

TRAINING COURSE CATALOG

BIOVIA DISCOVERY STUDIO

Copyright Notice

©2023 Dassault Systèmes. All rights reserved. 3DEXPERIENCE, the Compass icon and the 3DS logo, CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3DVIA, 3DSWYM, BIOVIA, NETVIBES, IFWE and 3DEXCITE, are commercial trademarks or registered trademarks of Dassault Systèmes, a French "société européenne" (Versailles Commercial Register # B 322 306 440), or its subsidiaries in the U.S. and/or other countries. All other trademarks are owned by their respective owners. Use of any Dassault Systèmes or its subsidiaries trademarks is subject to their express written approval.

Acknowledgments and References

Dassault Systèmes may grant permission to republish or reprint its copyrighted materials. Requests should be submitted to Dassault Systèmes Customer Support, either by visiting https://www.3ds.com/support/ and clicking **Call us** or **Submit a request**, or by writing to:

Dassault Systèmes Customer Support 10, Rue Marcel Dassault 78140 Vélizy-Villacoublay FRANCE

Disclaimer

The content of this document is provided for informational purposes only. Dassault Systèmes makes no express or implied claim, warranty, or representation as to the accuracy, usefulness, timeliness, or completeness of the content of this document.

Contents

Summary	1
Introductory Courses	2
Introduction to Discovery Studio	2
Protein-Based Modeling Courses	3
Protein-Protein Docking	3
Protein Homology Modeling	3
Antibody Modeling	4
Simulations	4
QM/MM	5
Ligand-Based Design Courses	5
Pharmacophore Modeling in Discovery Studio	5
3D QSAR Pharmacophore Generation	6
Common Feature Pharmacophore Generation	6
Receptor-Based Pharmacophores	6
Fragment-Based Drug Design in Discovery Studio	7
Library Design and Analysis	7
Structure-Based Design Docking	8
QSAR	8
Advanced Courses	9
Scripting	9
Discovery Studio Pipeline Pilot Integration	9

SUMMARY

We are pleased to offer a variety of courses to help you reach productivity quickly and increase the value of your investment in BIOVIA software. A range of training options and delivery methods is available so you can choose a format that best meets your needs. We use structured training materials developed by certified instructional designers and include extensive examples and exercises to maximize practical skills that you can put to use immediately.

Delivery Methods:

• **Instructor-Led Training**: Facilitated by a BIOVIA certified instructor, this training takes place onsite at your location or through a virtual classroom. These courses offer hands-on exercises to enhance the learning experience.

Introductory Courses

Introduction to Discovery Studio

This course serves as a comprehensive introduction to the BIOVIA Discovery Studio software suite. The graphical interface and the various modules and modeling tools available within the software are described. Students become familiar with the software's configuration, running protocols, toolbars, command menus, and preferences. Different molecular displays and visualization modes including the data view, hierarchy view, sequence view, and data management storage and retrieval are discussed. The creation of story boards (movies), Active X, exporting graphics files, and 3D Web GL objects are demonstrated. Hands on exercises are included.

Details
Duration: 1 Day Prerequisites: None
Location: Onsite or Virtual Classroom

Protein-Based Modeling Courses

Protein-Protein Docking

This course covers the use of the ZDOCK protein-protein docking software and RDOCK energy rescoring programs available within the Discovery Studio suite. The ZDOCK methodology, as well as algorithms for clustering results are described. Methods for the use of guiding protein-protein docking available within Discovery Studio by filtering residues known experimentally to be involved at the protein-protein interface, as well as excluding those known not to be through blocking, are demonstrated.

Topics		Details
•	The significance, importance, and challenges of	Duration: 1 Day
	performing computational protein-protein docking	Prerequisites: Introduction to
•	ZDOCK and analysis	Discovery Studio
•	Refining the poses of RDOCK	Location: Onsite or Virtual Classroom

Protein Homology Modeling

This course introduces students to the theory of protein homology modeling and the tools available within Discovery Studio. Methods for selecting a protein template structure, aligning the template protein sequence to the target sequence, building the homology model, and assessing the quality of the protein structural model within the Discovery Studio framework are described. Methods available for refining the protein model within Discovery Studio are presented.

Topics		Details
•	Assessing the limitations and assumptions in protein homology modeling	Duration: 1 Day Prerequisites: Introduction to
•	Selecting an appropriate protein structural template to create a model	Discovery Studio
•	Aligning your protein target sequence to a protein template sequence	Location: Onsite or Virtual Classroom
•	Building a protein homology model using Discovery Studio 2016 tools	
•	Analyzing the model in terms of quality, energy and structural features	
•	Refining the homology model	
•	Using the homology model for further studies, including mutagenesis studies, protein-protein docking, or ligand docking for structure-based drug design	

Antibody Modeling

This course instructs students in the application of the new Antibody Modeling Cascade. This method provides for automatic generation of a 3D model structure for antibody Fab or Fv regions starting from a set of five antibody structures. This course also provides instruction in the manual modeling and alignment tools for antibody structure, identifying framework templates and antibody loops, and the use of the Antibody Modeling Cascade. The use of Proteins 3D to verify the modeled antibody structures are also presented. Exercises for students to follow in modeling antibody examples are provided.

Topics	Details
 Introduction to antibodies 	Duration: 1 Day
 Fab antibody modeling 	Prerequisites: Introduction to
 Antibody Modeling Cascade 	Discovery Studio
 Identify Framework Templates 	Location: Onsite or Virtual Classroom
 Model Antibody Framework 	
 Model Antibody Loops 	
Graft Fab Structure	
 Model Bispecific Antibodies 	
 Full length antibody modeling 	
 Minimization 	

Simulations

This course focuses on working through the CHARMm, DelPhi, and CDOCKER Discovery Studio interfaces.

Topics	Details
Energy calculations	Duration: 1 Day
 Manual and automatic atom potential typing 	Prerequisites: Introduction to
 Energy minimization 	Discovery Studio
 Molecular dynamics 	Location: Onsite or Virtual Classroom
 Constraints 	
 Solvation models 	
 Trajectory analysis 	
 Force field-based docking 	
Electrostatic calculations	

QM/MM

The QM/MM course provides an overview of quantum mechanics, molecular mechanics and their combination in QM/MM calculations within Discovery Studio.

Topics		Details
•	When to use QM/MM methods	Duration: 1 Day
•	Overview of density functional theory and its implementation in DMol ³	Prerequisites: Introduction to Discovery Studio
•	Overview of molecular mechanics calculations with CHARMm	Location: Onsite or Virtual Classroom
•	Considerations for the preparation and setup of QM/MM systems	
•	Performing QM/MM calculations in Discovery Studio	

Ligand-Based Design Courses

Pharmacophore Modeling in Discovery Studio

This course provides an introduction to pharmacophore modeling in Discovery Studio. It provides an overview of the diverse applications of these tools in drug discovery and design, and is the foundation for subsequent pharmacophore courses.

Topics	Details
Pharmacophore definition and features	Duration: 1 Day
 Pharmacophore application in drug discovery 	Prerequisites: Introduction to
 Ligand-pharmacophore scoring and mapping 	Discovery Studio
Ligand perception	Location: Onsite or Virtual Classroom
 Conformation generation 	
 Multi-conformer databases 	

3D QSAR Pharmacophore Generation

This course covers the generation of quantitative pharmacophores in Discovery Studio, detailing the automated algorithms (HypoGen/HypoGenRefine) and the applications of these models in drug discovery and design.

Topics		Details
•	Creating 3D QSAR pharmacophores from activity data	Duration: ½ Day
	training sets	Prerequisites: Introduction to
•	Refining pharmacophores with excluded volumes using data from inactive ligands	Discovery Studio, Pharmacophore Modeling in Discovery Studio
•	Analysis and application of quantitative pharmacophore	Location: Onsite or Virtual Classroom

Common Feature Pharmacophore Generation

This course covers the generation of qualitative pharmacophores in Discovery Studio, detailing the automated algorithms (HipHop/HipHopRefine) and the applications of these models in drug discovery and design.

Topics		Details
•	Creating common feature pharmacophores from active ligand training sets	Duration: ½ Day Prerequisites: Introduction to
•	Generating pharmacophore-derived alignments of ligands	Discovery Studio, Pharmacophore Modeling in Discovery Studio
•	Using data from inactive ligands to add excluded volumes to pharmacophores to reduce false positives	Location: Onsite or Virtual Classroom
•	Analysis and application of qualitative pharmacophores	

Receptor-Based Pharmacophores

This course provides an overview of the approaches to deriving pharmacophores from receptor structures and presents their applications in diverse molecular modeling workflows. Students are guided through the steps required to create receptor-based pharmacophore models in Discovery Studio.

Topics	Details
 Automated protein-ligand pharmacophore generation Multiple ligands alignment-based pharmacophores Fragment-based pharmacophores for lead optimization Structure-based pharmacophores from interactions maps Validation and analysis of receptor-based pharmacophores 	Duration: ½ Day Prerequisites: Introduction to Discovery Studio, Pharmacophore Modeling in Discovery Studio Location: Onsite or Virtual Classroom

Fragment-Based Drug Design in Discovery Studio

This course covers approaches for successful fragment-based lead optimization. Topics include fragment generation, analysis, and identification of fragment scaffolds from ligand libraries; as well as growing, replacing, and placing fragments within a protein target.

Topics		Details
•	Introduction to Fragment-Based Drug Design	Duration: 1 Day
•	Working with fragments and proteins in Discovery Studio	Prerequisites: Introduction to Discovery Studio
•	Preparation (Retrosynthetic Combinatorial Analysis Procedure (ReCAP) approach)	Location: Onsite or Virtual Classroom
•	Analysis	
•	Fragment-based drug design modes	
•	REPLACE, GROW, PLACE	

Library Design and Analysis

Ideally, compound libraries used for virtual high-throughput screening maximize diversity while optimizing key molecular properties. This course discusses the tools within Discovery Studio used to design, analyze, select subsets, and compare combinatorial libraries.

Topics		Details
	Library enumeration (reaction-based and R-group/Markush)	Duration: 1 Day Prerequisites: Introduction to
• [Diversity selection and clustering, similarity selection	Discovery Studio
	Compound selection optimizing multiple molecular properties simultaneously using Pareto methods	Location: Onsite or Virtual Classroom
	Selection of subset libraries to complement and augment existing libraries	
• (Comparison of libraries	

Structure-Based Design Docking

This course provides an overview of the Discovery Studio tools used for docking and lead optimization of small molecules into protein targets. The topics include methods used to prepare proteins and ligands for docking, methods to perform different docking methods, methods to perform lead optimization, and methods for scoring, analyzing, refining, and filtering docking results.

Topics	Details
Preparation for structure-based design	n – docking Duration: 1 Day
 Docking methods 	Prerequisites: Introduction to
 Lead optimization methods 	Discovery Studio
 Generate analog conformations 	Location: Onsite or Virtual Classroom
 Free energy perturbation NAMD (prote 	otype)
 Scoring results 	
 Analysis, refinement, and filtering tool 	s

QSAR

This course is an introduction to the QSAR tools available in Discovery Studio and provides an overview of the various different descriptors that can be calculated within the application. The available QSAR algorithms are described and the main parameters affecting each algorithm are highlighted. Students also receive a comparison of the various techniques.

Topics	Details
Introduction to QSAR	Duration: 1 Day
 Preparing data for QSAR analysis 	Prerequisites: Introduction to
 Working with descriptors 	Discovery Studio Location: Onsite or Virtual Classroom
 Regression techniques 	
 Modern methods 	
 Example workflow; Applying the generated models 	

Advanced Courses

Scripting

Discovery Studio provides a client interface for working with a variety of data. Occasionally, it may be desirable to access specific Discovery Studio functionality programmatically. Perl scripts enable you to perform certain tasks, by allowing you to manipulate objects in the application's environment, both at the command line and interactively.

Topics De	Details
Introduction to Perl scripting language	Ouration: 1 Day
	Prerequisites: Introduction to
Link several tasks or calculations together in	Discovery Studio
sequence	ocation: Onsite or Virtual Classroom
Explore calculations that are not available from any of	
the application's modules	
Integrate with other software	

Discovery Studio Pipeline Pilot Integration

This course provides an overview of working with the BIOVIA Discovery Studio component collection and provides hands on examples of Discovery Studio protocol customization.

Topics		Details
•	Customize (i.e., promote or de-promote) parameters of existing Discovery Studio protocols/components	Duration: 1 Day Prerequisites: Introduction to
•	Add or remove available components from existing Discovery Studio protocols/components	Discovery Studio Location: Onsite or Virtual Classroom
•	Create a new component and add to an existing Discovery Studio protocol	
•	Increase automation of Discovery Studio protocols (e.g., automate protocol to run over all files in a specific folder)	