question 
With the recent exposure of pseudoflow in the mining industry, one common question continues 
to be raised: “Does pseudoflow always produce exactly the same result as LG?”

The answer is “Yes” and “No”. Mathematically, “Yes”, it has been proven that the pseudoflow 
algorithm and LG generate the same result. When it relates to software implementation, it is not 
always true. The reason is that the Whittle pseudoflow engine approximates the value of blocks 
as integers, while LG deals with them as floating point numbers. In both cases, using floating 
point numbers or integers, the block value encoding will introduce imprecision in the block value. 
The pseudoflow engine neglected the value in the scale of cents, which is usually marginal to the 
block value. In some rare cases, this approximation can result in a pit slightly different from the LG 
result. However, even if different pits occur, the pit values should be very close. In the context of 

Data 1 Data 2 Data 3 Data 4 Data 5 Data 6
1RF                      Whittle LG 17s 2m14s 12m55s 1h4m 4h45m 15h42m

Whittle pseudoflow 16s 57s 1m17s 4m27s 7m52s 12m41s

           Time reduced 6% 57% 82% 93% 97% 99%

9RFs                    Whittle LG 21s 1m49s 14m 2h1m 9h21m 24h21m

Whittle pseudoflow 19s 1m4s 2m39s 5m26s 9m56s 20m

           Time reduced 10% 42% 82% 96% 98% 99%
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strategic mine planning, considering that the actual block values have much greater uncertainty 
when comparing to the marginal value neglected here, the approximation of value hardly impacts 
on the NPV report and is definitely tolerable.

Memory Requirements
The pseudoflow engine utilizes more physical memory via RAM than LG does. For some 
large cases, the pseudoflow engine may reach the memory limit of the computer. In general,  
the memory usage grows almost linearly with the number of active arcs, as shown in Figure 9. 
The information of active arcs is reported in the pit optimization message tab for both LG and 
pseudoflow. Table 3 lists typical memory requirements to efficiently solve problems of different 
sizes (measured by the number of active arcs). Here, the term “efficiently” means “processing 
without using virtual memory”. Using virtual memory can drastically slow down the optimization 
and therefore add significant time to the overall optimization process. On the other hand,  
a slightly larger case can also be solved by using a small amount of virtual memory, with a trade-
off of speed. For example, with a 32 GB RAM computer, a problem with less than 509 million 
active arcs can be efficiently solved; and a problem of 550 million active arcs is still solvable by 
using virtual memory. 

Figure 9. Memory consumption of pseudoflow engine for the cases of different number of active arcs

Table 3. The pseudoflow process limit (in number of arcs) for computers of different memories

CONCLUSION
The pseudoflow algorithm is a fast new vehicle for delivering optimal pit solutions. In Whittle, 
the pseudoflow engine has inherited the same usability as the entrusted Pit Optimization 
Engine, which allows users to configure comprehensive practical slope settings for a variety of 
geotechnical needs, and achieves identical results to the LG method. Speed improvements open 
up the opportunity to solve problems that were previously too large for Whittle and the traditional 
LG engine. Furthermore, the pseudoflow algorithm also enables some interesting collaboration 
possibilities. 

RAM (GB) 8 16 32 48 64

Active arcs (Millions) 103 238 509 779 1,049



Dassault Systèmes is now connecting GEOVIA’s offerings to the likes of SIMULIA® Process 
Automation and Simulation technologies on the 3DEXPERIENCE® platform. This enables running 
hundreds to thousands of “What if?” scenarios and analyzing them within the same timeframe 
that it took to run a handful in the past. With the 3DEXPERIENCE platform, it is possible to even 
further automate and improve the performance seen with GEOVIA Whittle, and GEOVIA continues 
searching for faster, practical and easy-to-use strategic mine planning solutions for the future.
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