

TRAINING COURSE CATALOG BIOVIA MATERIALS STUDIO

Copyright Notice

©2023 Dassault Systèmes. All rights reserved. 3DEXPERIENCE, the Compass icon and the 3DS logo, CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3DVIA, 3DSWYM, BIOVIA, NETVIBES, IFWE and 3DEXCITE, are commercial trademarks or registered trademarks of Dassault Systèmes, a French "société européenne" (Versailles Commercial Register # B 322 306 440), or its subsidiaries in the U.S. and/or other countries. All other trademarks are owned by their respective owners. Use of any Dassault Systèmes or its subsidiaries trademarks is subject to their express written approval.

Acknowledgments and References

Dassault Systèmes may grant permission to republish or reprint its copyrighted materials. Requests should be submitted to Dassault Systèmes Customer Support, either by visiting https://www.3ds.com/support/ and clicking **Call us** or **Submit a request**, or by writing to:

Dassault Systèmes Customer Support 10, Rue Marcel Dassault 78140 Vélizy-Villacoublay FRANCE

Disclaimer

The content of this document is provided for informational purposes only. Dassault Systèmes makes no express or implied claim, warranty, or representation as to the accuracy, usefulness, timeliness, or completeness of the content of this document.

Contents

Summary1
Instructor-Led Courses
Introduction to Materials Studio2
Adsorption Locator2
Amorphous Cell
Blends3
CASTEP Introduction3
CASTEP Advanced4
Conformers4
DFTB+5
DMOL ³ Introduction5
DMOL ³ Advanced6
ForcitePlus6
GULP7
Materials Studio Collection in Pipeline Pilot7
Mesocite (DPD)7
MesoDyn
Morphology
ONETEP
Polymorph9
QMERA9
QSAR
Reflex, Reflex-Plus, X-cell and Reflex QPA10
Scripting in Materials Studio11
Sorpion11
Synthia12
VAMP

SUMMARY

We are pleased to offer a variety of courses to help you reach productivity quickly and increase the value of your investment in BIOVIA software. A range of training options and delivery methods is available so you can choose a format that best meets your needs. We use structured training materials developed by certified instructional designers and include extensive examples and exercises to maximize practical skills that you can put to use immediately.

Delivery Methods:

• Instructor-Led Training: Facilitated by a BIOVIA certified instructor, this training takes place onsite at your location or through a virtual classroom. These courses offer hands-on exercises to enhance the learning experience.

Instructor-Led Courses

Introduction to Materials Studio

This workshop provides an introduction to the tools and functionality available in Materials Visualizer, the core modules in the Materials Studio suite of software.

Topics	Details
Materials Studio	Duration: 1 Day
 Interface and sketching 	Prerequisites: None
– Builders: polymer, crystal, nano, meso – Tools	Location: Onsite or Virtual Classroom
Materials Modeling	
 Multiscale, quantum, MM, meso, Crystal, QSAR 	
 Scripting in Materials Studio 	
 Using the client-server architecture 	
Problem solving approached	

Adsorption Locator

BIOVIA Materials Studio Adsorption Locator helps students find the most stable adsorption sites for a broad range of materials, including zeolites, carbon nanotubes, silica gel, and activated carbon – to name just a few – by carrying out Monte Carlo searches of the configurational space of the substrate-adsorbate system.

Topics	Details
 Theory in Adsorption Locator 	Duration: 2 Hours
 Computational Tasks in Adsorption Locator 	Prerequisites: Introduction to Materials Studio
 Results from Adsorption Locator 	Location: Onsite or Virtual Classroom
Scripting	
 Comparison with Sorption 	

Amorphous Cell

BIOVIA Materials Studio Amorphous Cell is a comprehensive model building tool for creating a wide range of amorphous materials. The behavior of amorphous materials is critical to products such as plastics, glasses, foods, and chemicals.

Topics	Details
Introduction	Duration: ½ Day
The Construction Task	Prerequisites: Introduction to Materials Studio
How It Works	Location: Onsite or Virtual Classroom
 The Packing and Confined Layer Tasks 	
 Scripting with Amorphous Cell 	
 Tips and Case Studies 	

Blends

BIOVIA Materials Studio Blends is used to predict phase diagrams and interaction parameters for liquidliquid, polymer-polymer, and polymer-additive mixtures in order to study the structural factors affecting the behavior of blends and formulations.

Topics	Details
• Theory in Blends	Duration: 2 Hours
 Tasks and Analysis in Blends 	Prerequisites: Introduction to Materials Studio
Phase Diagrams	Location: Onsite or Virtual Classroom
 Applications and Limitations 	

CASTEP Introduction

BIOVIA Materials Studio CASTEP is an ab initio quantum mechanical program employing Density Functional Theory (DFT) to simulate the properties of solids, interfaces, and surfaces for a wide range of materials classes such as ceramics, semiconductors, and metals. First principle calculations allow researchers to investigate the nature and origin of the electronic, optical, and structural properties of a system without the need for any experimental input.

Topics	Details
• Introduction to Solid-State Theory and Density	Duration: ½ Day
Functional Theory (DFT)	Prerequisites: Introduction to Materials Studio
 Technical aspects of DFT calculations 	Location: Onsite or Virtual Classroom
 Computational tasks in CASTEP 	
 Chemical reactions with CASTEP: Transition state search 	
 Properties calculations in CASTEP 	

CASTEP Advanced

The CASTEP advanced course offers detailed introduction to accurate prediction of electronic properties, NMR, STM, phonon spectra, core-level spectra, and optical properties.

Topics	Details
Electronic Properties	Duration: ½ Day
 Band structure 	Prerequisites: Introduction to Materials Studio,
 Density of states 	CASTEP Introduction
 Electron density difference 	Location: Onsite or Virtual Classroom
– Wave Functions	
– Fermi surfaces	
Experimental Properties	
– NMR	
– STM	
 Phonons, IR and Raman spectroscopy 	
– Optical Spectroscopy	
 Core-level Spectroscopy 	
– Work Function	

Conformers

BIOVIA Materials Studio Conformers provides access to a comprehensive collection of conformational searching and analysis techniques to characterize molecular conformation and flexibility, to gain insight into geometric and energetic properties, and to probe geometry-property relationships, which have application in many fields including crystallization, catalysis, and polymer studies.

Topics	Details
Conformers Search Methods	Duration: 2 Hours
 Systematic Grid Scan 	Prerequisites: Introduction to Materials Studio
 Random Sampling Search 	Location: Onsite or Virtual Classroom
 Boltzmann Jump Search 	
 Calculation Setting Up and Output 	
 Preparing the Structure 	
 Conformers Calculation – Filter 	
– Output	

DFTB+

BIOVIA Materials Studio DFTB+ is an improved implementation of the Density Functional-based Tight Binding (DFTB) quantum simulation method for the study of electronic properties of materials. DFTB+ offers unique capabilities to study and understand systems containing hundreds of atoms. Problems that took more time or compute power than most researchers have available, such as defects in semiconductors, and interactions between organic and inorganic surfaces, are now practical to study using DFTB+.

Topics	Details
 Introduction to DFTB+ 	Duration: 1 Day
 Derivation of the DFTB+ Method 	Prerequisites: Introduction to Materials Studio
 Computational Tasks in DFTB+ 	Location: Onsite or Virtual Classroom
 Properties Calculation 	
 Creating Slater-Koster Parameters with the Parameterization Tool 	
Electron Transport Calculations	
Case Studies	

DMOL³ Introduction

BIOVIA Materials Studio DMoL³ combines computational speed with the accuracy of quantum mechanical methods to predict materials properties reliably and quickly. It can predict processes in gas phase, solution, and solid environments. It is broadly applicable to research problems in chemistry, pharmaceuticals, materials science, and chemical engineering, as well as solid state physics.

Topics	Details
• Introduction To Solid State Theory and Density	Duration: ½ Day
Functional Theory (DFT)	Prerequisites: Introduction to Materials Studio
 Technical Aspects Of DFT Calculations 	Location: Onsite or Virtual Classroom
 Computational Tasks In Dmol³ 	
 Properties Calculations In Dmol³ 	

DMOL³ Advanced

The DMol³ advanced course offers detailed introduction to accurate prediction of electronic properties, chemical reactions, IR and Raman spectra, optical properties, and electron transport properties.

Topics	Details
 Properties calculations in DMol3 	Duration: ½ Day
 Band structure 	Prerequisites: Introduction to Materials Studio,
 Density of states (DOS) 	DMol ³ Introduction
 Electron densities 	Location: Onsite or Virtual Classroom
– Electrostatics	
 Molecular orbitals 	
 Atomic populations 	
Experimental Properties	
 Chemical reactions 	
 Vibrations and vibration spectroscopy 	
 Optical excitations and optical spectroscopy 	
 Electron transport 	

ForcitePlus

BIOVIA Materials Studio ForcitePlus is an advanced classical molecular mechanics tool that allows fast energy calculations and reliable geometry optimization of molecules and periodic systems. ForcitePlus provides the user with great flexibility, offering a range of forcefields and charging methods.

Topics	Details
Introduction to Forcefield	Duration: 1 Day
 Forcefield types 	Prerequisites: Introduction to Materials Studio
 Nonbond interactions 	Location: Onsite or Virtual Classroom
 Forcefield typing and change assignment 	
 Computational tasks in Forcite 	
 Forcefield analysis 	
Forcefield editing	
Scripting in Forcite	

GULP

The General Utility Lattice Program, or BIOVIA Materials Studio GULP, is a classical simulations code for performing a wide range of calculations on 3D periodic solids, 2D surfaces, gas phase clusters, and isolated defects in a bulk material. In particular, GULP has a large number of materials-specific forcefields, such as the shell model for simulating ionic materials.

Topics	Details
• Theory in GULP	Duration: ½ Day
 Computational Tasks in GULP 	Prerequisites: Introduction to Materials Studio
 Forcefield Fitting 	Location: Onsite or Virtual Classroom
Surface Properties	
 Properties Calculation 	
Applications	

Materials Studio Collection in Pipeline Pilot

The BIOVIA Pipeline Pilot Materials Studio Collection is a new software solution that allows access and utilization of Materials Studio's premier modeling capabilities within the Pipeline Pilot[™] scientific authoring application. Now you can integrate predictive analytics for materials properties seamlessly into your scientific workflows. This allows for a more streamlined approach to materials discovery and improves productivity so that you can spend more time on innovation and less on costly laboratory experimentation.

Topics	Details
• Readers, Writers, Viewer, and Reporting	Duration: 1 Day
Components	Prerequisites: Introduction to Materials Studio
Manipulation	Location: Onsite or Virtual Classroom
 Property Calculators 	
Quantum Mechanics	
Classical Simulation	
Crystallization	
 Using the Materials Toolkit 	
 The Pipeline Pilot Connector for Materials 	
Studio	
Parallel Processing	

Mesocite (DPD)

BIOVIA Materials Studio Mesocite is a state-of-the-art coarse-grained simulation module for the study of materials at length scales ranging from nanometers to micrometers and time scale from nanoseconds to microseconds. Such materials pervade industrial research in areas such as composites, coatings,

cosmetics, and controlled release. Mesocite can provide structural and dynamic properties of fluids in equilibrium, under shear or in confined geometries.

Topics	Details
 Introduction to Mesocite 	Duration: ½ Day
 Building Meso-Structures 	Prerequisites: Introduction to Materials Studio
 Introduction to Dissipative Particle Dynamics 	Location: Onsite or Virtual Classroom
 Mesoscale Parameter Generation (DPD) 	
Mesocite DPD Setup	
Mesocite Task Setup	
 Mesocite Analysis & Scripting 	

MesoDyn

MesoDyn is a dynamic simulation method for studying the long length and time behavior of complex fluid systems, including polymer melts and blends. MesoDyn takes a coarse-grained description of a complex fluid and performs time-evolution dynamics of the density and potential fields of the system.

Topics	Details
Introduction to Mesoscale Simulations	Duration: ½ Day
 Density Functional Theory in MesoDyn 	Prerequisites: Introduction to Materials Studio
 Set Up of MesoDyn Calculations 	Location: Onsite or Virtual Classroom
 Analysis of MesoDyn Calculations 	
Applications	

Morphology

BIOVIA Materials Studio Morphology allows you to predict crystal morphology from the atomic structure of a crystal. The application areas include pharmaceuticals, agrochemicals, food sciences, petrochemicals, cements, and commodity and specialty chemicals.

Topics	Details
Theory in Morphology	Duration: 2 Hours
 Predicting Morphologies 	Prerequisites: Introduction to Materials Studio
 Bravais-Friedel Donnay-Harker (BFDH) method 	Location: Onsite or Virtual Classroom
 Growth morphology method 	
 Equilibrium morphology method 	
Crystal Graphs	
 Tasks and Analysis in Morphology 	
 Problems in Surface Chemistry 	

ONETEP

BIOVIA Materials Studio ONETEP is a linear scaling method, meaning the time required for a calculation increases linearly with the number of atoms. This linear scaling approach is a vast improvement over conventional DFT methods, where the time needed for computation increases at a rate of as much as N3 (where N is the total number of atoms). As a result, the program can be used to model systems larger than possible by using conventional DFT.

Topics	Details
 ONETEP Theory Setup of ONETEP Calculations ONETEP Properties and Analysis Case Studies 	Duration: 1 Day Prerequisites: Introduction to Materials Studio Location: Onsite or Virtual Classroom

Polymorph

BIOVIA Materials Studio Polymorph is used to predict potential polymorphs of a given compound directly from the molecular structure. It explores and ranks polymorphs of fairly rigid, non-ionic or ionic molecules. The approach is based on the generation of possible packing arrangements in all reasonable space groups to search for the low lying minima in lattice energy.

Topics	Details
 Determination of Crystal Structures Theory Behind Polymorph Prediction Setting Up Polymorph Calculations Analyzing the Results Scripting with the Polymorph Module Applications 	Duration: ½ Day Prerequisites: Introduction to Materials Studio Location: Onsite or Virtual Classroom

QMERA

The BIOVIA Materials Studio QMERA module in BIOVIA Materials Studio performs simulations by combining DFT methods from DMol³ and force field methods from GULP. QMERA can be used to model either molecular or periodic systems and can handle hundreds or even thousands of atoms. It is particularly well-suited for modeling problems in chemical reactivity, where an active site is chemically localized. Researchers can use the method to study problems in nanotubes, nanoclusters, and amorphous material.

Topics	Details
 Overview of QM/MM The QM/MM Embedding Schemes Handling of the QM/MM Boundary General Consideration for Simulations QMERA Tasks & Analysis QMERA Servers: DMol³ and GULP Applications 	Duration: 1 Day Prerequisites: Introduction to Materials Studio Location: Onsite or Virtual Classroom

QSAR

The QSAR module is a comprehensive set of tools for creating statistical regression models between experimental information ('activity') and molecular level characteristics ('descriptors'). The descriptors that can be calculated include a wide range of properties. These can be supplemented by characteristics calculable with other modules: Forcite, VAMP, fast descriptors.

Topics	Details
Introduction to QSAR	Duration: 1 Day
Initial Data Analysis	Prerequisites: Introduction to Materials Studio
Descriptors	Location: Onsite or Virtual Classroom
Model Building	
 Genetic Function Approximation 	
 Model Validation and Prediction 	

Reflex, Reflex-Plus, X-cell and Reflex QPA

BIOVIA Materials Studio Reflex simulates X-ray, neutron, and electron powder diffraction patterns based on models of crystalline materials. Reflex aids the determination of crystal structure, assists the interpretation of diffraction data, and is applied to validate the results of experiment and computation.

Topics	Details
 Introduction to Reflex Tools 	Duration: 1 Day
 Pattern Processing Tool 	Prerequisites: Introduction to Materials Studio
 Powder Indexing Tool 	Location: Onsite or Virtual Classroom
 Powder Refinement Tool 	
 Powder Solve Tool - Separately licensed modules 	
 Powder QPA (Quantitative Phase Analysis) Tool Separately licensed modules 	
Powder Crystallinity Tool	

Scripting in Materials Studio

This workshop provides an introduction into the Perl-based scripting language that allows access to some of the Visualizer Tools, the Properties Explorer, a range of 3D Atomistic Documents, Study Tables and the Forcite Module (Calculations and Analysis). Students write scripts to draw molecules from scratch; to get information from collection documents, information from trajectory documents, information from study tables; to move molecules (in a zeolite and over a surface), to set up Forcite calculations, and to retrieve selected results along with additional examples.

Topics	Details
Introduction to Scripting in Materials Studio	Duration: 1 Day
 Scripting for Documents 	Prerequisites: Introduction to Materials Studio
Scripting for Tools	Location: Onsite or Virtual Classroom
 Scripting for Modules 	

Sorpion

Molecular adsorption into microporous structures such as zeolites, aluminophosphates, or polymers is crucial in numerous applications including air separation, hydrocarbon cracking, gas sensors, and ion exchange. BIOVIA Materials Studio Sorption provides a means of predicting fundamental properties, such as sorption isotherms (or loading curves) and Henry's constants, needed for investigating separations phenomena. In addition, modeling can be used to rationalize sorption properties in terms of molecular level processes.

Topics	Details
• Tasks	Duration: 2 Hours
- Fixed Pressure, Fixed Loading, Henry	Prerequisites: Introduction to Materials Studio
Constant, Adsorption Isotherm, Sorbate Location	Location: Onsite or Virtual Classroom
 Configuration Sampling 	
 Monte Carlo Methods 	
 Other DialogTabs: 	
 Energy, Constraints, Properties 	
Simulation Tips	
Scripting	
 Adsorption Locator vs. Sorption 	

Synthia

BIOVIA Materials Studio Synthia calculates polymer properties using advanced Quantitative Structure-Property Relationships (QSPRs). It allows researchers to rapidly screen candidate polymers for a wide range of properties, and allows the property prediction of copolymer blends.

Topics	Details
Introduction	Duration: 2 Hours
 Quantitative Structure Property Relationship (OSPR) 	Prerequisites: Introduction to Materials Studio Location: Onsite or Virtual Classroom
 Synthia - Connectivity Indices Methods 	
 Random Copolymers 	
Simulation Tips	

VAMP

BIOVIA Materials Studio VAMP is a semi-empirical molecular orbital package for molecular organic and inorganic systems. VAMP is an ideal intermediate module between forcefield and first principles methods and is capable of rapidly calculating many physical and chemical molecular properties.

Topics	Details
Theory in VAMP	Duration: 2 Hours
 NDDO: MNDO/C, MNDO, AM1, PM3, AM1*, 	Prerequisites: Introduction to Materials Studio
MNDO/d, and PM6	Location: Onsite or Virtual Classroom
– ZINDO: CNDO/1, CNDO/2, INDO/1, and	
INDO/2	
Calculation Setting Up	
 Properties Calculations and Analysis 	
Case Study	
 Carbon Nanodots (CNDs): Supramolecular Electron Donor–Acceptor Hybrids Featuring Perylenediimides 	