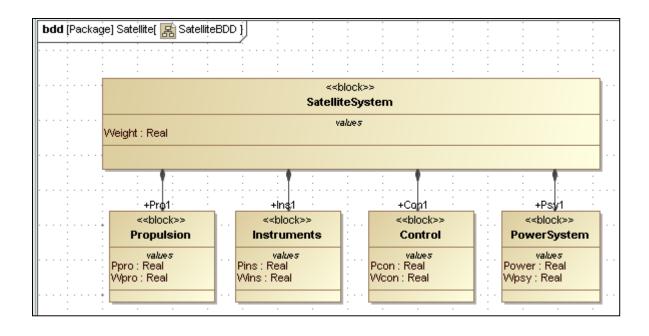

ParaMagic[™] – Running the Numbers on SysML Models

Introduction to SysML Parametrics

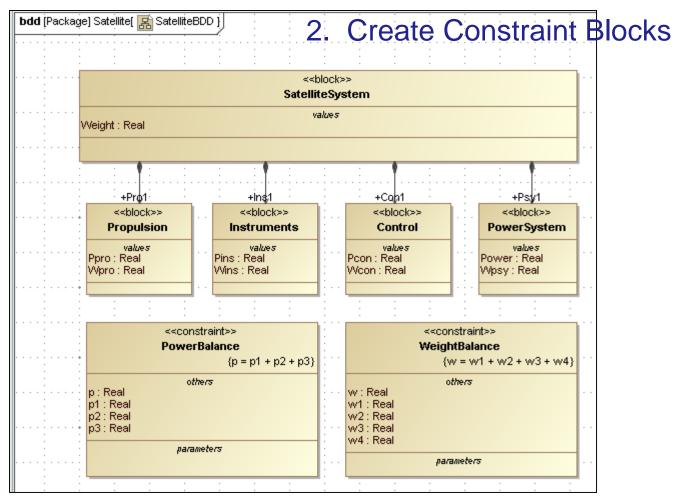
Parametrics – using the quantitative information and relationships inside a SysML model to test the model behavior/validity.

Parametrics + MagicDraw ↓ ParaMagic

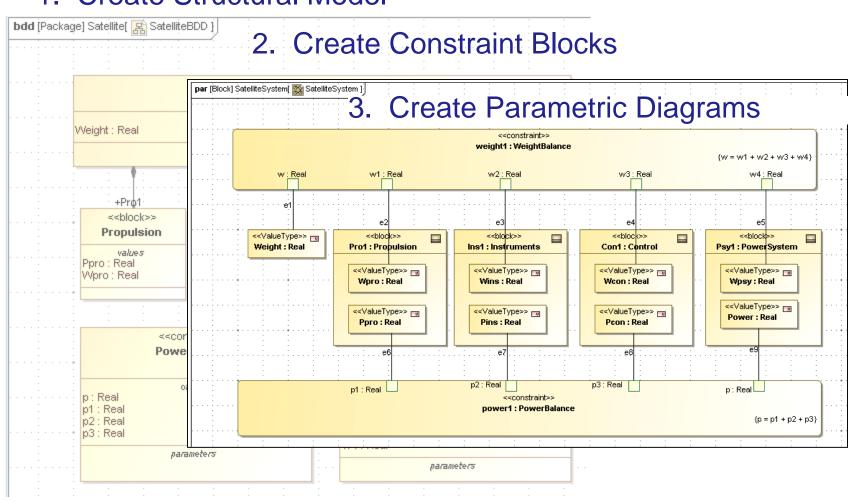


Customers can make their models "live"

- Performance, cost and resources
- Trade-offs
- Optimization
- "What If?" scenarios

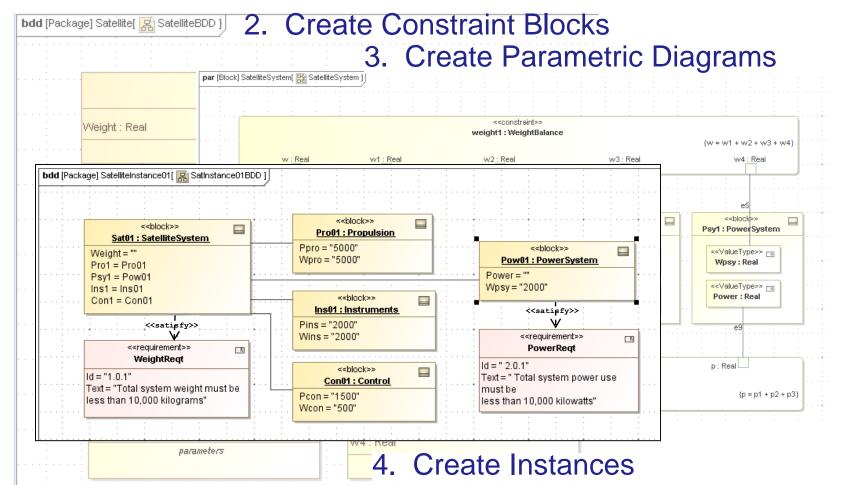

Building a SysML Model with Parametrics

1. Create Structural Model



1. Create Structural Model

Satellite Model



1. Create Structural Model

à magieshaw.

Satellite Model

1. Create Structural Model

Satellite Model

1. Create Structural Model

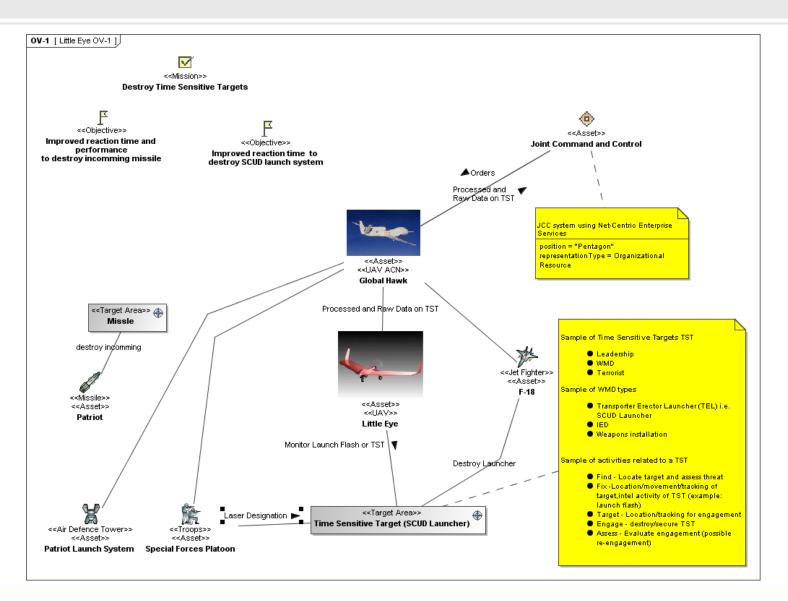
		Parametric Instances c Browser ar		
bdd [Package] SatelliteInstance01 [🔚 SatInstance01BDD]	👙 SatelliteSystem			
	Name oroot È…o Con1	Symbol Type Satellite Control	System Causality	Values
< sat01 : SatelliteSystem	Pcon	REAL	given	1,500
Weight = ""	Wcon	REAL	given	500
Pro1 = Pro01	🛱 ··· 💽 Ins1	Instrum		
Psy1 = Pow01		REAL	given	2,000
Con1 = Con01	Wins	REAL Propulsi	given	2,000
		REAL	given	5,000
<trace>></trace>	Wpro	REAL	given	5,000
< <requirement>> ा</requirement>	E Psy1	PowerS	-	-r
WeightReqt	Power	REAL	target	77777
Id = "1.0.1"	Wpsy	REAL	given	2,000
Text = "Total system weight must be	🖵 🦾 🥥 Weight	REAL	target	77777
less than 10,000 kilograms"				
	Expand Collapse All		Solve	Update to SysML
parameters	parameters			

LittleEye – modeling system performance

Insurance – modeling business processes

Project Planning – modeling activities

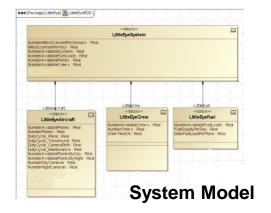
Trade Financing – modeling risk

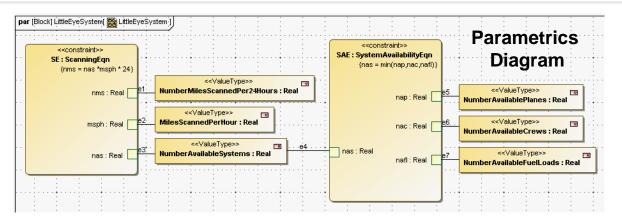

Corporate Finance – modeling cash flow

Retail Banking – modeling market segmentation

CommNetwork – modeling network capacity

Demo - LittleEye


È magiesraw.


Demo - LittleEye

magies

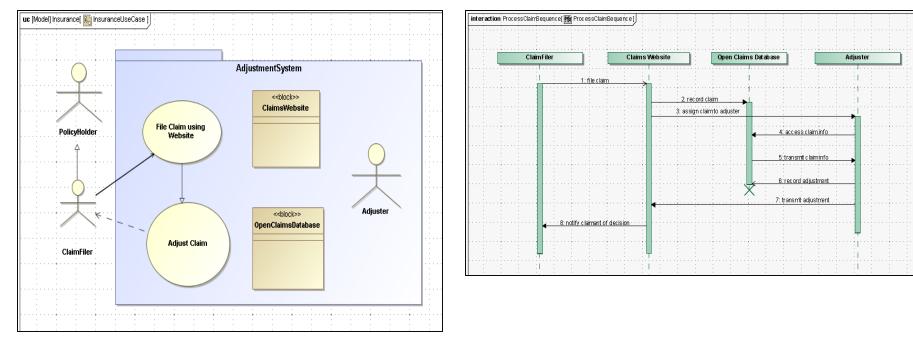
- LittleEye is an unmanned aerial vehicle used for highway reconaissance. A LittleEye base requires aircraft, crew and fuel to operate. Aircraft maintenance and crew schedules limit operations.
- Objective: How many miles of road can be covered per 24 hours by a LittleEye base with a given number of aircraft, crews, and fuel loads?
- Results: Instance 1 shows 2k miles scanned per day, limited by the four crews' availability. In Instance 2, an additional crew is added and base capacity rises to 2.3k miles per day, but now the number of aircraft is the limiting factor.

Demo - LittleEye

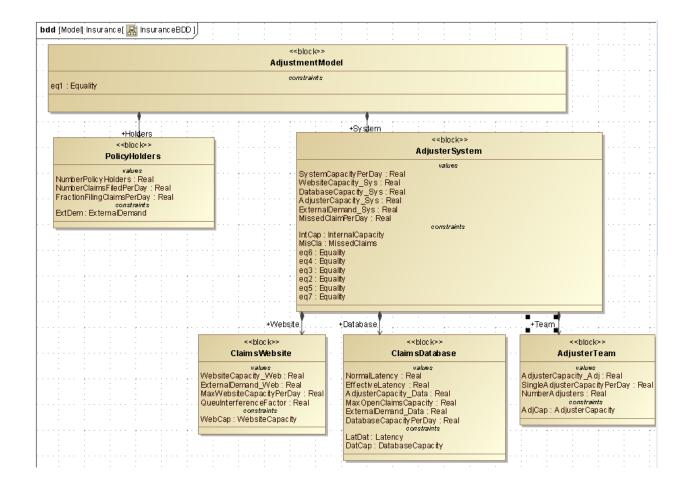
Name	Symbol	Туре	Causality	Values
o root		LittleEyeSystem		
🗄 🖳 💽 Little Aircraft		LittleEyeAircraft		
DutyCycle_CameraRefit		REAL	given	0.09
DutyCycle_Maintenance		REAL	given	0.02
DutyCycle_Plane		REAL	ancillary	0.686686
DutyCycle_Turnaround		REAL	given	0.23
		REAL	ancillary	2.403401
		REAL	ancillary	3
		REAL	ancillary	4
NumberDayCameras		REAL	given	3
NumberNightCameras		REAL	given	7
		REAL	given	4
🗄 🖳 💽 LittleCrew		LittleEyeCrew		
		REAL	given	0.42
NumberAvailableCrews		REAL	ancillary	2.1
		REAL	given	5
🚊 💽 LittleFuel		LittleEyeFuel		
DailyFuelLoadPerPlane		REAL	given	50
		REAL	given	250
		REAL	ancillary	5
MilesScannedPerHour		REAL	given	40
		REAL	target	2.1
		REAL	target	5
		REAL	target	2.403401
		REAL	ancillary	2.1
		REAL	target	2,016

Instance 1

🖆 LittleEyeSystem				
Name	Symbol	Туре	Causality	Values
🕑 root		LittleEyeSystem		
🖕 💽 LittleAircraft		LittleEyeAircraft		
DutyCycle_CameraRefit		REAL	given	0.09
DutyCycle_Maintenance		REAL	given	0.02
DutyCycle_Plane		REAL	ancillary	0.686686
DutyCycle_Turnaround		REAL	given	0.23
NumberAvailablePlanes		REAL	ancillary	2.403401
NumberAvailablePlanesByDay		REAL	ancillary	3
		REAL	ancillary	4
NumberDayCameras		REAL	given	3
NumberNightCameras		REAL	given	7
		REAL	given	4
🗆 🕘 LittleCrew		LittleEyeCrew		
CrewTimeOn		REAL	given	0.42
		REAL	ancillary	2.52
NumberCrews		REAL	given	6
🗆 🕐 💽 LittleFuel		LittleEyeF <mark>u</mark> el		
DailyFuelLoadPerPlane		REAL	given	50
		REAL	given	250
		REAL	ancillary	5
MilesScannedPerHour		REAL	given	40
NumberAvailableCrews		REAL	target	2.52
NumberAvailableFuelLoads		REAL	target	5
NumberAvailablePlanes		REAL	target	2.403401
NumberAvailableSystems		REAL	ancillary	2.403401
NumberMilesScannedPer24Hours		REAL	target	2,307.26496
Instance 2				


Instance 2

Insurance


An insurance company wants to set up a web-based claim filing system, combining a website, a team of adjusters, and an open claims database.

Question: How many claims per day are not accepted because of system limitations?

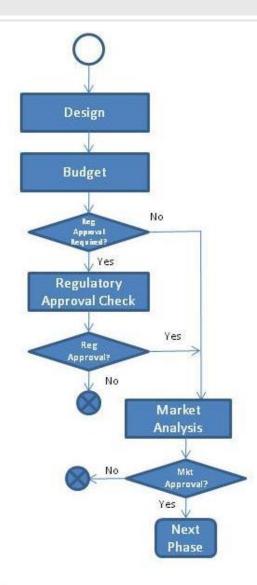
Insurance

È magieshaw.

Insurance

 Instance 01 – Given a team of seven adjusters and a customer demand to file 100 claims per day, how many claims cannot be handled?

Result: 30 claims per day are "missed", limited by adjuster capacity of ten claims per day each.


- Instance02 If we increase the number of adjusters to ten, can we handle all the claims?
- Result: No, website capacity becomes the bottleneck. We still miss an average of 13.5 claims per day.

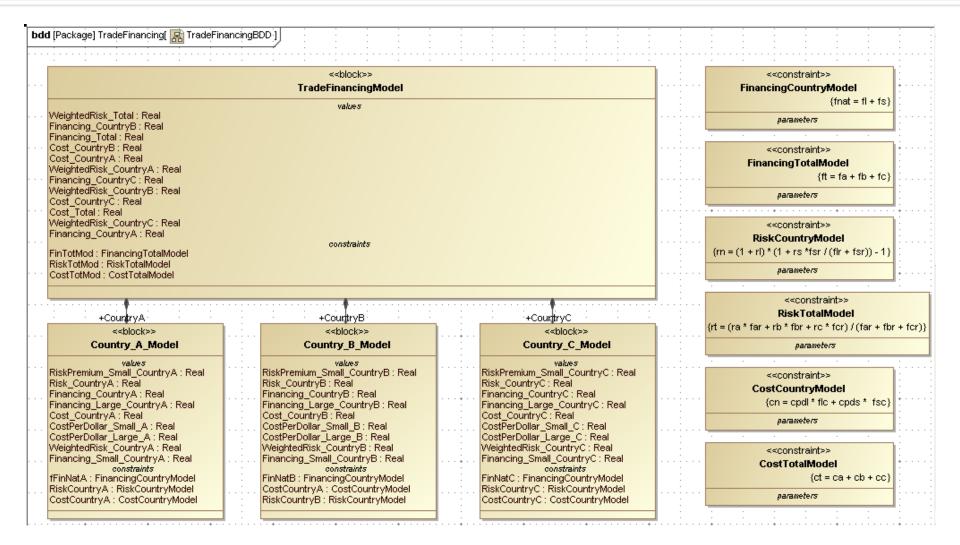
magies

Instance02 – ParaMagic Browser

Name	Symbol	Туре	Causality	Values
o root		AdjustmentModel		
Holders		PolicyHolders		
FractionFilingClaimsPerDay		REAL	given	0.0001
NumberClaimsFiledPerDay		REAL	ancillary	100
NumberPolicyHolders		REAL	given	1,000,000
System		AdjusterSystem	3	-,,
AdjusterCapacity_Sys		REAL	target	100
E-		ClaimsDatabase		
AdjusterCapacity Data		REAL	ancillary	100
		REAL	ancillary	166.666666666666
		REAL	ancillary	12
ExternalDemand Data		REAL	ancillary	100
MaxOpenClaimsCapacity		REAL	given	2,000
		REAL	given	10
DatabaseCapacity_Sys		REAL	target	166.66666666666
ExternalDemand Sys		REAL	ancillary	100
MissedClaimPerDay		REAL	target	13.533528323661
SystemCapacityPerDay		REAL	ancillary	86.466471676339
		AdjusterTeam	,	
AdjusterCapacity_Adj		REAL	ancillary	100
NumberAdjusters		REAL	given	10
SingleAdjusterCapacityPerDay		REAL	given	10
En Website		ClaimsWebsite	g	
ExternalDemand Web		REAL	ancillary	100
MaxWebsiteCapacityPerDay		REAL	aiven	200
QueuInterferenceFactor		REAL	given	1
WebsiteCapacity Web		REAL	ancillary	- 86.466471676339
WebsiteCapacity Sys		REAL	target	86.466471676339
		r sant da	an goa	

Project Planning

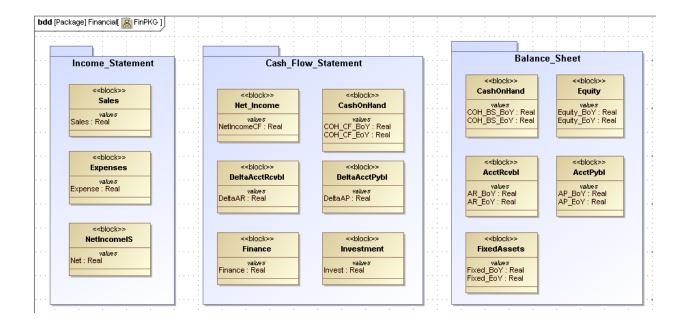
magies


- Objective: estimate the time and resources required to complete the initial phase of a project?
- Parametrics diagrams use If...Then statements to reflect decision nodes.
- Budget and Market Analysis activities can link to cost and sales models, so project profitability can be one of the model outputs.

Trade Financing

- A trade financing company arranges payment for international buying and selling.
 - They have to monitor the amount of financing extended, the overall risk, and the associated costs.
 - They work in multiple countries with different risk and cost structures.
 - They have risk specialists and country specialists that must pool their expertise to create a realistic model.
- Instance01
 - What is the total financing extended, the weighted risk and the total cost for the current status?
- Instance02
 - If we need to lower weighted risk to 15%, what is the maximum financing for small accounts in high risk Country C?

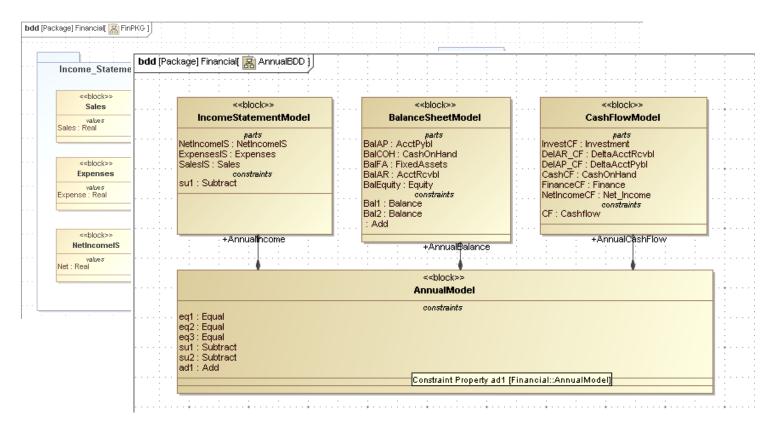
Trade Financing



- A financial analyst wants to project three years pro forma financial statements, especially cash flow, for a new business.
- Instance01 Given projected sales, expenses and outside financing, how much cash will the company have at the end of each year?
- Instance02 Given a requirement to have \$50 million cash on hand at the end of each year, how much outside financing will be required?

Financial Projections

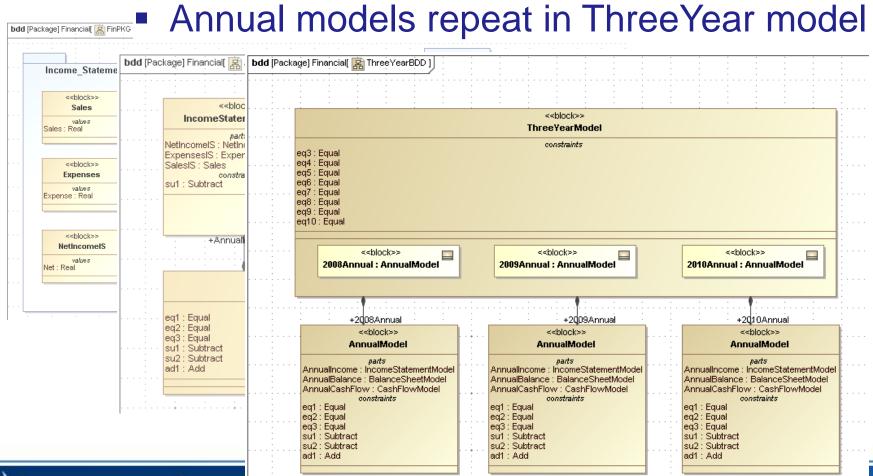
Accounts are part of financial statements



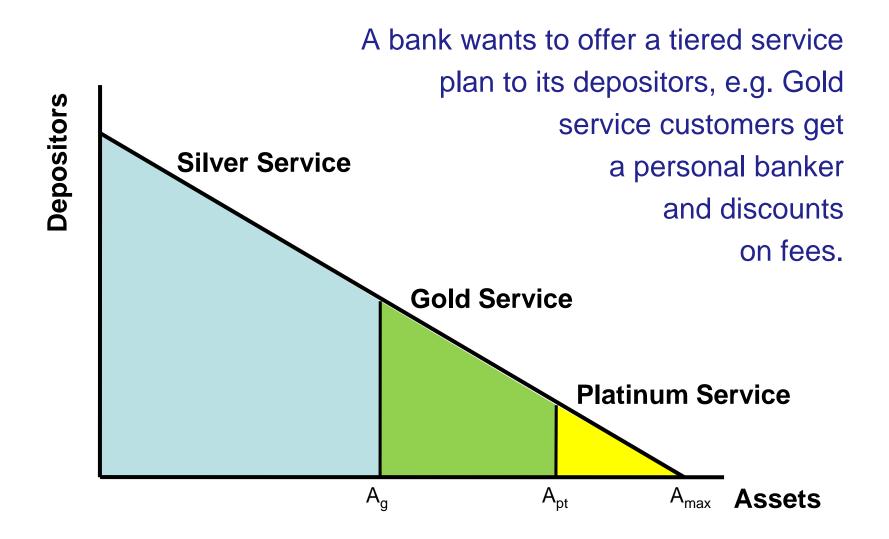
Financial Projections

Accounts are part of financial statements

Financial statements are part of annual model

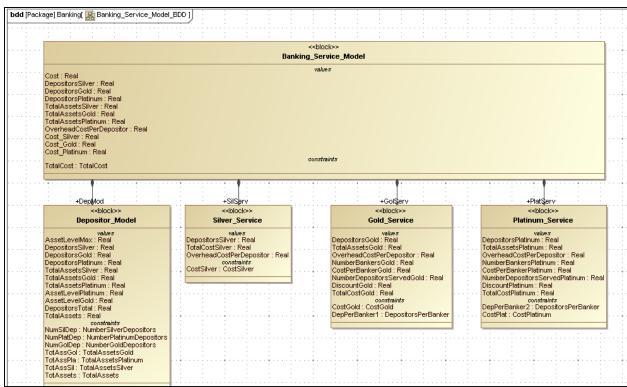


Financial Projections


Accounts are part of financial statements

Financial statements are part of annual model

Ø megiesrow

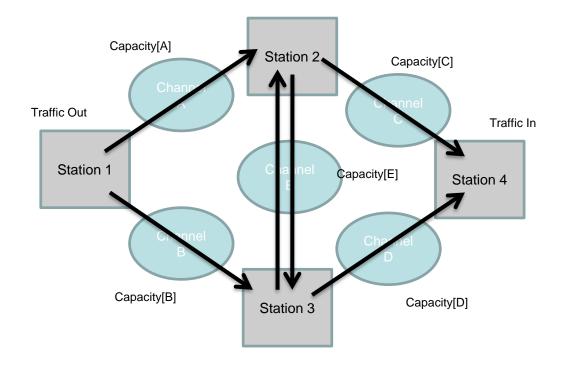

Retail Banking

Ì magiedraw"

Retail Banking

 Objective: model the depositor population and the cost structure of the different service levels
Instance 01.

Instance 01: Given the depositor population and service levels at \$500k and \$750k assets, what is the total cost of this new service?


How many assets in each tier?

CommNetwork

meeiq

A communications network has four stations (nodes) and five connecting channels. Nodes split message traffic between channels depending on channel capacity. Transmission through a channel degrades as traffic increases.

We have a node model and a channel model. We use each model multiple times and wire them together into a network using parametric diagrams.

Instance01 – Given a level of message traffic through Station 1 of 10 (thousand messages per second), how much is received by Station 4?

Caution

This presentation contains simplified models for purposes of demonstration. These models are not intended to accurately simulate the behavior of real defense, financial or business systems.

Any feedback on the models would be much appreciated.

It should be sent to sales@nomagic.com

