Contents

1 Preface and General Information
 1.1 Contributions and Acknowledgements .. 13
 1.2 Features of TURBOMOLE ... 15
 1.3 How to Quote Usage of TURBOMOLE ... 15
 1.4 Modules and Their Functionality .. 26
 1.5 Tools ... 29

2 Installation of TURBOMOLE ... 34
 2.1 Install TURBOMOLE command line version 34
 2.1.1 Settings for each user: .. 34
 2.1.2 Setting system type and $PATH by hand 35
 2.1.3 Testing the installation .. 36
 2.2 Installation problems: How to solve .. 36

3 How to Run TURBOMOLE .. 39
 3.1 A ‘Quick and Dirty’ Tutorial ... 39
 3.1.1 Single Point Calculations: Running TURBOMOLE Modules 41
 3.1.2 Energy and Gradient Calculations .. 41
 3.1.3 Calculation of Molecular Properties 43
 3.1.4 Modules and Data Flow ... 43
 3.2 Parallel Runs ... 43
 3.2.1 Running Parallel Jobs — MPI case .. 46
 3.2.2 Running Parallel Jobs — SMP case 51

4 Preparing your input file with DEFINE ... 55
CONTENTS

4.0.3 Universally Available Display Commands in DEFINE 56
4.0.4 Specifying Atomic Sets . 56
4.0.5 control as Input and Output File 56
4.0.6 Be Prepared . 57

4.1 The Geometry Main Menu . 58
4.1.1 Description of commands . 60
4.1.2 Internal Coordinate Menu . 63
4.1.3 Manipulating the Geometry . 68

4.2 The Atomic Attributes Menu . 68
4.2.1 Description of the commands 71

4.3 Generating MO Start Vectors . 73
4.3.1 The MO Start Vectors Menu . 73
4.3.2 Assignment of Occupation Numbers 76
4.3.3 Orbital Specification Menu . 78
4.3.4 Roothaan Parameters . 79
4.3.5 Start-MOs for broken symmetry treatments ("flip") 79

4.4 The General Options Menu . 82
4.4.1 Important commands . 83
4.4.2 Special adjustments . 89
4.4.3 Relax Options . 91
4.4.4 Definition of External Electrostatic Fields 95
4.4.5 Properties . 96

5 Calculation of Molecular Structure and Ab Initio Molecular Dynamics 105
5.1 Structure Optimizations using the JOBEX Script 105
5.1.1 Options . 105
5.1.2 Output . 106

5.2 Program STATPT . 107
5.2.1 General Information . 107
5.2.2 Hessian matrix . 108
5.2.3 Finding Minima . 109
CONTENTS

5.2.4 Finding transition states .. 109

5.3 Program Relax ... 110
 5.3.1 Purpose ... 110
 5.3.2 Optimization of General Coordinates 111
 5.3.3 Force Constant Update Algorithms 112
 5.3.4 Definition of Internal Coordinates 114
 5.3.5 Structure Optimizations Using Internal Coordinates 114
 5.3.6 Structure Optimization in Cartesian Coordinates 115
 5.3.7 Optimization of Basis Sets (SCF only) 116
 5.3.8 Simultaneous Optimization of Basis Set and Structure 116
 5.3.9 Optimization of Structure and a Global Scaling Factor 117
 5.3.10 Conversion from Internal to Cartesian Coordinates 117
 5.3.11 Conversion of Cartesian Coordinates, Gradients and Force Constants to Internals 117
 5.3.12 The m-Matrix .. 118
 5.3.13 Initialization of Force Constant Matrices 118
 5.3.14 Look at Results .. 119

5.4 Force Field Calculations ... 119
 5.4.1 Purpose ... 119
 5.4.2 How to Perform a UFF Calculation 120
 5.4.3 The UFF implementation ... 120

5.5 Semiempirical Extended Tight-Binding Calculations 122
 5.5.1 Purpose ... 122
 5.5.2 How to Perform a xTB Calculation 123

5.6 Molecular Dynamics Calculations 124

5.7 Global Structure Optimization – The DoDo Program 124
 5.7.1 Genetic Algorithm .. 124
 5.7.2 How to Perform .. 125
 5.7.3 The DoDo Input File .. 127

5.8 Counterpoise-Corrections using the JOBBSSE Script 130
 5.8.1 Options ... 131
 5.8.2 Output ... 132
5.9 Reaction Path Optimization 133
 5.9.1 Background and Program structure 133
 5.9.2 Input Structure .. 133
 5.9.3 How it works .. 134

6 Hartree–Fock and DFT Calculations for Molecular Systems 137
 6.1 Background Theory ... 139
 6.2 Exchange-Correlation Functionals Available 140
 6.2.1 Exchange-Correlation Functionals from LibXC library .. 144
 6.2.2 Exchange-Correlation Functionals from XCFun library 146
 6.3 Restricted Open-Shell Hartree–Fock 151
 6.3.1 Brief Description 151
 6.3.2 One Open Shell 151
 6.3.3 More Than One Open Shell 154
 6.3.4 Miscellaneous ... 156
 6.4 Relativistic effects .. 158
 6.4.1 One- and two-component relativistic methods 158
 6.4.2 How to use .. 160
 6.5 Dispersion Correction for DFT Calculations 163
 6.6 Energy Decomposition Analysis (EDA) 166
 6.6.1 How to perform 166

7 DFT Calculations for Molecular and Periodic Systems 168
 7.1 Functionalities of RIPER 168
 7.2 Theoretical Background 169
 7.2.1 Kohn-Sham DFT for Molecular and Periodic Systems 169
 7.2.2 RI-CFMM Approach 170
 7.2.3 k Point Sampling Scheme 171
 7.2.4 Metals and Semiconductors: Gaussian Smearing 172
 7.2.5 Low-Memory Iterative Density Fitting Method 172
 7.3 How to Perform a Calculation 173
 7.3.1 Basis Sets for Periodic Calculations 173
 7.3.2 Prerequisites ... 174
CONTENTS

7.3.3 Creating the Input File .. 174
7.3.4 Single Point Energy and Gradient 178
7.3.5 Structure Optimization ... 179
7.3.6 Optimization of Cell Parameters 179
7.3.7 Band Structure Plots .. 179
7.3.8 Calculation of Densities and MOs on Grids 180
7.3.9 Density of States .. 183

8 Hartree–Fock and DFT Response Calculations: Stability, Dynamic
Response Properties, and Excited States 184
8.1 Functionalities of Esclf and Egrad 184
8.2 Theoretical Background ... 185
8.3 Implementation .. 188
8.4 How to Perform .. 190
 8.4.1 Preliminaries .. 190
 8.4.2 Polarizabilities and Optical Rotations 190
 8.4.3 Dynamic First Hyperpolarizability 191
 8.4.4 Stability Analysis ... 192
 8.4.5 Vertical Excitation and CD Spectra 193
 8.4.6 Two-photon absorption .. 195
 8.4.7 Excited State Geometry Optimizations 196
 8.4.8 Excited State Force Constant Calculations 197
 8.4.9 Polarizability Derivatives and Raman Spectra 197
 8.4.10 Approximations for Exchange integrals 198
 8.4.11 Nuclear spin-spin coupling constants 198

9 Second-order Møller–Plesset Perturbation Theory 199
9.1 Functionalities of mpgrad, ricc2, and pnoccsd 199
 9.1.1 How to quote .. 200
9.2 Some Theory .. 201
9.3 How to Prepare and Perform MP2 Calculations 203
9.4 General Comments on MP2 Calculations, Practical Hints 206
9.5 RI-MP2-F12 Calculations ... 208
9.6 LT-SOS-RI-MP2 with $O(N^4)$ scaling costs ... 212
9.7 COSMO-MP2 ... 214
9.8 OSV-PNO-MP2 and OSV-PNO-MP2-F12 calculations 215

10 Second-Order Approximate Coupled-Cluster (CC2) Calculations 216
 10.1 CC2 Ground-State Energy Calculations 221
 10.2 Calculation of Excitation Energies 223
 10.3 First-Order Properties and Gradients ... 228
 10.3.1 Ground State Properties, Gradients and Geometries 228
 10.3.2 Excited State Properties, Gradients and Geometries 230
 10.3.3 Visualization of densities and Density analysis 233
 10.3.4 Fast geometry optimizations with RI-SCF based gradients ... 234
 10.4 Transition Moments .. 235
 10.4.1 Ground to excited state transition moments 235
 10.4.2 Transition moments between excited states 236
 10.4.3 Ground to excited state two-photon transition moments ... 237
 10.4.4 Phosphorescence lifetimes using SOC-PT-CC2 238
 10.5 Ground State Second-order Properties with MP2 and CC2 239
 10.6 Parallel RI-MP2 and RI-CC2 Calculations 240
 10.7 Spin-component scaling approaches (SCS/SOS) 240

11 CCSD, CCSD(F12*) and CCSD(T) calculations 243
 11.1 Characteristics of the Implementation and Computational Demands 245

12 PNO-based CCSD and CCSD(T) calculations 253
 12.1 Selection Thresholds used in the pnoccsl Program 255
 12.2 Characteristics of the Implementation 256
 12.2.1 Strong pair approximation 257

13 Random Phase Approximation Calculations: Energy and First-Order Properties 258
 13.1 Ground State Energy Theory ... 258
 13.2 Gradients Theory .. 260
 13.3 Further Recommendations .. 262
13.4 Comments on the Output .. 263

14 Many body perturbation theory in the GW approximation 264
 14.1 Single particle spectra based on the GW approximation 264
 14.1.1 Theoretical background 264
 14.1.2 GW features .. 265
 14.1.3 General recipe for G_0W_0, RI-AC-G_0W_0 and RI-CD-G_0W_0 calculations .. 266
 14.2 Excitation energies from BSE 268
 14.2.1 Theoretical background 268
 14.2.2 BSE features .. 269
 14.2.3 General recipe for a BSE calculation 270

15 Calculation of Vibrational Frequencies and Vibrational Spectra 272
 15.1 Analysis of Normal Modes in Terms of Internal Coordinates 274
 15.2 Calculation of Raman Spectra 275
 15.3 Calculation of VCD Spectra 275
 15.4 Vibrational frequencies with fixed atoms using NumForce 276
 15.5 Interface to hotFCHT ... 277

16 First order electron-vibration coupling 278
 16.1 Theoretical background ... 278
 16.2 $evib$ features .. 279
 16.3 General usage of $evib$.. 279

17 Calculation of NMR Shieldings ... 281
 17.1 Prerequisites .. 282
 17.2 How to Perform a SCF or DFT Calculation 282
 17.3 How to Perform a MP2 calculation 282
 17.4 Chemical Shifts .. 283
 17.5 Other Features ... 283
 17.6 Known Limitations .. 284

18 Embedding and Solvation Effects 285
18.1 Charge and multipole embedding 285
18.2 Treatment of Solvation Effects with Cosmo 287
18.3 Frozen Density Embedding calculations 293
 18.3.1 Background Theory 293
 18.3.2 Frozen Density Embedding calculations using the FDE script 294
 18.3.3 Options ... 298
 18.3.4 FDE with hybrid and orbital-dependent functionals 303
18.4 Periodic Electrostatic Embedded Cluster Method 304
 18.4.1 General Information 304
 18.4.2 Theoretical Background 304
 18.4.3 Calculation Setup 305
18.5 Polarizable embedding calculations 312
 18.5.1 Theory ... 312
 18.5.2 Computational details: SCF calculations 313
 18.5.3 Computational details: PERI-CC2 calculations 316

19 Molecular Properties, Wavefunction Analysis, and Interfaces to Visualization Tools 317
 19.1 Molecular Properties, Wavefunction Analysis, and Localized Orbitals 317
 19.1.1 Selection of densities 318
 19.1.2 Electrostatic moments 318
 19.1.3 Relativistic corrections 318
 19.1.4 Population analyses 319
 19.1.5 Generation of localized MOs 319
 19.1.6 Intrinsic Bond Orbitals Analysis 319
 19.2 Interfaces to Visualization Tools 322

20 Orbital Dependent Kohn-Sham Density Functional Theory 328
 20.1 Theoretical Background 328
 20.2 Implementation .. 330
 20.2.1 OEP-EXX .. 330
 20.2.2 LHF .. 330
 20.3 How to Perform .. 331
20.4 How to plot the exchange potential 335
20.5 How to quote .. 336

21 Vibronic absorption and emission spectra 337
21.1 Theoretical Background .. 337
21.2 Implementation .. 338
21.3 Functionalities of Radless .. 339
 21.3.1 How to use RADLESS .. 339
 21.3.2 Output of RADLESS .. 340

22 Keywords in the control file 343
 22.1 Introduction .. 343
 22.2 Format of Keywords and Comments 343
 22.2.1 Keywords for System Specification 343
 22.2.2 Keyword for the General Memory Specification 345
 22.2.3 Other General Keywords 346
 22.2.4 Keywords for redundant internal coordinates in $redund_in$ 347
 22.2.5 Keywords for Module uff 349
 22.2.6 Keywords for Module tb ... 353
 22.2.7 Keywords for Module woelfling 354
 22.2.8 Keywords for Modules dscf and ridft 355
 22.2.9 Keywords for Point Charge Embedding 377
 22.2.10 Keywords for Periodic Electrostatic Embedded Cluster Method 377
 22.2.11 Keywords for COSMO ... 379
 22.2.12 Keywords for Module riper 385
 22.2.13 Keywords for Modules grad and rdgrad 391
 22.2.14 Keywords for Module aoforce 391
 22.2.15 Keywords for Module evib 394
 22.2.16 Keywords for Module escf 394
 22.2.17 Keywords for Module rirpa 403
 22.2.18 Keywords for Module egrad 404
 22.2.19 Keywords for Module mpgrad 404
 22.2.20 Keywords for Module ricc2 406
22.2.21 Keywords for Module ccsdf12 417
22.2.22 Keywords for Module pnoccsd 418
22.2.23 Keywords for Module relax 421
22.2.24 Keywords for Module statpt 429
22.2.25 Keywords for Module moloch 430
22.2.26 Keywords for wave function analysis and generation of plotting
data ... 434
22.2.27 Keywords for Module frog 443
22.2.28 Keywords for Module mpshift 449
22.2.29 Keywords for Parallel Runs 450

23 Sample control files ... 453
 23.1 Introduction ... 453
 23.2 NH₃ Input for a RHF Calculation 454
 23.3 NO₂ input for an unrestricted DFT calculation 458
 23.4 TaCl₅ Input for an RI-DFT Calculation with ECPs 462
 23.5 Basisset optimization for Nitrogen 469
 23.6 ROHF of Two Open Shells 472

24 The Perl-based Test Suite Structure 475
 24.1 General ... 475
 24.2 Running the tests .. 475
 24.3 Taking the timings and benchmarking 477
 24.4 Modes and options of the TTEST script 477

Bibliography ... 481

Index ... 500
Chapter 1

Preface and General Information

1.1 Contributions and Acknowledgements

TURBOMOLE [1] is a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH 1989-2007, TURBOMOLE GmbH, since 2007. The following people have made contributions:

We acknowledge help from

- Michael Dolg, University of Stuttgart, now: University of Cologne
- Jürgen Gauss, University of Mainz
- Christoph van Wüllen, University of Bochum, now: TU Kaiserslautern
- Stefan Grimme, University of Bonn
- Stefan Brode, BASF AG, Ludwigshafen
- Heinz Schiffer, HOECHST AG, Frankfurt
- the research groups of Ove Christiansen, Aarhus University, and Jacob Kongsted, University of Southern Denmark

and financial support by the University of Karlsruhe, BASF AG, BAYER AG, HOECHST AG, the DFG, Carl-Zeiss-Stiftung and the "Fonds der Chemischen Industrie".

Contact address:

Turbomole GmbH
Litzenhardtstrasse 19
D-76135 Karlsruhe
E-mail: support@turbomole.com
Web: http://www.turbomole.com
Support E-mail: support@turbomole.com
1.2 Features of TURBOMOLE

TURBOMOLE has been specially designed for UNIX workstations and PCs and efficiently exploits the capabilities of this type of hardware. TURBOMOLE consists of a series of modules; their use is facilitated by various tools.

Outstanding features of TURBOMOLE are

- semi-direct algorithms with adjustable main memory and disk space requirements
- full use of all point groups
- efficient integral evaluation
- stable and accurate grids for numerical integration
- low memory and disk space requirements

1.3 How to Quote Usage of TURBOMOLE

Please quote the usage of the program package under consideration of the version number:

```
```

A LaTeX template could look like this:

```
@misc{TURBOMOLE,
```

Scientific publications require proper citation of methods and procedures employed. The output headers of TURBOMOLE modules include the relevant papers. One may also use the following connections between: method [module] number in the subsequent list (For module ricc2 see also Section 10).
• Programs and methods
 – general program structure and features: I
 – HF-SCF [dscf, ridft]: II
 – DFT (quadrature) [dscf, ridft, escf, aoforce]: IV, d (m grids)
 – RI-DFT [ridft, aoforce, escf, riper]: c, d, XXIII (marij), VII (escf), XXIV (aoforce)
 – periodic DFT [riper]: XXXIX, XLI, XLII, XL
 – MP2 [mpgrad]: III
 – RI-MP2 [ricc2]: energies and gradients VIII, XXIX, f, and (static) polarizabilities XXXVI
 – PNO-MP2 [pnoccsd]: energies XXXVII
 – stability analysis [escf]: V
 – electronic excitations with CIS, RPA, TD-DFT [escf]: VI, VII, XVIII, XXVII
 – excited state structures and properties with CIS, RPA, TD-DFT [egrad]: XIX, XXVI, XXVII
 – RI-CC2 [ricc2]:
 * singlet XII and triplet excitation energies XIII
 * transition moments and first-order properties of excited states XV
 and first-order properties for triplet states XIV
 * ground state geometry optimizations XXI
 * excited state geometry optimizations and relaxed properties XXII
 * parallelization XXIX
 * spin-component scaled (SCS) variants XXXII
 * frequency-dependent and static polarizabilities XXXVI
 – RI-ADC(2), RI-CIS(D) and RI-CIS(D∞) [ricc2]: XXVIII
 – SOS variants of MP2, CIS(D), CIS(D∞), ADC(2) and CC2 with $O(N^4)$-scaling XXXIII
 – analytical second derivatives (force fields) [aoforce]: XVI, XVII
 – RI-JK [ridft]: XX
 – NMR chemical shifts [mpshift]: IX (MP2)
 – parallel DFT [ridft]: X
 – geometry optimization in redundant internal coordinates [relax]: XI
 – RI integral evaluation: XXV
 – explicitly correlated F12 methods for ground state energies [ccsdf12and pnoccsd]: MP2-F12 XXXIV, PNO-MP2-F12 XXXVIII, MP3-F12 XXXV, MP4(F12*) XXXV, CCSD(F12) XXXI, CCSD(F12*) XXXV, CCSD(F12)(T) XXXI, CCSD(F12*)(T) XXXV
1.3. HOW TO QUOTE USAGE OF TURBOMOLE

- Local hybrid calculations: XLIII ([ridft]), XLIV ([grad,rdgrad]), XLV ([escf])

- Orbital and auxiliary basis sets
 - basis sets:
 * SV, SV(P), SVP, DZ (a), TZV, TZVP, TZVPP (b), TZVPP(Rb-Hg) (f), QZV, QZVP, QZVPP (i)
 * new balanced basis sets (with smaller ECPs, i.e. the def2 basis sets): j
 * all-electron basis sets for Rb to Xe (SVPall, SVPPall, TZPall, TZPall): g
 * references for the correlation consistent basis sets (cc-pVXZ, etc.) can be found e.g. at
 http://tyr0.chem.wsu.edu/~kipeters/Pages/cc_append.html or
 Note, that most of the correlation consistent basis sets in the basis set library of TURBOMOLE have been downloaded from the latter EMSL web site and therefore users are requested to include in addition to the original scientific reference an appropriate citation (see web site) in any publications resulting from the use of these basis sets.
 * property–optimized augmentations: def2-SVPD, def2-TZVPD, def2-TZVPPD, def2-QZVPD, def2-QZVPPD (n).
 * basis sets for Dirac–Fock ECPs, i.e. the dhf basis sets: o.
 * basis sets for relativistic all-electron approaches, i.e. the x2c-XVPall basis sets: p
 - auxiliary basis sets for RI-DFT: c, d, e
 - auxiliary basis sets for RI-MP2: f, k, h (for Dunning basis sets)

Further references of papers not from the TURBOMOLE group are given in the bibliography. The following publications describe details of the methodology implemented in TURBOMOLE:

Methods

CHAPTER 1. PREFACE AND GENERAL INFORMATION

IV. Efficient Molecular Numerical Integration Schemes.

VI. Treatment of Electronic Excitations within the Adiabatic Approximation of Time Dependent Density Functional Theory.

XI. Geometry optimization in generalized natural internal Coordinates.

XV. Transition moments and excited-state first-order properties in the coupled-cluster model CC2 using the resolution-of-the-identity approximation.

1.3. HOW TO QUOTE USAGE OF TURBOMOLE

Basis sets

The following tables can be used to find the proper citations of the standard orbital and auxiliary basis sets in the TURBOMOLE basis set library.

Orbital basis sets, elements H–Kr

<table>
<thead>
<tr>
<th></th>
<th>H,He</th>
<th>Li</th>
<th>Be</th>
<th>B–Ne</th>
<th>Na,Mg</th>
<th>Al–Ar</th>
<th>K</th>
<th>Ca</th>
<th>Sc–Zn</th>
<th>Ga–Kr</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVP,SV(P)</td>
<td>s</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>TZVP</td>
<td>s</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>TZVPP</td>
<td>s</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>QZVP,QZVPP</td>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-SV(P)</td>
<td>s</td>
<td>j</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>j</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>def2-SVP</td>
<td>s</td>
<td>j</td>
<td>a</td>
<td>a</td>
<td>j</td>
<td>a</td>
<td>j</td>
<td>a</td>
<td>j</td>
<td>a</td>
</tr>
<tr>
<td>def2-TZVP</td>
<td>s</td>
<td>f</td>
<td>j</td>
<td>f</td>
<td>j</td>
<td>j</td>
<td>j</td>
<td>f</td>
<td>j</td>
<td>f</td>
</tr>
<tr>
<td>def2-TZVPP</td>
<td>s</td>
<td>j</td>
<td>j</td>
<td>f</td>
<td>j</td>
<td>j</td>
<td>j</td>
<td>f</td>
<td>j</td>
<td>f</td>
</tr>
<tr>
<td>def2-XVPD/XVPPD, X=S,T,Q</td>
<td></td>
</tr>
</tbody>
</table>
Note: For H–Kr def-SV(P), def-SVP, ... are identical with the basis sets without def prefix. def2-QZVPP and def2-QZVP are identical with QZVPP and QZVP.

def2-XVPD/XVPPD denotes the property–optimized augmentations def2-SVPD, def2-TZVPD, def2- TZVPPD, def2-QZVPD,def2-QZVPPD.

Orbital basis sets, elements Rb–Rn

<table>
<thead>
<tr>
<th></th>
<th>Rb</th>
<th>Sr</th>
<th>Y–Cd</th>
<th>In–Cs</th>
<th>Ba</th>
<th>La–Hg</th>
<th>Tl–At</th>
<th>Rn</th>
</tr>
</thead>
<tbody>
<tr>
<td>def-SV,def-SV(P),def-TZVP</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>j</td>
</tr>
<tr>
<td>def-TZVPP</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>j</td>
</tr>
<tr>
<td>def2-SV(P)</td>
<td>j</td>
<td>d</td>
<td>d</td>
<td>j</td>
<td>d</td>
<td>d</td>
<td>j</td>
<td>j</td>
</tr>
<tr>
<td>def2-SVP</td>
<td>j</td>
<td>d</td>
<td>j</td>
<td>j</td>
<td>d</td>
<td>j</td>
<td>j</td>
<td>j</td>
</tr>
<tr>
<td>def2-TZVP,def2-TZVPP</td>
<td>j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-QZVP,def2-QZVP</td>
<td>j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-XVPD/XVPPD, X=S,T,Q</td>
<td>j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Auxiliary basis sets for RI-DFT (Coulomb fitting)

<table>
<thead>
<tr>
<th></th>
<th>H–Kr</th>
<th>Rb–At</th>
<th>Rn</th>
</tr>
</thead>
<tbody>
<tr>
<td>(def-)SVP,(def-)SV(P)</td>
<td>c</td>
<td>d</td>
<td>1</td>
</tr>
<tr>
<td>(def-)TZVP</td>
<td>d</td>
<td>d</td>
<td>1</td>
</tr>
<tr>
<td>def2 universal</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
1.3. How to Quote Usage of Turbomole

Auxiliary basis sets for RI-MP2 and RI-CC, elements H–Ar

<table>
<thead>
<tr>
<th>Auxiliary basis sets</th>
<th>H</th>
<th>He</th>
<th>Li</th>
<th>Be</th>
<th>B–F</th>
<th>Ne</th>
<th>Na, Mg</th>
<th>Al–Cl</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVP, SV(P)</td>
<td>f</td>
<td>k</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>k</td>
<td>f</td>
<td>f</td>
<td>k</td>
</tr>
<tr>
<td>TZVP, TZVPP</td>
<td>f</td>
<td>k</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>k</td>
<td>f</td>
<td>f</td>
<td>k</td>
</tr>
<tr>
<td>QZVP, QZVPP</td>
<td>k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-SV(P)</td>
<td>f</td>
<td>k</td>
<td>m</td>
<td>f</td>
<td>f</td>
<td>k</td>
<td>m</td>
<td>f</td>
<td>k</td>
</tr>
<tr>
<td>def2-SVP</td>
<td>f</td>
<td>k</td>
<td>m</td>
<td>f</td>
<td>f</td>
<td>k</td>
<td>m</td>
<td>f</td>
<td>k</td>
</tr>
<tr>
<td>def2-TZVP, def2-TZVPP</td>
<td>f</td>
<td>k</td>
<td>f</td>
<td>m</td>
<td>f</td>
<td>k</td>
<td>m</td>
<td>m</td>
<td>k</td>
</tr>
<tr>
<td>def2-XVPD/XVPPD, X=S,T,Q</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(aug-)cc-pVXZ, X=D–Q</td>
<td>h</td>
<td>h</td>
<td>k</td>
<td>k</td>
<td>h</td>
<td>h</td>
<td>k</td>
<td>h</td>
<td>h</td>
</tr>
<tr>
<td>(aug-)cc-pV5Z</td>
<td>k</td>
<td>k</td>
<td>-</td>
<td>-</td>
<td>k</td>
<td>k</td>
<td>-</td>
<td>k</td>
<td>k</td>
</tr>
<tr>
<td>cc-pCWVXZ, X=D–5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>k</td>
<td>k</td>
<td>-</td>
<td>k</td>
<td>k</td>
<td></td>
</tr>
</tbody>
</table>

Note: the auxiliary basis sets for the (aug-)cc-pV(X+d)Z basis sets for Al–Ar are identical with the (aug-)cc-pVXZ auxiliary basis sets.

Auxiliary basis sets for RI-MP2 and RI-CC, elements K–Kr

<table>
<thead>
<tr>
<th>Auxiliary basis sets</th>
<th>K</th>
<th>Ca</th>
<th>Sc–Zn</th>
<th>Ga–Br</th>
<th>Kr</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVP, SV(P)</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>k</td>
</tr>
<tr>
<td>TZVP, TZVPP</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>k</td>
</tr>
<tr>
<td>QZVP, QZVPP</td>
<td>k</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-SV(P)</td>
<td>m</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>k</td>
</tr>
<tr>
<td>def2-SVP</td>
<td>m</td>
<td>f</td>
<td>m</td>
<td>f</td>
<td>k</td>
</tr>
<tr>
<td>def2-TZVP, def2-TZVPP</td>
<td>m</td>
<td>f</td>
<td>m</td>
<td>f</td>
<td>k</td>
</tr>
<tr>
<td>def2-XVPD/XVPPD, X=S,T,Q</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(aug-)cc-pVXZ, X=D–Q</td>
<td>-</td>
<td>-</td>
<td>k</td>
<td>h</td>
<td>h</td>
</tr>
<tr>
<td>(aug-)cc-pV5Z</td>
<td>-</td>
<td>-</td>
<td>q</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>cc-pCWVXZ, X=D–5</td>
<td>-</td>
<td>-</td>
<td>q</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>(aug-)cc-pVXZ-PP, X=D–5</td>
<td>-</td>
<td>-</td>
<td>q</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>cc-pCWVXZ-PP, X=D–5</td>
<td>-</td>
<td>-</td>
<td>q</td>
<td>q</td>
<td></td>
</tr>
</tbody>
</table>

Auxiliary basis sets for RI-MP2 and RI-CC, elements Rb–Rn

<table>
<thead>
<tr>
<th>Auxiliary basis sets</th>
<th>Rb</th>
<th>Sr</th>
<th>Y–Cd</th>
<th>In–Xe</th>
<th>Cs</th>
<th>Ba</th>
<th>La–Hg</th>
<th>Tl–At</th>
<th>Rn</th>
</tr>
</thead>
<tbody>
<tr>
<td>def-SV, def-SV(P)</td>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-SV, def2-SV(P)</td>
<td>m</td>
<td>f</td>
<td>f</td>
<td>m</td>
<td>m</td>
<td>f</td>
<td>f</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>def-TZVP, def-TZVPP</td>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-TZVP, def2-TZVPP</td>
<td>m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-QZVP, def2-QZVPP</td>
<td>m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-XVPD/XVPPD, X=S,T,Q</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(aug-)cc-pVXZ-PP, X=D–5</td>
<td>-</td>
<td>-</td>
<td>q</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>q</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>cc-pCWVXZ-PP, X=D–5</td>
<td>-</td>
<td>-</td>
<td>q</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>q</td>
<td>q</td>
<td></td>
</tr>
</tbody>
</table>

g. Contracted all-electron Gaussian basis sets for Rb to Xe. R. Ahlrichs and K. May; Phys. Chem. Chem. Phys., 2, 943 (2000).

k. Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculation: Core-valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr. C. Hättig; Phys. Chem. Chem. Phys. 7, 59 (2005).

1.3. **HOW TO QUOTE USAGE OF TURBOMOLE**

s. unpublished.
1.4 Modules and Their Functionality

For references see Bibliography.

define interactive input generator which creates the input file **control**. **define** supports all basis sets available from the basis set library, especially the fully atom optimized consistent basis sets of SVP, TZV and QZV quality [2–6] available for the atoms H–Rn. **define** determines the molecular symmetry and internal coordinates which allow efficient geometry optimization. **define** allows to perform a geometry optimization at a force field level to preoptimize the geometry and to calculate a Cartesian Hessian matrix. **define** sets the keywords necessary for single point calculations and geometry optimizations within a variety of methods. There are also many features to manipulate geometries of molecules: just try and see how it works.

uff performs a geometry optimization at a force field level. The Universal Force Field (UFF) [7] is implemented. Beyond this it calculates an analytical Hessian (Cartesian) which can be used as a start Hessian for an *ab initio* geometry optimization.

dscf for (semi–)direct SCF–HF and DFT calculations (see keywords for functionals supported). **dscf** supports restricted closed-shell (RHF), spin-restricted ROHF as well as UHF runs. **dscf** includes an in-core version for small molecules.

grad requires a successful **dscf** run and calculates the gradient of the energy with respect to nuclear coordinates for all cases treated by **dscf**.

ridft and **rdgrad** perform (direct) SCF–HF and DFT calculations—as **dscf** and **grad**—within the very efficient RI–J approximation for the interelectronic Coulomb term. These programs also permit to approximate HF exchange within the RI–K approximation or using semi-numerical techniques. The exchange correlation functionals supported are specified in **define**. Relativistic two-component calculations are also available.

riper performs DFT calculations for molecules and periodic systems using the RI technique. In addition, a low-memory RI implementation based on preconditioned conjugate gradient algorithm is available for molecular systems. Both RHF and UHF runs are supported. Currently hybrid functionals are not supported.

mpgrad requires a well converged SCF run—by **dscf**, see keywords—and performs closed-shell RHF or UHF calculations yielding single point MP2 energies and, if desired, the corresponding gradient. Note that **mpgrad** performs conventional, i.e. non-RI MP2 calculations only. For real-life applications it is highly recommended to use RI-MP2 instead (see module **ricc2**).
1.4. MODULES AND THEIR FUNCTIONALITY

ricc2 calculates electronic ground and excitation energies, transition moments and properties of ground and excited states at the MP2, CIS, CIS(D), ADC(2) and CC2 level using either a closed-shell RHF or a UHF SCF reference function. Calculates R12 basis set limit correction for MP2 energies. Employs the RI technique to approximate two-electron integrals. [8–15].

ccsdf12 calculations of electronic ground state energies beyond MP2/CC2: RI-MP2-F12, MP3, MP3-F12, MP4, MP4(F12*), CCSD, CCSD(F12), CCSD(F12*), CCSD(F12)(T), CCSD(F12*)(T) and electronic excitation energies at the CCSD level. [16–19]

pnoccsd calculations of electronic ground state energies with PNO-based methods starting from MP2 and MP2-F12 up to PNO-CCSD(T). [20,21]

relax requires a gradient run—by grad, rdgrad, ricc2, egrad, or mgrad—and proposes a new structure based on the gradient and the approximated force constants. The approximated force constants will be updated. This module will not be used by default any more if jobex is called.

statpt performs structure optimization using the "Trust Radius Image Minimization" algorithm. It can be used to find minima or transition structures (first order saddle points). Transition structure searches usually require initial Hessian matrix calculated analytically or the transition vector from the lowest eigenvalue search.

frog executes one molecular dynamics (MD) step. Like relax, it follows a gradient run: these gradients are used as classical Newtonian forces to alter the velocities and coordinates of the nuclei.

aoforce requires a well converged SCF or DFT run—by dscf or ridft, see keywords—and performs an analytic calculation of force constants, vibrational frequencies and IR intensities. aoforce is also able to calculate only the lowest Hessian eigenvalues with the corresponding eigenvectors which reduces computational cost. The numerical calculation of force constants is also possible (see tool NumForce in Section 1.5).

escf requires a well converged SCF or DFT run and calculates time dependent and dielectric properties (spin-restricted closed-shell or spin-unrestricted open-shell reference):

- static and frequency-dependent polarizabilities within the SCF approximation
- static and frequency-dependent polarizabilities within the time-dependent Kohn–Sham formalism, including hybrid functionals such as B3-LYP
- electronic excitations within the RHF and UHF CI(S) restricted CI method
– electronic excitations within the so-called SCF-RPA approximation (poles of the frequency dependent polarizability)
– electronic excitations within the time dependent Kohn–Sham formalism (adiabatic approximation). It can be very efficient to use the RI approximation here, provided that the functional is of non-hybrid type: we recommend B-P86 (but slightly better results are obtained for the hybrid functional B3-LYP) [22].
– stability analysis of single-determinant closed-shell wave functions (second derivative of energy with respect to orbital rotations) [23].

`egrad` computes gradients and first-order properties of excited states. Well converged orbitals are required. The following methods are available for spin-restricted closed shell or spin-unrestricted open-shell reference states:

– CI-Singles approximation (TDA)
– Time-dependent Hartree–Fock method (RPA)
– Time-dependent density functional methods

`egrad` can be employed in geometry optimization of excited states (using `jobex`, see Section 5.1), and in finite difference force constant calculations (using `NumForce`). Details see [24].

`rirpa` calculates ground state energies and analytic first-order properties within the random phase approximation (RPA) and its perturbative corrections, see Section 13.

`mpshift` requires a converged SCF or DFT run for closed shells. `mpshift` computes NMR chemical shieldings for all atoms of the molecule at the SCF, DFT or MP2 level within the GIAO ansatz and the (CPHF) SCF approximation. From this one gets the NMR chemical shifts by comparison with the shieldings for the standard compound usually employed for this purpose, e.g. TMS for carbon shifts. Note that NMR shielding typically requires more flexible basis sets than necessary for geometries or energies. In molecules with ECP-carrying atoms, chemical shieldings on all the other atoms can be computed with `mpshift` [25] in the way suggested in J. Chem. Phys. 136, 114110 (2012).

`freeh` calculates thermodynamic functions from molecular data in a control file; an `aoforce` or a `NumForce` run is a necessary prerequisite.

`evib` calculates the matrix elements of the first order derivative of the Kohn–Sham operator with respect to atomic displacements and describes the first order electron-vibration (EV) interaction.

`intense` calculates Raman scattering cross sections from molecular data in a control file; an `aoforce` and an `egrad` run are a necessary prerequisite. Please use the `Raman` script to run these three steps in an automated way.
woelfling computes a finite number of structures along reaction paths within different interpolation algorithms. It provides an initial path using a modified Linear Synchronous Transit. See Section 5.9 for details. Please use the woelfling-job script to run optimizations with it.

proper computes a variety of first-order properties and provides several functionalities to analyze wavefunctions such as orbital localization, population analysis, natural transition orbitals, AIM critical points and paths, etc. and can generate output in a variety of plotting formats (see chapter 19).

1.5 Tools

Note: these tools are very helpful and meaningful for many features of TURBOMOLE. This is a brief description of additional TURBOMOLE tools. Further information will be available by running the programs with the argument -help.

actual please use: actual -help

adg adds data group to control file.
E.g.: `adg scfinstab ucis` inserts:
$scfinstab ucis

aoforce2g98 usage: aoforce2g98 aoforce.out > g98.out
converts output from the aoforce program to Gaussian 98 style, which can be interpreted by some molecular viewer (e.g. jmol) to animate the normal coordinates.

bend example: bend 1 2 3

displays the bending angle of three atoms specified by their number from the control file. Note that unlike in the TURBOMOLE definition of internal coordinates the apex atom is the second!

cbasopt optimize auxiliary basis sets for RI-MP2 and RI-CC2 calculations. Uses ricc2 to calculate the error functional and its gradient and relax as optimization module. For further details call cbasopt -h.

cc2cosmo manages macro iterations for RI-MP2, RI-CC2 or RI-ADC(2) calculations in an equilibrated solvent environment described by cosmo (see Chapter 18.2).

cgnce plots energies as a function of SCF iteration number (gnuplot required).

cosmoprep sets up control file for a cosmo run (see Chapter 18.2).

dist example: dist 1 2
calculates atomic distances from TURBOMOLE input files; dist -l 4 gives all interatomic distances to 4 a.u. (5 a.u. is the default).
DRC automates dynamic reaction coordinate calculations forward and backward along the imaginary vibrational mode of a transition state structure. A transition state optimization with a subsequent frequency calculation is prerequisite. For further details call DRC -h.

eiger displays orbital eigenvalues obtained from data group $scfmo$. Shows HOMO-LUMO gap, occupation, checks if there are holes in the occupation, and much more.

evalgrad reads the gradient file and prints the energies of each cycle versus bond lengths or angles. Five operational modes are possible:

```
  evalgrad   prints the energy.
  evalgrad 1   prints the coordinate of atom 1.
  evalgrad 1 2   prints the distance between atoms 1 and 2.
  evalgrad 1 2 3   prints the bending angle as defined in Bend.
  evalgrad 1 2 3 4   prints the torsional angle as defined in Tors.
```

finit initialises the force constant matrix for the next statpt or relax step.

FDE drives the Frozen Density Embedding calculations.

Fukui automates the calculations of Fukui functions. The density change is written in dtx files and condensed Fukui functions based on different population analyses are computed. For further details call Fukui -h.

gallier converts IR intensities and/or VCD rotational strengths to a spectrum after the corresponding calculation was performed. Intensities can be broadened with Gaussian or Lorentzian functions.

hcore prepares the control file for a Hamilton core guess.

jobex usage: see Section 5.1
is the TURBOMOLE driver for all kinds of optimizations.

jobbsse usage: see jobbsse -h
is the driver for counterpoise corrected calculations.

kdg example: kdg scfdiis
kills a data group (here $scfdiis) in the control file.

lhfprep prepares for Localized Hartree-Fock calculations by adjusting parameters of the control file.

log2x converts the file logging an MD trajectory into coordinates in frames appropriate for jmol animation program.

log2egy extracts the energy data (KE, total energy, PE) from an MD log file.

log2int extracts bond lengths or angle from an MD log file.
1.5. TOOLS

log2rog computes the radius of gyration, geometric radius and diameter from an MD log file.

mdprep interactive program to prepare for an MD run, checking in particular the mdmaster file (mdprep is actually a FORTRAN program).

MECPprep prepares the input for minimum-energy crossing point calculations. The subdirectories state1 and state2 will be created. Multiplicity and charge for the two states can be set. For further details call MECPprep -h.

MECPopt driver for geometry optimizations of minimum-energy crossing points. The electronic structure calculations are carried out in the subdirectories state1 and state2 and the optimizer step is performed in the starting directory. For further details call MECPopt -h.

mp2prep prepares MP2 calculations interactively by adjusting parameters of the control file according to your system resources.

NumForce calculates numerically force constants, vibrational frequencies, and IR intensities. (Note that the name of the shell script is NumForce with capital F.)

outp example: outp 1 2 3 4 displays the out-of-plan angle between atom1 and the plane that is defined by the last three atoms. atom1 is fixed at atom4.

panama converts energies and oscillator strengths to a spectrum broadened by gaussian functions and/or calculates non-relaxed difference densities of excitations.

past translates and rotates coordinates in the principal axis system and prints out the rotational constants.

raman calculates vibrational frequencies and Raman intensities. See Section 15.2 for explanation.

screwer distorts a molecule along a vibrational mode.

scanprep prepares a series of control files with frozen internal coordinates. The data group $constraints (e.g. provided by TmoleX) is evaluated. For further details call scanprep -h.

vibration distorts a molecule along a vibrational mode or generates a plot of an IR spectrum (gnuplot required)

sdg shows data group from control file: for example sdg energy shows the list of calculated energies.

sysname returns the name of your system, used in almost all TURBOMOLE scripts.
STATI prepares the control file for a statistics run.

t2x converts TURBOMOLE coordinates to xyz format.

t2aomix creates an input file for the AOMix program. AOMix a software the analysis of molecular orbitals. For more information see: http://www.sg-chem.net/aomix. Uses **tm2molden** as described below by automatically adding the $aomix$ keyword to the control file.

tm2molden is a versatile tool to create

- molden format input file for the Molden program,
- AOMix input files or
- detailed information about the largest AO contributions to the MOs.

Molden is a graphical interface for displaying the molecular density, MOs, normal modes, and reaction paths. For more information about molden see: http://www.cmbi.ru.nl/molden/molden.html. This format is also often used as input for other program packages or property tools.

NOTE: The default normalization of molecular orbitals of d-type (and beyond) when using **tm2molden** is different to what Molden expects. To generate Molden input files with the Molden-own normalization, please call **tm2molden norm**, the default name of the resulting file will be **molden_std.input** rather than **molden.input**.

If **tm2molden** finds the keyword $aomix$ in the control file, it will write out an AOMix input file, see: http://www.sg-chem.net/aomix

Finally, **tm2molden** can be used to print out the largest contributions of the AO basis functions to the molecular orbitals.

Usage:

```
tm2molden mostat [molist] [above <threshold>]
```

e.g.:

```
tm2molden mostat 230-240,251,255
```

```
tm2molden mostat 434-440 above 0.001
```

```
tm2molden mostat above 0.02
```

Only contributions which are larger than a certain percentage (default is 1%) are printed, this value can be changed with the **above** option (as absolute value, so 1% is 0.01). Without a list of orbitals (the numbering follows the output of **eiger**) all MOs are printed.

tors is a script to query a dihedral angle in a molecular structure:

e.g. **tors** 1 2 3 4 gives the torsional angle of atom 4 out of the plane of atoms 1, 2 and 3.

tbtim is used to convert timings output files from TURBOBENCH calculations to LATEX tables (for options please type **TBTIM -help**).
1.5. TOOLS

tblist is used to produce summaries of timings from TURBOBENCH calculations to LaTeX format. (for options please type TBLIST -help).

uhfuse deprecated command, present in the current version for compatibility reasons only. Transforms the UHF MOs from a given symmetry to another symmetry, which is C_1 by default (just enter uhfuse). but can be specified (e.g. as C_{2v}) by entering uhfuse -s c2v. Now this functionality is included in the MO definition menu of define program, see Section 4.3.1.

vcd calculates VCD rotational strengths. See Section 15.3 for explanation.

woelfling-job optimizes a reaction path with woelfling. For further information please type woelfling-job -h.

x2t converts standard xyz files into TURBOMOLE coordinates.
Chapter 2

Installation of TURBOMOLE

2.1 Install TURBOMOLE command line version

Installation requires familiarity with some simple UNIX commands. The TURBOMOLE package is generally shipped as one tar file. This has to be uncompressed

```
gunzip turbomole_74.tar.gz
```

and unpacked

```
tar -xvf turbomole_74.tar
```

to produce the whole directory structure.

Important Note: Do NOT install or run TURBOMOLE as root or with root permissions! The files would have the wrong user- and group-IDs and the permissions will not be set correctly!

Unpacking TURBOMOLE has to be done just once, preferably by a user who has the same group-ID as all other users of the program. The best place is on a network disk which is available on all machines. If only root is allowed to place files there, please first generate an empty directory as root (e.g. `sudo mkdir /nfs-disk/software/TURBOMOLE-74`), change the owner of the directory (e.g. `sudo chown user:usergroup /nfs-disk/software/TURBOMOLE-74`) and then unpack as non-root user the downloaded file there.

2.1.1 Settings for each user:

The environmental variable `$TURBODIR` must be set to the directory where TURBOMOLE has been unpacked, for example:
2.1. INSTALL TURBOMOLE COMMAND LINE VERSION

TURBODIR=/nfs_disk/software/TURBOMOLE

Then, the most convenient way to extend your path to the TURBOMOLE scripts and binaries is to source the file Config_turbo_env:

 source $TURBODIR/Config_turbo_env

If you have a csh or tcsh as default login shell use

 source $TURBODIR/Config_turbo_env.tcsh

instead.

It is recommended to add the two lines given above to your .bashrc (or .profile or wherever you prefer to add your local settings).

Note: If you do not set $TURBODIR first but use the full path to the Config_turbo_env file when sourcing, the path should be detected automatically.

2.1.2 Setting system type and $PATH by hand

This section is only needed if

- the automatic setting as described in the sub-chapter before, using the Config_turbo_env file, does not work. And/or if you:
 - want to know what variables and paths have to be set to make TURBOMOLE ready for use in a detailed manner.

First check that the Sysname tool works on your computer:

 $TURBODIR/scripts/sysname

should return the name of your system and this should match a bin/[arch] subdirectory in your TURBOMOLE installation.

If Sysname does not print out a single string matching a directory name in $TURBODIR/bin/, and if one of the existing binary versions does work, you can force sysname to print out whatever is set in the environment variable $TURBOMOLE_SYSNAME:

 TURBOMOLE_SYSNAME=em64t-unknown-linux-gnu

Please make sure not to append _mpi or _smp to the string when setting $TURBOMOLE_SYSNAME, even if you intend to run parallel calculations. sysname will append this string automatically to the system name if $PARA_ARCH is set to MPI or SMP (see chapter 3.2.1 how to set up parallel environment).

You can call TURBOMOLE executables and tools easily from anywhere if you add the corresponding directories to your path (kornshell or bash syntax):
CHAPTER 2. INSTALLATION OF TURBOMOLE

PATH=$PATH:$TURBODIR/scripts
PATH=$PATH:$TURBODIR/bin/‘sysname’

Note that sysname is set in back quotes which tells the shell to substitute the entry by the output of sysname.

Now the TURBOMOLE executables can be called from a directory with the required input files. For example to call dscf and to save the output to a file named dscf.out:

$TURBODIR/bin/‘sysname’/dscf > dscf.out

or, if the path is OK, simply

dscf > dscf.out

Executable modules are in the bin/[arch] directory (for example, Linux modules are in bin/em64t-unknown-linux-gnu). Tools (including jobex) are in scripts and (auxiliary) basis sets are kept in the directories basen, jbasen, jkbasen, cbasen, xbasen and cabasen. Coordinates for some common chemical fragments are supplied in structures. The documentation and a tutorial can be found in the folder DOC.

2.1.3 Testing the installation

In addition, some sample calculations are supplied in Turbotest so that the modules can be tested. Just run TTEST from this directory to run all tests or TTEST -help to get help on how this works:

cd $TURBODIR/TURBOTEST
TTEST

2.2 Installation problems: How to solve

Please check your user limits!

If one or several tests of the test suite fail, it is very likely that your user limits for stack size and/or memory are too small.

sh/bash/ksh users: please do a

ulimit -a

to get your actual limits. The output should look like:

core file size (blocks) 0
data seg size (kbytes) unlimited
2.2. INSTALLATION PROBLEMS: HOW TO SOLVE

file size (blocks) unlimited
max locked memory (kbytes) unlimited
max memory size (kbytes) unlimited
open files 1024
pipe size (512 bytes) 8
stack size (kbytes) unlimited
cpu time (seconds) unlimited
max user processes 8191
virtual memory (kbytes) unlimited

The most important entries are data size, stack size, max memory size, and virtual memory. Those should be either unlimited or as big as your total RAM.

To set, e.g. the stack size to the maximum allowed size on your system (the so called hard limit), do:

```
ulimit -s hard
```

csh/tcsh users: please do limit instead of ulimit and check the output.

Again, like given above, the limits should be at least as high as your memory available. The syntax for changing the limits to unlimited using csh/tcsh is:

```
limit stacksize hard
```

Note that on some machines the option hard leads to an error and is not recognized. In such cases try ulimit -s unlimited or set it to a value like ulimit -s 4019516 (value is in kB, so this example sets it to 4GB).

If you are using a queuing system:

Note that if you are submitting jobs to a queue, the user limits might be different from what you get when you log in on the machines! To check your limits, you have to add ulimit or limit in the script that is sent to the queue:

```
ulimit -a > mylimits.out
jobex -ri -c 200 -statpt > jobex.out
...
```

send it to the queue and check the file mylimits.out to find out which limits are set.

Parallel version:

The parallel binaries are being started by the mpirun command which often uses ssh to start a process on a remote node. The limits for the stack size can not be set by the user in such a case, so everything in $HOME/.profile, $HOME/.bashrc, etc. will not help to get rid of the problem.

To check the limits on a remote node, try (sh/bash/ksh syntax):

```
ulimit -a > mylimits.out
jobex -ri -c 200 -statpt > jobex.out
...
```
ssh <hostname> ulimit -a

If the ssh command gives a lower stack size than unlimited or a large number, you have to change the file

/etc/security/limits.conf

on all nodes where the parallel binaries might run, and add there the line (example for 4GB limit)

* soft stack 4194303

Redo ssh <hostname> ulimit -a and you should get 4GB stack size limit, as it is set in limits.conf now.
Chapter 3

How to Run TURBOMOLE

3.1 A ‘Quick and Dirty’ Tutorial

The easiest way to start with TURBOMOLE is to use the free graphical user interface TmoleX which is part of every TURBOMOLE distribution. Please install TmoleX on your local desktop computer and avoid running the GUI on remote machines using remote desktop tools like X11. If you do not have a local version of TmoleX, consider to download and use the free version which is able to generate input, to run TURBOMOLE jobs on external (Linux) boxes and to visualize the results - download is available from here: http://www.cosmologic.de/support-download/downloads/tmolex-client.html

A detailed tutorial for the usage of TURBOMOLE on the command line can be found in the DOC directory of your TURBOMOLE installation or on the web site of COSMOlogic, see http://www.cosmologic.de/

All TURBOMOLE modules need the control file as input file. The control file provides directly or by cross references the information necessary for all kinds of runs and tasks (see Section 22).

The define module (program) generates in a step by step manner and interactively the control file: Coordinates, atomic attributes (e.g. basis sets), MO start vectors (using the charge of the molecule) and keywords specific for the desired method of calculation. We recommend generating a set of Cartesian coordinates for the desired molecule using special molecular design software and converting this set into TURBOMOLE format (see Section 23.2) as input for define. Alternatively the graphical user interface TmoleX can be used to import and/or build molecules.

A straightforward way to perform a TURBOMOLE calculation from scratch is as follows:

- generate your atomic coordinates by any tool or program you are familiar with,
- save it as an .xyz file which is a standard output format of all programs, or use a conversion tool like babel,
- use the TURBOMOLE script x2t to convert your .xyz file to the TURBOMOLE coord file:
x2t xyzinputfile > coord

- since input files for TURBOMOLE are always called control, each input has to be placed in a different directory. Create a new directory and copy the coord file there.

- call
define
after specifying the title, you get the coord menu — just enter
a coord
to read in the coordinates.
Use desy to let define determine the point group automatically.
If you want to do geometry optimizations, we recommend to use generalized internal coordinates; ired generates them automatically.

- you may then go through the menus without doing anything: just press <Enter>, *
or q—whatever ends the menu, or by confirming the proposed decision of define again by just pressing <Enter>.
This way you get the necessary specifications for a (SCF-based) run with def-SV(P) as the default basis set (which is qualitatively similar to 6-31G*).

- for more accurate SCF or DFT calculations choose larger basis sets, e.g. TZVP by entering b all def-TZVP or b all def2-TZVP in the basis set menu.

- ECPs which include (scalar) relativistic corrections are automatically used beyond Kr.

- an initial guess for MOs and occupation numbers is provided by eht

- for DFT you have to enter dft in the last menu and then enter on

- for efficient DFT calculations you best choose the RI approximation by entering ri and then on. For small molecules it can be beneficial to provide additional memory (with m number; number in MB), but make sure not to use more than 80% of the memory your computer has available (note that the setting is per core for parallel jobs!). Auxiliary basis sets are provided automatically. For medium-sized to larger molecules, additional memory for integral-storage is not helpful (can even slow down the calculation), but activating the multipole accelerated RI-J (marij) can speed up the calculation significantly (without introducing additional errors for RI-J).

- B-P86 is the default functional. It has a good and stable performance throughout the periodic system.

- for an HF or DFT run without RI, you simply enter:
 [nohup] dscf > dscf.out &
or, for a RI-DFT run:
 [nohup] ridft > ridft.out &
3.1. A ‘QUICK AND DIRTY’ TUTORIAL

- for a gradient run, you simply enter:

  ```bash
  [nohup] grad > grad.out &
  or
  [nohup] rdgrad > rdgrad.out &
  ```

- for a geometry optimization simply call jobex:
 for a standard SCF input:

  ```bash
  [nohup] jobex &
  ```
 for a standard RI-DFT input:

  ```bash
  [nohup] jobex -ri &
  ```

- many features, such as NMR chemical shifts or vibrational frequencies at SCF or DFT level, do not require further modifications of the input. Just call e.g. mpshift or aoforce after the appropriate energy calculation.

- other features, such as post-SCF methods need further action on the input, using either the last menu of define where one can activate all settings needed for DFT, TDDFT, MP2, CC2, etc. calculations (this is the recommended way), or tools like Mp2prep.

If that was a too quick and dirty chapter, please read the TURBOMOLE Tutorial in the DOC directory of your local TURBOMOLE installation. It explains step by step the generation of input with define and how to run calculations on the command line.

3.1.1 Single Point Calculations: Running TURBOMOLE Modules

All calculations are carried out in a similar way. First you have to run define to obtain the control file or to add/change the keywords you need for your purpose. This can also be done manually with an editor. Given a bash and a path to `$TURBODIR/bin/[arch]` (see installation, Chapter 2) you call the appropriate module in the following way (e.g. module dscf):

```bash
nohup dscf > dscf.out &
```

nohup means that the command is immune to hangups, logouts, and quits. & runs a background command. The output will be written to the file dscf.out. Several modules write some additional output to the control file. For the required keywords see Section 22. The features of TURBOMOLE will be described in the following section.

3.1.2 Energy and Gradient Calculations

Energy calculations may be carried out at different levels of theory.

Hartree–Fock–SCF

use modules dscf and grad or ridft and rdgrad to obtain the energy and gradient. The energy can be calculated after a define run without any previous
CHAPTER 3. HOW TO RUN TURBOMOLE

Density functional theory

DFT calculations are carried out in exactly the same way as Hartree–Fock calculations except for the additional keyword dft. For DFT calculations with the fast Coulomb approximation you have to use the modules ridft and rdgrad instead of dscf and grad. Be careful: dscf and grad ignore RI–K flags and will try to do a normal calculation, but they will not ignore RI–J flags (rij) and stop with an error message. To obtain correct derivatives of the DFT energy expression in grad or rdgrad the program also has to consider derivatives of the quadrature weights—this option can be enabled by adding the keyword weight derivatives to the data group dft.

For a semi-direct dscf calculation (Hartree–Fock or DFT) you first have to perform a statistics run. If you type

```
  stati dscf
  nohup dscf > dscf.stat &
```

the disk space requirement (MB) of your current $thime$ and $thize$ combination will be computed and written to the data group $scfintunit size=integer$ (see Section 22.2.8). The requirement of other combinations will be computed as well and be written to the output file dscf.stat. The size of the integral file can be set by the user to an arbitrary (but reasonable) number. The file will be written until it reaches the given size and dscf will continue in direct mode for the remaining integrals. Note that TURBOMOLE has no 2GB file size limit.

MP2 and MP2-F12

MP2 calculations need well converged SCF runs (the SCF run has to be done with at least the density convergence $denconv 1.d-7$, and $scfconv 7$ as described in Section 22). This applies also to the spin-component scaled (SCS and SOS) and explicitly-correlated (F12) variants of MP2. For MP2 and MP2-F12 calculations in the RI approximation use the ricc2 or pnoccsd modules. The module mpgrad calculates the conventional (non-RI and non-F12) MP2 energy its gradient (only recommended for test calculations). The input can be prepared with the mp2, cc, or pnocc menu in define.

Excited states with CIS, TDHF and TDDFT (escf)

Single point excited state energies for CIS, TDHF, and TDDFT methods can be calculated using escf. Excited state energies, gradients, and other first order properties are provided by egrad. Both modules require well converged ground state orbitals.

Excited states with second-order wavefunction methods (ricc2)

The module ricc2 calculates beside MP2 and CC2 ground state energies also
3.2. PARALLEL RUNS

CIS (identical to CCS), CIS(D), CIS\(D_{\infty}\), ADC(2) or CC2 excitation energies using the resolution-of-the-identity (RI) approximation. Also available are spin-component scaled (SCS and SOS) variants of the second-order methods CIS(D), CIS\(D_{\infty}\), ADC(2) or CC2. Excited state gradients are available at the CCS, CIS\(D_{\infty}\), ADC(2), and CC2 levels and the spin-component scaled variants of the latter three methods. In addition, transition moments and first-order properties are available for some of the methods. For more details see Section 10. The input can be prepared using the `cc` menu of `define`.

Coupled-Cluster methods beyond CC2: CCSD(F12\(^{\ast}\))(T) (`ccsdf12`)
Coupled-Cluster methods beyond CC2 as CCSD and CCSD(T) and Møller-Plesset perturbation theory beyond MP2 and explicitly-correlated F12 variants thereof are since Release V7.0 implemented in the `ccsdf12` program. The F12 variants of these methods have a much faster basis set convergence and are therefore more efficient. We recommend in particular CCSD(F12\(^{\ast}\)) and CCSD(F12\(^{\ast}\))(T). Excitation energies are only available for (conventional) CCSD.

3.1.3 Calculation of Molecular Properties

See Section 1.4 for the functionality and Section 22 for the required keywords of the modules `dscf`, `ridft`, `mpshift`, `escf`, and `ricc2`.

3.1.4 Modules and Data Flow

See Figure 3.1.

3.2 Parallel Runs

Some of the TURBOMOLE modules are parallelized using the message passing interface (MPI) for distributed and shared memory machines or with OpenMP or multi-threaded techniques for shared memory and multi-core machines.

Generally there are two hardware scenarios which determine the kind of parallelization that is possible to use:

- **On a single node** with several CPUs and/or cores using the same memory (shared memory), the user can run all parallelized modules of TURBOMOLE. For some modules, both shared-memory and MPI versions are available, but it is recommended not to use the latter ones for performance reasons.

 How to run the parallel TURBOMOLE SMP version on multi-core and/or multi-CPU systems: Please see chapter 3.2.2.

- **On a cluster** a parallel calculation can be performed using several distinct nodes, each one with local memory and disks. This can be done with the MPI
CHAPTER 3. HOW TO RUN TURBOMOLE

Figure 3.1: The modules of TURBOMOLE and the main data flow between them.
3.2. PARALLEL RUNS

version. It is, however, often more efficient to use the SMP version also on a cluster by running each individual job on a single node using all cores.

How to run the parallel TURBOMOLE MPI version on clusters: Please see chapter 3.2.1.

The list of programs parallelized includes presently:

- **ridft** — parallel ground state Hartree-Fock and DFT energies including RI-J and the multipole accelerated RI (MA-RI-J), SMP and MPI
- **rdgrad** — parallel ground state gradients from **ridft** calculations, SMP and MPI
- **dscf** — Hartree-Fock and DFT ground state calculations for all available DFT functionals, without the usage of RI-J approximation, SMP and MPI
- **riper** — parallel ground state DFT energies for molecular and periodic systems. SMP only.
- **grad** — parallel ground state gradients from **dscf** calculations, SMP and MPI
- **ricc2** — parallel ground and excited state calculations of energies and gradients at MP2 and CC2 level using RI, as well as energy calculations of other wave function models, see chapter 10.6. SMP and MPI
- **ccsdf12** — parallel ground state energies beyond MP2/CC2 and excitation energies beyond CC2. SMP
- **pnoccsd** — parallel ground state energies at the OSV-PNO-MP2 and OSV-PNO-MP2-F12 level, SMP and MPI. For PNO-CCSD and PNO-CCSD(T) only the SMP version is available.
- **mpgrad** — parallel conventional (i.e. non-RI) MP2 energy and gradient calculations. Please note that RI-MP2 is one to two orders of magnitude faster than conventional MP2, so even serial RI-MP2 will be faster than parallel MP2 calculations. SMP and MPI
- **aoforce** — parallel Hartree-Fock and DFT analytic 2nd derivatives for vibrational frequencies, IR spectra, generation of Hessian for transition state searches and check for minimum structures. SMP and MPI
- **escf** — parallel TDDFT, RPA, CIS excited state calculations (UV-Vis and CD spectra, polarizabilities). SMP and MPI
- **egrad** — parallel TDDFT, RPA, CIS excited state analytic gradients, including polarizability derivatives for RAMAN spectra. SMP only.
- **tb** — parallel GFN2-xTB energy and gradient calculations. SMP only.
- **NumForce** — this script can used for a trivial parallelization of the numerical displaced coordinates. SMP and MPI
Additional keywords necessary for parallel runs with the SMP or MPI binaries are not needed. When using the parallel version of TURBOMOLE, scripts are replacing the binaries. Those scripts prepare a usual input, run the necessary steps and automatically start the parallel programs. The users just have to set environment variables, see Sec. 3.2.1 below.

To use the OpenMP parallelization, only an environment variable needs to be set. But to use this parallelization efficiently one should consider a few additional points, e.g. memory usage, which are described in Sec. 3.2.2.

3.2.1 Running Parallel Jobs — MPI case

The parallel version of TURBOMOLE runs on all supported systems:

- workstation cluster with Ethernet, Infiniband, Myrinet (or other) connection
- SMP systems
- or combinations of SMP and cluster

Setting up the parallel MPI environment

In addition to the installation steps described in Section 2 (see page 34) you just have to set the variable PARA_ARCH to MPI, i.e. in sh/bash/ksh syntax:

```bash
export PARA_ARCH=MPI
```

This will cause sysname to append the string _mpi to the system name and the scripts like jobex will take the parallel binaries by default. To call the parallel versions of programs like ridft, rdgrad, dscf, ricc2, etc. from your command line without explicit path, expand your $PATH environment variable to:

```bash
export PATH=$TURBODIR/bin/‘sysname’:$PATH
```

The usual binaries are replaced by scripts that prepare the input for a parallel run and start mpirun (or poe on IBM) automatically. The number of CPUs that shall be used can be chosen by setting the environment variable PARNODES:

```bash
export PARNODES=8
```

The default for PARNODES is 2.

Finally the user can set a default scratch directory that must be available on all nodes. Writing scratch files to local directories is highly recommended for I/O intensive modules like ricc2, otherwise the scratch files will be written over the network to the same directory where the input is located. The path to the local disk can be set with
3.2. PARALLEL RUNS

```bash
export TURBOTMPDIR=/scratch/username
```

This setting is automatically recognized by most parallel programs. Note:

- For RI-DFT calculations it is usually neither necessary nor helpful to set TURBOTMPDIR.
- This does not set the path for the integral scratch files for dscf (see section below about twoint of keyword $scfintunit).
- In MPI parallel runs the programs attach to the name given in $TURBOTMPDIR node-specific extension (e.g. /scratch/username-001) to avoid clashes between processes that access the same file system. The jobs must have the permissions to create these directories. Therefore one must not set $TURBOTMPDIR to something like /scratch which would result in directory names like /scratch-001 — which usually can not be created by jobs running under a standard user account.

So please set the temporary directory for parallel files to a local file system at a position you are allowed to generate directories, like /tmp/myname/tm-jobs/mpifiles

MPI versions, distributions and flavours

TURBOMOLE is using the MPI version which has been utilized to generate the binaries. To make sure that the parallel version is running, no matter which MPI flavour you have installed on your machines, **TURBOMOLE** does include the run-time version of the MPI flavour it needs.

Please do not try to use **TURBOMOLE** with your local MPI version (OpenMPI, MPICH, ...)! Do not call the parallel MPI binaries directly, just set $PARA_ARCH as described above and call the modules the same way you use them in the serial version.

On Linux for PCs and Windows systems either **IBM Platform MPI** (formerly known as HP-MPI, now also known as IBM Spectrum MPI) is used and included — see **IBM Platform MPI** — or **Intel MPI Intel MPI**.

COSMOlogic ships **TURBOMOLE** with a IBM Platform MPI Community Edition or the full Intel MPI version. **TURBOMOLE** users do not have to install or license IBM Platform MPI or Intel MPI themselves. Parallel binaries will run out of the box on the fastest interconnect that is found - Infiniband, Myrinet, TCP/IP, etc.

Note: most parallel **TURBOMOLE** modules need an extra server running in addition to the clients. This server is included in the parallel binaries and it will be started automatically — but this results in one additional task that usually does not need any CPU time. So if you are setting PARNODES to N, N+1 tasks will be started.
CHAPTER 3. HOW TO RUN TURBOMOLE

If you are using a queuing system or if you give a list of hosts where TURBOMOLE jobs shall run on (see below), make sure that the number of supplied nodes match $PARNODES$ — e.g. if you are using 4 CPUs via a queuing system, make sure that $PARNODES$ is set to 4.

Starting parallel jobs

After setting up the parallel environment as described in the previous section, parallel jobs can be started just like the serial ones. If the input is a serial one, it will be prepared automatically for the parallel run.

For the additional mandatory or optional input for parallel runs with the ricc2 program see Section 10.6.

Running calculations on different nodes

If TURBOMOLE is supposed to run on a cluster, we highly recommend the usage of a queuing system like PBS, Univa/SGE GridEngine or LFS. The parallel version of TURBOMOLE will automatically recognise that it is started from within one of the queuing systems:

- PBS (Torque/Maui)
- LSF
- SLURM
- SGE or Univa Grid Engine

and the binaries will run on the machines those queuing systems provide.

Note: The default is to use secure shell (ssh) to start the jobs on the nodes. Please make sure that ssh works in a passwordless fashion on the cluster. If ssh is not possible, but srun is enabled, set `export MPI_USESRUN=1` to use srun instead of ssh.

Important: Make sure that the input files are located on a network directory like an NFS disk which can be accessed on all nodes that participate at the calculation.

If parallel jobs are started outside a queuing system, or if you have a non-supported or a non-default installation of above mentioned queuing systems, the number of nodes and their names can also be provided by the user. A file that contains a list of machines has to be created, each line containing one machine name:

```
node1
node1
node2
node3
node4
node4
```
And the environment variable \$HOSTS_FILE has to be set to that file:

\[
\text{export HOSTS_FILE=}/nfshome/username/hostsfile
\]

\textit{Note:} Do not forget to set \$PARNODES to the number of lines in \$HOSTS_FILE, unless you have set in addition OMP_NUM_THREADS (see below).

\textit{Note:} In general the stack size limit has to be raised to a reasonable amount of the memory (or to unlimited). In the serial version the user can set this by \texttt{ulimit -s unlimited} on bash/sh/ksh shells or \texttt{limit stacksize unlimited} on csh/tcsh shells. However, for the parallel version that is not sufficient if several nodes are used, and the /\texttt{etc/security/limits.conf} files on all nodes might have to be changed. See chapter 2.2 of this documentation, page 37.

\textbf{OpenMP/MPI hybrid version}

Some TURBOMOLE modules like dscf, grad, aoforce, ricc2, escf or pnoccsd are parallelized using a hybrid OpenMP/MPI scheme. For those modules it is sufficient to start just one single process per node. In addition, please set

\[
\text{export OMP_NUM_THREADS=} <\text{number of cores per node}>
\]

when starting the job. This environment variable will be exported to each node such that the processes started there will open \textit{<number of cores per node>} threads.

\textbf{Memory for parallel jobs}

Since there are several different parallel versions of the individual TURBOMOLE modules available, the meaning of the keywords to set memory (\$ricore and \$maxcor) can be quite confusing. A lot of problems can be avoided if following points are taken care of:

\begin{itemize}
\item for almost all cases increasing \$ricore will not speed up the calculation but increase memory consumption significantly. It is therefore recommended to set \$ricore to a small value like 100 or 500. Except:
\item usage of RI-JK does benefit from large \$ricore values. Check if \$rik is present in your control file — and if yes, try to increase the memory to a value which your machines are capable to handle.
\item many post-SCF programs read and use \$maxcor. There are a couple of options to this keyword like per_proc to define the amount of memory per process or per_node for memory settings on one node, etc. A detailed description can be found in chapter 22.2.2 on page 345.
\item if you worry about speed in RI-DFT calculations, make sure to have \$marij in your control file
\end{itemize}
Testing the parallel binaries

The binaries ridft, rdgrad, dscf, grad, and ricc2 can be tested by the usual test suite: go to $TURBODIR/TURBOTEST and call TTEST

Note: Some of the tests are very small and will only pass properly if 2 CPUs are used at maximum. Therefore TTEST will not run any test if $PARNODES is set to a higher value than 2.

If you want to run some of the larger tests with more CPUs, you have to edit the DEFCRIT file in TURBOMOLE/TURBOTEST and change the $defmaxnodes option.

Sending additional server task to sleep

Except for the MPI parallel binaries of ridft and rdgrad all modules start an additional server process which is not participating in the calculation itself, but just responsible for the task distribution. This server task is waiting for the processes to ask for new tasks in a way that the response time is as low as possible. This leads to a noticeable CPU usage.

To send the server task to sleep while waiting for communication, it is possible to set the environment variable TM_SERVERSLEEP either to a value in microseconds or to a string like 'on' to use the default of 500 microseconds:

export TM_SERVERSLEEP=1000
#or
export TM_SERVERSLEEP=on

This is only reasonable if you use relatively few CPUs for a calculation. The larger the number of processes, the more important is a timely reply from the server.

Sample simple PBS start script

#!/bin/sh
Name of your run :
#PBS -N turbomole
#
Number of nodes to run on:
#PBS -l nodes=4
#
Export environment:
#PBS -V
#
Set your TURBOMOLE pathes:

######## ENTER YOUR TURBOMOLE INSTALLATION PATH HERE ##########
export TURBODIR=/whereis/TURBOMOLE
##
3.2. PARALLEL RUNS

export PATH=$TURBODIR/scripts:$PATH

set locale to C
unset LANG
unset LC_CTYPE

set stack size limit to unlimited:
ulimit -s unlimited

Count the number of nodes
PBS_L_NODENUMBER=`wc -l < $PBS_NODEFILE`

Check if this is a parallel job
if [$PBS_L_NODENUMBER -gt 1]; then
 ###### Parallel job
 # Set environment variables for a MPI job
 export PARA_ARCH=MPI
 export PATH="${TURBODIR}/bin/`sysname`:PATH"
 export PARNODES=`expr $PBS_L_NODENUMBER`
else
 ###### Sequentiel job
 # set the PATH for Turbomole calculations
 export PATH="${TURBODIR}/bin/`sysname`:PATH"
fi

#VERY important is to tell PBS to change directory to where
the input files are:

cd $PBS_O_WORKDIR

######## ENTER YOUR JOB HERE ##
jobex -ri > jobex.out
###

3.2.2 Running Parallel Jobs — SMP case

The SMP version of TURBOMOLE currently combines three different parallelization schemes which all use shared memory:

- dscf, grad, ridft, rdgrad, aoforce, escf, egrad, ricc2, ccsdf12, pnoccsd, evib, odft, rirpa and riper are partially parallelized with OpenMP for applications on shared-memory, in particular multi-CPU and multi-core, machines.
- aoforce, escf, egrad, ridft and rdgrad are also parallelized as described in [26]
• **ridft** and **rdgrad** are parallelized with MPI using shared memory on SMP systems. This is also the default version for SMP systems, not just for MPI runs.

Setting up the parallel SMP environment

In addition to the installation steps described in Section 2 (see page 34) you just have to set the variable `PARA_ARCH` to `SMP`, i.e. in sh/bash/ksh syntax:

```bash
export PARA_ARCH=SMP
```

This will cause `sysname` to append the string `_smp` to the system name and the scripts like `jobex` will take the parallel binaries by default. To call the parallel versions of the programs (like `ridft` or `aoforce`) from your command line without explicit path, expand your `$PATH` environment variable to:

```bash
export PATH=$TURBODIR/bin/`sysname`:$PATH
```

The usual binaries are replaced now by scripts that prepare the input for a parallel run and start the job automatically. The number of CPUs that shall be used can be chosen by setting the environment variable `PARNODES`:

```bash
export PARNODES=8
```

The default for `PARNODES` is 2.

NOTE: Depending on what you are going to run, some care has to be taken that the system settings like memory limits, etc. will not prevent the parallel versions to run. See the following sections.

OpenMP parallelization of almost all time consuming modules

The OpenMP parallelization does not need any special program startup. The binaries can be invoked in exactly the same manner as for sequential (non-parallel) calculations. Just set the environment variable `PARNODES` to the number or threads that should be used by the programs. The scripts will set `OMP_NUM_THREADS` to the same value and start the OpenMP binaries directly. The number of threads is essentially the max. number of CPU cores the program will try to utilize. To exploit e.g. all eight cores of a machine with two quad-core CPUs set

```bash
export PARNODES=8
```

(for csh and tcsh use `setenv PARNODES=8`).

Presently the OpenMP parallelization of `ricc2` comprises all functionalities apart from the $O(N^4)$-scaling LT-SOS-RI functionalities (which are only parallelized with
3.2. PARALLEL RUNS

MPI) and expectation values for \hat{S}^2 (not parallelized). Note that the memory specified with $\$\text{maxcor}$ is for OpenMP-parallel calculation the maximum amount of memory that will be dynamically allocated by all threads together. To use your computational resources efficiently, it is recommended to set this value to about 75% of the physical memory available for your calculations.

For Localized Hartree-Fock calculations please use the dscf program which is parallelized using OpenMP. In this case an almost ideal speedup is obtained because the most expensive part of the calculation is the evaluation of the Fock matrix and of the Slater-potential, and both of them are well parallelized. The calculation of the correction-term of the grid will use a single thread.

The OpenMP parallelization of riper covers all contributions to the Kohn-Sham matrix and nuclear gradient. Hence an almost ideal speedup is obtained.

To use the OpenMP version of ridft and rdgrad instead of the default parallelization on SMP machines, just set

```
export TM_PAR_OMP=on
```

and start the jobs the usual way. Some features like the semi-numerical exchange (keyword $\$\text{senex}$, see section 22.2.8) are parallelized with OpenMP only. For most applications the default version shows a better scaling, but OpenMP can have other benefits like the amount of hardware resources used.

Restrictions:

- In the ricc2 program the parts related to RI-MP2-F12, LT-SOS-RI-MP2 or calculation of expectation values for \hat{S}^2 do not (yet) use OpenMP parallelization. If the OpenMP parallelization is switched on (by setting OMP_NUM_THREADS) these parts will still be executed sequentially.

- In the dscf program the $\$\text{incore}$ option will be ignored if more than one thread is used. Semi-direct dscf calculations (i.e. if a size larger than 0 is given two-electron integral scratch file in $\$\text{scfintunit}$) can not be combined with the OpenMP parallel runs. (The program will then stop with error message in the first Fock matrix construction.)

Multi-thread parallelization of $\text{dscf, grad, aoforce, escf, egrad, ridft}$ and rdgrad

The parallelization of those modules is described in [26] and is based on fork() and Unix sockets. Except setting PARNODES which triggers the environment variable SMPCPUS, the environment variable

```
export TM_PAR_FORK=on
```

has to be set. Alternatively, the binaries can be called with -smpcpus <N> command line option or with the keyword $\$\text{smp_cpus}$ in the control file.
The efficiency of the parallelization is usually similar to the default version, but for \texttt{ridft} and \texttt{rdgrad} RI-K is not parallelized. If density convergence criteria ($\texttt{denconv}$) is switched on using \texttt{ridft} and if no RI-K is being used, the multi-threaded version should be used.

\textbf{SMP/MPI version of \texttt{ridft} and \texttt{rdgrad}}

Since TURBOMOLE version 7.2 the usage of GlobalArrays has been omitted. Instead, a set of routines which utilize shared memory on a node has been implemented. Both modules, \texttt{ridft} and \texttt{rdgrad}, start each process as an individual MPI instance. Processes on the same node are then collected to collectively store and use data in a shared memory region. This avoids excessive memory usage and reduces the amount of memory requirements significantly, especially compared to the old MPI implementation (which has been used by default in former TURBOMOLE versions). It is nevertheless recommended to

- run jobs in parallel only if the molecules and/or basis set size is large enough — several hundred basis functions for non-hybrid functionals, or few hundred for hybrid functional calculations. The RI approximation in combination with MARI-J is already very fast in the serial version, usage of many cores would introduce a communication overhead which exceeds the computational time on a single core.

- not ask for too much memory. For medium sized to large molecules adding a significant amount of \texttt{ricore} will not speed up the calculation, but eventually lead to overstressed systems (or even memory swapping) or failure of jobs due to too large memory requirements. So please do not set large \texttt{ricore} values in such cases, a few ten or hundred MB are sufficient (even zero works equally well).
Chapter 4

Preparing your input file with Define

Define is the general interactive input generator of TURBOMOLE. During a session with define, you will create the control file which controls the actions of all other TURBOMOLE programs. During your define session you will be guided through four main menus:

1. The geometry main menu: This first menu allows you to build your molecule, define internal coordinates for geometry optimizations, determine the point group symmetry of the molecule, adjust internal coordinates to the desired values and related operations. Beyond this one can perform a geometry optimization at a force field level to preoptimize the geometry and calculate a Cartesian analytical Hessian. After leaving this menu, your molecule to be calculated should be fully specified.

2. The atomic attributes menu: Here you will have to assign basis sets and/or effective core potentials to all atoms. The SV(P) basis is assigned automatically as default, as well as ECPs (small core) beyond Kr.

3. The occupation numbers and start vectors menu: In this menu you should choose eht to start from Extended Hückel MO vectors. Then you have to define the number of occupied orbitals in each irreducible representation.

4. The general menu: The last menu manages a lot of control parameters for all TURBOMOLE programs.

Most of the menu commands are self-explanatory and will only be discussed briefly. Typing * (or q) terminates the current menu, writes data to control and leads to the next while typing & goes back to the previous menu.
4.0.3 Universally Available Display Commands in Define

There are some commands which may be used at (almost) every stage of your define session. If you build up a complicated molecular geometry, you will find the dis command useful. It will bring you to the following little submenu:

ANY COMMAND WHICH STARTS WITH THE 3 LETTERS dis IS A DISPLAY COMMAND. AVAILABLE DISPLAY COMMANDS ARE:

disc <range> : DISPLAY CARTESIAN COORDINATES
dist <real> : DISPLAY DISTANCE LIST
disb <range> : DISPLAY BONDING INFORMATION
disa <range> : DISPLAY BOND ANGLE INFORMATION
disi <range> : DISPLAY VALUES OF INTERNAL COORDINATES
disg <range> : GRAPHICAL DISPLAY OF MOL. GEOMETRY

<range> IS A SET OF ATOMS REFERENCED
<real> IS AN OPTIONAL DISTANCE THRESHOLD (DEFAULT=5.0)

AS AN EXAMPLE CONSIDER disc 1,3-6,10,11 WHICH DISPLAYS THE CARTESIAN COORDINATES OF ATOMS 1,3,4,5,6,10, and 11.

HIT >return< TO CONTINUE OR ENTER ANY DISPLAY COMMAND

Of course, you may enter each of these display commands directly without entering the general command dis before. The option disg needs special adaption to the computational environment, however, and will normally not be available.

4.0.4 Specifying Atomic Sets

For many commands in define you will have to specify a set of atoms on which that command shall act. There are three ways to do that:

- You may enter all or none, the meaning of which should be clear (entering none makes not much sense in most cases, however).
- You may specify a list of atomic indices like 1 or 3,5,6 or 2,4-6,7,8-10 or similar.
- You may also enter atomic identifiers which means strings of at most eight characters: the first two contain the element symbol and the remaining six could be used to distinguish different atoms of the same type. For example, if you have several carbon atoms in your molecule, you could label some c ring and others c chain to distinguish them. Whenever you want to enter an atomic identifier, you have to put it in double quotation marks: "c ring".

You should take into account that define also creates, from the atoms you entered, all others according to symmetry. If necessary, you will therefore have to lower the (formal) symmetry before executing a command.

4.0.5 control as Input and Output File

define may be used to update an existing control file, which is helpful if only the basis set has been changed. In this case just keep all data, i.e. reply with <enter> on
all questions, and only specify new start MOs. The more general usage is described now.

At the beginning of each define session, you will be asked to enter the name of the file to be created. As mentioned earlier, all TURBOMOLE programs require their input to be on a file named control, but it may be useful at this moment to choose another name for this file (e.g. if you have an old input file control and you do not want to overwrite it). Next you will be asked to enter the name of an old file which you want to use as input for this session. This prevents you from creating the new input from scratch if you want to make only minor changes to an old control file. It is possible to use the same file as input and output file during a define session (which means that it will only be modified). This may lead to difficulties, however, because define reads from the input file when entering each main menu and writes the corresponding data when leaving this menu. Therefore the input file may be in an ill-defined status for the next main menu (this will be the case, for example, if you add or change atoms in the first menu so that the basis set information is wrong in the second menu). define takes care of most—but not all—of these problems.

For these reasons, it is recommended to use a different filename for the input and the output file of the define session if you change the molecule to be investigated. In most cases involving only changes in the last three of the four main menus no problem should arise when using the same file as input and output.

4.0.6 Be Prepared

Atomic Coordinates

Molecules and their structures are specified by coordinates of its atoms, within the program invariably by Cartesian coordinates in atomic units (Ångström would also do). In TURBOMOLE these coordinates are contained in the file coord (see Section 23 “Sample control files” for an example).

Recommendation

We strongly recommend to create the coord file before calling define, only for small molecules one should use the interactive input feature of define. Set up the molecule by any program you like and write out coordinates in the xyz-format (XMol format), which is supported by most programs. Then use the TURBOMOLE tool x2t to convert it into a TURBOMOLE coord file (see Section 1.5).

Internal Coordinates

Structure optimizations, see jobex, are most efficient if carried out in internal coordinates and TURBOMOLE offers the following choices.

internals based on bond distances and angles, see Section 4.1.2.
CHAPTER 4. PREPARING YOUR INPUT FILE WITH DEFINE

redundant internals
defined as linearly independent combinations of internals (see ref. [27]),
provided automatically by the command ired in the ‘geometry main menu’ in Section 4.1 below. This works in almost all cases and is efficient. The disadvantage is, that this is a black box procedure, the coordinates employed have no direct meaning and cannot be modified easily by the user.

cartesians
should always work but are inefficient (more cycles needed for convergence). Cartesians are the last resort if other options fail, they are assigned as default if one leaves the main geometry menu and no other internals have been defined.

4.1 The Geometry Main Menu

After some preliminaries providing the title etc. you reach the geometry main menu:

SPECIFICATION OF MOLECULAR GEOMETRY (#ATOMS=0 SYMMETRY=c1)
YOU MAY USE ONE OF THE FOLLOWING COMMANDS :
sy <group> <eps> : DEFINE MOLECULAR SYMMETRY (default for eps=3d-1)
desy <eps> : DETERMINE MOLECULAR SYMMETRY AND ADJUST
 COORDINATES (default for eps=1d-6)
susy : ADJUST COORDINATES FOR SUBGROUPS
ai : ADD ATOMIC COORDINATES INTERACTIVELY
a <file> : ADD ATOMIC COORDINATES FROM FILE <file>
aa <file> : ADD ATOMIC COORDINATES IN ANGSTROEM UNITS FROM FILE <file>
sub : SUBSTITUTE AN ATOM BY A GROUP OF ATOMS
i : INTERNAL COORDINATE MENU
ired : REDUNDANT INTERNAL COORDINATES
red_info : DISPLAY REDUNDANT INTERNAL COORDINATES
ff : UFF-FORCEFIELD CALCULATION
m : MANIPULATE GEOMETRY
frag : DEFINE FRAGMENTS FOR BSSE CALCULATION
w <file> : WRITE MOLECULAR COORDINATES TO FILE <file>
r <file> : RELOAD ATOMIC AND INTERNAL COORDINATES FROM FILE <file>
name : CHANGE ATOMIC IDENTIFIERS
del : DELETE ATOMS
dis : DISPLAY MOLECULAR GEOMETRY
banal : CARRY OUT BOND ANALYSIS
* : TERMINATE MOLECULAR GEOMETRY SPECIFICATION
 AND WRITE GEOMETRY DATA TO CONTROL FILE

IF YOU APPEND A QUESTION MARK TO ANY COMMAND AN EXPLANATION
OF THAT COMMAND MAY BE GIVEN

This menu allows you to build your molecule by defining the Cartesian coordinates interactively (ai) or by reading the coordinates from an external file (a, aa). The
structure can be manipulated by the commands sub, m, name and del. The command sy allows you to define the molecular symmetry while desy tries to determine automatically the symmetry group of a given molecule.

There exists a structure library which contains the Cartesian coordinates of selected molecules, e.g. CH₄. These data can be obtained by typing for example a ! ch₄ or a ! methane. The data files are to be found in the directory $TURBODIR/structures. The library can be extended.

You can perform a geometry optimization at a force field level to preoptimize the geometry. For this purpose the Universal Force Field (UFF) developed from Rappé et al. in 1992 [7] has been implemented in the uff module (see also Section 5.4). This can also be used to calculate an analytical approximate cartesian Hessian. If one does so, the start Hessian for the ab initio geometry optimization is this Hessian instead of the diagonal one ($forceinit on carthess for relax module).

Recommendation

Here is an easy way to get internal coordinates, which should work.

Have coord ready before calling define. In the main geometry menu proceed as follows to define redundant internals:

- **a** coord read coord
- desy determine symmetry, if you expect a higher symmetry, repeat with increased tolerance desy 0.1 , you may go up to desy 1.
- ired get redundant internals
- * quit main geometry menu

To define internals:

- **a** coord read coord
- desy determine symmetry
- i go to internal coordinate menu
- iaut automatic assignment of bends etc.
- q to quit bond analysis
- imet to get the metric, unnecessary internals are marked d now. If #ideg = #k in the head line you are done. Otherwise this did not work.

<enter> go back to main geometry menu
- * quit main geometry menu

To define cartesians:
a coord read coord

desy determine symmetry
*
quit main geometry menu

4.1.1 Description of commands

Main Geometry Menu

In the headline of this menu you can see the current number of atoms and molecular symmetry (we use an input for PH\textsubscript{3} as example). The commands in this menu will now be described briefly:

sy Definition of the Schönflies symbol of the molecular point group symmetry. If you enter only sy, define will ask you to enter the symbol, but you may also directly enter sy c3v. define will symmetrize the geometry according to the new Schönflies symbol and will create new nuclei if necessary. You therefore have to take care that you enter the correct symbol and that your molecule is properly oriented. All TURBOMOLE programs require the molecule to be in a standard orientation depending on its point group. For the groups C\textsubscript{n}, C\textsubscript{nv}, C\textsubscript{nh}, D\textsubscript{n}, D\textsubscript{nh} and D\textsubscript{nd} the z-axis has to be the main rotational axis, secondary (twofold) rotational axis is always the x-axis, \(\sigma_v\) is always the xz-plane and \(\sigma_h\) the xy-plane. \(O_h\) is oriented as \(D_{4h}\). For \(T_d\), the threefold rotational axis points in direction (1,1,1) and the z-axis is one of the twofold axes bisecting one vertex of the tetrahedron.

desy desy allows you to determine the molecular symmetry automatically. The geometry does not need to be perfectly symmetric for this command to work. If there are small deviations from some point group symmetry (as they occur in experimentally determined structures), desy will recognize the higher symmetry and symmetrize the molecule properly. If symmetry is lower than expected, use a larger threshold: \(<\text{eps}>\) up to \(1.0\) is possible.

susy susy leads you through the complete subgroup structure if you want to lower symmetry, e.g. to investigate Jahn–Teller distortions. The molecule is automatically reoriented if necessary. Example: \(T_d \rightarrow D_{2d} \rightarrow C_{2v} \rightarrow C_s\).

ai You may enter Cartesian atomic coordinates and atomic symbols interactively. After entering an atomic symbol, you will be asked for Cartesian coordinates for this type of atom until you enter *. If you enter & the atom counter will be decremented and you may re-define the last atom (but you surely won’t make mistakes, will you?). After entering *, define asks for the next atom type. Entering & here will allow you to re-define the last atom type and * to leave this mode and return to
the geometry main menu. Enter q as atom symbol if you want to use a dummy center without nuclear charge. Symmetry equivalent atoms are created immediately after you entered a set of coordinates.

This is a convenient tool to provide e.g. rings: exploit symmetry group D_{nm} to create an n-membered planar ring by putting an atom on the x-axis.

a file

You may also read atomic coordinates (and possibly internal coordinates) from file, where file must have the same format as the data group \texttt{coord} in file control.

The Cartesian coordinates and the definitions of the internal coordinates are read in free format; you only have to care for the keywords \texttt{coord} and (optionally) \texttt{intdef} and (important!) for the \texttt{end} at the end of the file. The atomic symbol follows the Cartesian coordinates separated by (at least) one blank. For a description of the internal coordinate definitions refer to 4.1.2.

Entering ‘!’ as first character of file will tell define to take file from the structure library. (The name following the ‘!’ actually does not need to be a filename in this case but rather a search string referenced in the structure library contents file, see Section 4.1).

aa file

same as a, but assumes the atomic coordinates to be in Å rather than a.u.

sub

This command allows you to replace one atom in your molecule by another molecule. For example, if you have methane and you want to create ethane, you could just substitute one hydrogen atom by another methane molecule. The only requirement to be met by the substituted atom is that it must have exactly one bond partner. The substituting molecule must have an atom at the substituting site; in the example above it would not be appropriate to use CH$_3$ instead of CH$_4$ for substitution. Upon substitution, two atoms will be deleted and the two ones forming the new bond will be put to a standard distance. define will then ask you to specify a dihedral angle between the old and the new unit. It is also possible to use a part of your molecule as substituting unit, e.g. if you have some methyl groups in your molecule, you can create further ones by substitution. Some attention is required for the specification of this substituting unit, because you have to specify the atom which will be deleted upon bond formation, too. If you enter the filename from which the structure is to be read starting with ‘!’ the file will be taken from the structure library (see Section 4.1). Definitions of internal coordinates will be adjusted after substitution, but no new internal coordinates are created.

i

This command offers a submenu which contains everything related to internal coordinates. It is further described in Section 4.1.2.
m This command offers a submenu which allows you to manipulate the molecular geometry, i.e. to move and rotate the molecule or parts of it. It is further described in Section 4.1.3.

frag Here, the fragments will be defined as being used by the jobsse script in order to do a calculation using the counter-poise correction scheme. In this menu, up to three monomers can be defined, together with their charges and their symmetry. When assigning atom numbers to fragments, if x is entered instead of a number, the program will request the first and last atoms of a range. This will be useful for very large fragments.

w file The command w writes your molecular geometry and your internal coordinates to file. Afterwards you will be back in the geometry main menu. If the filename entered starts with ‘!’’, the structure will be written to the structure library.

name name allows you to change atomic identifiers turning, e.g. oxygen atoms into sulfur atoms. After entering the identifier to be changed (remember the double quotation marks : "c ring"), you will be asked to enter the new one. You can use question marks for characters not to be changed, e.g. you enter "??ring" to change c chain to c ring. If you do not enter eight characters, your input will be filled up with trailing blanks.

del The command del allows you to delete one or more atoms. After you entered the atomic list, define will show you a list of all atoms concerned and will ask you to confirm deleting these atoms. If any internal coordinate definitions exist, which rely on some of the deleted atoms, these definitions will be deleted, too.

banal The command banal allows you to perform a bonding analysis, that is, define will try to decide which atoms are bonded and which are not (according to a table of standard bond lengths which is included in the code of define). You must have performed this command before you can use the display commands disb (display bonding information) or disa (display bond angle information). The standard bond lengths (and the bonding analysis available from these) are also needed for the commands sub and iaut (see internal coordinate menu, Section 4.1.2). If you want to change the standard bond lengths (or define more bond lengths, because not for all possible combinations of elements a standard length is available) you can do that by creating your own file with the non-default values and by specifying its full pathname in file .sys.data. The file has the following simple format:

c - h 2.2
h - h 2.0
. -
4.1. THE GEOMETRY MAIN MENU

The format of the entries is almost arbitrary: the two element symbols have to be separated by a bar, the new bond distance follows in free format (in atomic units). If the file cannot be read properly, a warning message is displayed.

* This command leaves this first main menu and writes all data generated so far to file. The default output file is the file you choose in the first question during your define session (usually control). Now the data groups $coord and $intdef will be written to file. After leaving this menu, you will enter the atomic attributes menu, which is described in Section 4.2.

4.1.2 Internal Coordinate Menu

INTERNAL COORDINATE MENU (#ideg=6 #k=2 #f=0 #d=0 #i=0)

imet <a> : PROVIDE B-MATRIX FOR ACTIVE INTERNAL COORDINATES
(CHECK COMPLETENESS AND NUMERICAL QUALITY
AND CHANGE REDUNDANT INTERNALS TO display)
idef : SUB-MENU FOR INTERACTIVE DEFINITION OF INTERNAL COORDINATES
iideg <a> : OUTPUT NUMBER OF TOT. SYMMETRIC INTERNAL DEGREES OF FREEDOM
iaut : TRY AUTOMATIC DEFINITION OF INTERNAL COORDINATES
iman <a> : MANIPULATE GEOMETRY BY CHANGING INTERNAL COORDINATE VALUES
imanat <i> : AS iman BUT STARTING AT INTERNAL COORD. NUMBER i
ic <i> <x>: CHANGE STATUS OF INTERNAL COORDINATE <i> TO <x>
e.g. ic 5 d TO MAKE 5TH COORD. display OR ic k d
irem <i> : REMOVE INTERNAL COORDINATE <i>,
e.g. irem d TO REMOVE ALL display COORDS
dis : ANY DISPLAY COMMAND e.g. disi OR disc
disiat <i>: AS disi BUT STARTING AT INTERNAL COORD. NUMBER i

WHERE <a>= OPTIONAL ATOMIC SET (DEFAULT=all)
<i>= INDEX(LIST) OF INTERNAL COORDINATE(S) LIKE 3-6,8 OR <i>=<x>
<x>= STATUS OF INTERNAL COORDINATE = k, f, d OR i
ADDING A QUESTION MARK TO ANY COMMAND MAY PROVIDE EXPLANATIONS

ENTER COMMAND OR HIT >return< TO GET BACK TO GEOMETRY MAIN MENU

The parameters in the headline of this menu have the following meanings:

#ideg is the total number of symmetry restricted degrees of freedom.

#k is the number of active internal coordinates specified up to now. Only these coordinates are optimized during a geometry optimization.

#f is the number of fixed internal coordinates specified. These coordinates will be included in the B-matrix (see command imet), but their values will not be changed during geometry optimization.
#d is the number of internal coordinates whose values will only be displayed (e.g. by command disi), but no gradients will be calculated for these coordinates nor will they be included in the geometry optimization.

#i means the number of coordinates which are defined, but will be completely ignored, i.e. they are not even displayed on the screen and will not be used by any program (this is the waste-paper-basket of define).

Note that the #k plus #f must equal the number of degrees of freedom (#ideg) of your molecule, if you want to perform a geometry optimization. If you have less coordinates than degrees of freedom, you will have to specify further ones (commands idef or iaut, see below); if you have more coordinates than degrees of freedom, you will have to throw away some of them (commands irem or imet, see below).

The commands in this menu allow you to define internal coordinates for your molecule, adjust your geometry to special values of these internal coordinates and to control the numeric reliability of the chosen set of internal coordinates. In detail, the commands act as follows.

Description of commands

imet a This command computes the so-called B-matrix, which is the matrix of the derivatives of the (active and fixed) internal coordinates with respect to Cartesian coordinates. This matrix is used in program relax for the conversion from Cartesian coordinates and gradients to internal ones and vice versa. If this matrix is singular (or even nearly singular) this indicates a linear dependency of your internal coordinate set. As a consequence the geometry update (more exactly the transformation of the updated internal coordinates into Cartesian ones) will fail. This may also happen in the course of a geometry optimization if the coordinates run into linear dependency during their optimization. imet checks the B-matrix and removes linear dependent internal coordinates from your list (their status is changed from #k or #f to #d). If B is only near singular, a warning is issued and the lowest eigenvalue(s) as well as the corresponding eigenvector(s) are displayed. In this case, you should try to find better internal coordinates (although this may not always be possible). After the command imet, there may be too few (active plus fixed) internal coordinates, but certainly not too many (because linear dependencies have been eliminated). Perhaps you will have to add new ones or—better!—try command iaut or irem in the preceding menu.

Command imet should be used always after creating internal coordinates with iaut or idef (especially after iaut, because this command creates usually an overcomplete set of internal coordinates).

idef idef unfolds a little submenu where you can define internal coordinates manually. The exact procedure of the definition will be described below in a separate section.
4.1. THE GEOMETRY MAIN MENU

ideg a This command gives you the number of symmetry restricted degrees of freedom (for the atomic set specified by a). Without symmetry, this is just $3N - 6$, where N is the number of atoms, but if there is symmetry, some of these degrees of freedom will violate symmetry and therefore are not valid. For geometry optimizations, only the symmetry allowed degrees of freedom are needed, because the symmetry requirements are imposed anyway. In connection with the optional atomic set a this command can help you to find out, in which part of a complicated molecule internal coordinates are missing, if you fail to get the full number of \#ideg (which equals the result of ideg all) for the molecule as a whole.

iaut iaut tries an automatic definition of internal coordinates. This command relies on a recursive procedure which tries to simplify the molecule as far as possible and then starts the definition of internal coordinates. At present not all molecular topologies are supported, therefore it may happen that no internal coordinates can be assigned to your molecule or at least a part of it. However, for all cases in which an automatic assignment of coordinates is possible, iaut has up to now proved to provide very good internal coordinates. If iaut works for your molecule (and in most non-pathological cases it will) we recommend strongly to use these coordinates, as they may help you to save several cycles in the geometry optimization procedure. After creating internal coordinates with iaut you should always use imet (see above), because iaut may provide an overcomplete set of coordinates. All coordinates which conflict with the molecular symmetry are set to ignore by iaut.

iman a iman allows you to modify the values of internal coordinates. If you specify a list of atoms a only those internal coordinates which refer to only these atoms will be handled. You will get a list of all (active and fixed) internal coordinates and their current values and you will be able to enter a new value for each of them if you like. Default (<enter>) keeps the value shown. Be aware that all distances are given in atomic units (1 a.u. = 52.9 pm).

ic i x This option allows you to change the status of a coordinate, e.g. from active to display or every other combination. The syntax is ic 5 d, if coordinate no. 5 is to be set to display, or ic k d, if all active coordinates are to be set to display.

irem i This option allows you to delete definitions of internal coordinates from your list. The indices of the internal coordinates always refer to the full list of coordinates including display and ignore coordinates. To make sure you delete the right ones, use disi. Also the indices will immediately change if you delete coordinates. If you want to delete several coordinates, this is therefore done most easily if you delete them in order of descending indices (because deletion of a coordinate has only an effect on the coordinates with higher indices). After choosing the coordinates
to be deleted, a list of all coordinates involved will be displayed and you will be asked to confirm deletion.

The syntax is simply irem 5 to delete internal coordinate no. 5 or irem d to remove all ‘display’ coordinates.

Hitting <return> will bring you back to the geometry main menu.

Interactive Definition of Internal Coordinates

If you choose idef in the internal coordinate menu, you will get the following information:

ENTER INTERNAL COORDINATE DEFINITION COMMAND

\[
\langle x \rangle \ \langle \text{type} \rangle \ \langle \text{indices} \rangle
\]

WHERE

\[
\begin{align*}
\langle x \rangle & = k \ f \ d \ i \\
\langle \text{type} \rangle & = \text{stre} \ \text{invr} \ \text{bend} \ \text{outp} \ \text{tors} \ \text{linc} \ \text{linp} \\
& \ \text{comp} \ \text{ring} \ \text{pyrm} \ \text{bipy} \ \text{pris} \ \text{cube} \ \text{octa}
\end{align*}
\]

THESE COMMANDS WILL BE EXPLAINED IN DETAIL IF YOU ENTER
\[
\langle x \rangle \ \langle \text{type} \rangle \ ? \
\]
FOR SOME CHOICE OF \langle x \rangle AND \langle \text{type} \rangle, E.G. k stre ?

DEFAULT=GO BACK TO INTERNAL MAIN MENU DISPLAY=dis

The \langle x \rangle means the status (see page 63) of the internal coordinate entered (k, f, d, i). The syntax is:

\[
\begin{align*}
\text{k stre} & 1 \ 2 \\
\text{d tors} & 3 \ 6 \ 2 \ 7 \\
\text{f bend} & 3 \ 4 \ 5 \\
\text{i outp} & 3 \ 4 \ 7 \ 9
\end{align*}
\]

Note that in the third example atom 5 is the central atom of the angle!

Specification of available internal coordinates

The following types of coordinates are available:

\begin{itemize}
\item **stre** The stre (for stretch) describes a distance between two atoms. It needs only two atomic indices to be given, the order of which is arbitrary.
\item **invr** The invr coordinate (for inverse r) describes an inverse distance. The declaration is the same as for stre, but in some cases (if you are far away from the minimum) the use of invr may result in better convergence.
\item **bend** bend describes a bond angle. It requires three atoms to be specified, of which the third one is the atom at the apex.
\item **outp** Out-of-plane angle: outp abcd is the angle between bond a – d and plane b – c – d.
\end{itemize}
4.1. THE GEOMETRY MAIN MENU

tors Dihedral angle: tors abcd is the angle between the planes $a - b - c$ and $b - c - d$.

linc This is a special coordinate type to describe the bending of a near-linear system. linc abcd describes the collinear bending of $a - b - c$ (where the angle is defined as for bend: the apex atom appears last) in the plane of $b - c - d$ (see also below, command linp). The system $b - c - d$ has to be non-linear, of course.

linp This coordinate is similar to linc, but describes the bending of $a - b - c$ perpendicular to the plane $b - c - d$. These two types of coordinates are in most cases sufficient to describe the bending of near-linear systems. An example may help you to understand these two coordinate types. Consider ketene, H$_2$CCO, which contains a linear system of three atoms. Without symmetry, this molecule has 9 degrees of freedom. You could choose the four bond lengths, two CCH angles and the out-of-plane angle of the C–C bond out of the CHH–plane. But then two degrees of freedom still remain, which cannot be specified using these normal coordinate types. You can fix these by using linc and linp. The two coordinates linc 1 3 2 4 and linp 1 3 2 4 (where 1=oxygen, 2=carbon, 3=carbon, 4=hydrogen) would solve the problem.

comp The type comp describes a compound coordinate, i.e. a linear combination of (primitive) internal coordinates. This is often used to prevent strong coupling between (primitive) internal coordinates and to achieve better convergence of the geometry optimization. The use of linear combinations rather than primitive coordinates is especially recommended for rings and cages (see ref. [28]). Command iaaut uses linear combinations in most cases.

After you entered k comp n where n is the number of primitive internal coordinates to be combined, you will be asked to enter the type of the coordinate (stre, bend, ...). Then you will have to enter the weight (the coefficient of this primitive coordinate in the linear combination) and the atomic indices which define each coordinate. The definition of the primitive coordinates is the same as described above for the corresponding coordinate types. It is not possible to combine internal coordinates of different types.

ring This type helps you to define special ring coordinates. You only have to enter k ring n where n is the ring size. Then you will be asked for the atomic indices of all atoms which constitute the ring and which must be entered in the same order as they appear in the ring. The maximum number of atoms in the ring is 69 (but in most cases the ring size will be limited by the maximum number of atoms which is allowed for define).

Hitting <return> will bring you back to the internal coordinate menu where you can see the new number of internal coordinates in the headline.
4.1.3 Manipulating the Geometry

Note that the molecular geometry can be modified with the `iman` command of the internal coordinate menu described earlier, if internal coordinates has been defined. Another option is to select `m` in the geometry main menu which provides the following submenu:

CARTESIAN COORDINATE MANIPULATION MENU:

- **move**: TRANSLATE AND/OR ROTATE PART OF THE MOLECULE
- **inert**: MOVE MOLECULE SO THAT COORDINATE AXES BECOME PRINCIPAL AXES OF INERTIA
- **mback**: RESTORE PREVIOUS MOLECULAR GEOMETRY
- **dis**: DISPLAY MOLECULAR GEOMETRY

YOU MAY APPEND A QUESTION MARK TO ANY OF THESE COMMANDS FOR FURTHER EXPLANATIONS.

HIT `>return<` OR USE ANY GEOMETRY COMMAND NOT IN THIS LIST TO TERMINATE THIS MENU.

UPON TERMINATION THE MOLECULAR SYMMETRY WILL BE ENFORCED ACCORDING TO SYMMETRY GROUP c3v.

The meaning of the commands `inert` and `mback` should be clear; command `move` allows you to manipulate the geometry of your molecule. After entering `move`, you will be asked to specify a set of atoms on which the command shall act. You can use this to manipulate only a part of your molecule, e.g. if you are building a structure from subunits and you want to adjust their relative arrangement. As long as you stay in this menu, the molecular symmetry needs not be correct (so that you can try different movements and/or rotations), but as soon as you leave it, the geometry will be symmetrized according to the present Schönflies symbol. After you specified the atomic set to be considered, you get the following information:

INPUT DIRECTION OF MOVEMENT OR LOCATION OF ROTATION AXIS

EITHER AS A COORDINATE TRIPLE SEPARATED BY BLANKS,
OR AS TWO ATOMIC INDICES SEPARATED BY COMMA, OR x OR y OR z
OR ENTER ANY DISPLAY COMMAND FIRST OR & TO GO BACK

You can thus specify the direction of movement (or the rotational axis) in the form 0. 0. 1. or simply z (which both describes the z-axis) or 1.3256 -3.333 0.2218 for an arbitrary axis. If you want to specify an axis which is related to your molecule, you may also enter two atomic indices which define it. After having specified the axis, you have to enter the distance of movement and the angle of rotation. If you want to perform a simple rotation, enter 0 for the distance of movement and if you want to simply move your structure, enter 0 for the rotational angle.

You can leave this menu and return to the geometry main menu by hitting `<return>` or by entering any command of the geometry main menu.

4.2 The Atomic Attributes Menu

After you specified the molecular geometry and symmetry and wrote this data to file, you will encounter the atomic attributes menu, which is the second of the four
main menus. You will enter this menu, if all necessary data cannot be read from your input file or if you do not use an input file. This menu deals with the specification of basis sets and other data related to the atom type:

ATOMIC ATTRIBUTE DEFINITION MENU (#atoms=5 #bas=5 #ecp=0)

- b : ASSIGN ATOMIC BASIS SETS
- bb : b RESTRICTED TO BASIS SET LIBRARY
- bl : LIST ATOMIC BASIS SETS ASSIGNED
- bm : MODIFY DEFINITION OF ATOMIC BASIS SET
- bp : SWITCH BETWEEN 5d/7f AND 6d/10f
- lib : SELECT BASIS SET LIBRARY
- ecp : ASSIGN EFFECTIVE CORE POTENTIALS
- ecpb : ecp RESTRICTED TO BASIS SET LIBRARY
- ecpi : GENERAL INFORMATION ABOUT EFFECTIVE CORE POTENTIALS
- ecpl : LIST EFFECTIVE CORE POTENTIALS ASSIGNED
- ecprm: REMOVE EFFECTIVE CORE POTENTIAL(S)
- c : ASSIGN NUCLEAR CHARGES (IF DIFFERENT FROM DEFAULTS)
- cem : ASSIGN NUCLEAR CHARGES FOR EMBEDDING
- m : ASSIGN ATOMIC MASSES (IF DIFFERENT FROM DEFAULTS)
- iso : ASSIGN ISOTOPE FOR NUCLEAR COUPLING CALCULATION
- dis : DISPLAY MOLECULAR GEOMETRY
- dat : DISPLAY ATOMIC ATTRIBUTES YET ESTABLISHED
- h : EXPLANATION OF ATTRIBUTE DEFINITION SYNTAX
- * : TERMINATE THIS SECTION AND WRITE DATA OR DATA REFERENCES TO control GOBACK=& (TO GEOMETRY MENU !)

The headline gives you the number of atoms, the number of atoms to which basis sets have already been assigned and the number of atoms to which effective core potentials have already been assigned. Most of the commands in this menu deal with the specification of basis sets and pseudopotentials.

Basis sets available

The following basis sets are available on $TURBODIR/basen/$, which you may inspect to see which other basis sets are supported automatically. The corresponding publications can be found here 1.3.

- **SV(P)** or **def-SV(P)** for routine SCF or DFT. Quality is about 6–31G*.
- **TZVP** or **def-TZVP** for accurate SCF or DFT. Quality is slightly better than 6–311G**.
- **TZVPP** or **def-TZVPP** for MP2 or close to basis set limit SCF or DFT. Comparable to 6–311G(2df).
- **QZVP** and **QZVPP** for highly correlated treatments; quadruple zeta + 3d2f1g or 4d2f1g (beyond Ne), 3p2d1f for H.
These basis sets are available for atoms H–Kr, and the split-valence (SV) and valence-
triple-ζ (TZV) basis sets types with ECPs also for Rb–Rn, except lanthanides.

For calculations with the programs ricc2, ccsdf12, and pnoccsd optimized auxiliary
basis sets are available for the basis sets SV(P), SVP, TZVP, TZVPP, and QZVPP.

NEW: New sets of basis functions, partly identical with those mention above, de-
noted def2-XYZ are available for atoms H–Rn [6]. The def2 basis sets for 5p and
6p block elements are designed for small core ECPs (ECP-28, ECP-46 and ECP-
60). For each family, SV, TZV, and QZV, we offer two sets of polarisation functions
leading to:

\[\text{def2-SV(P) and def2-SVP} \]
\[\text{def2-TZVP and def2-TZVPP} \]
\[\text{def2-QZVP and def2-QZVPP} \]

We strongly recommended the new def2-basis, since they have been shown to provide
consistent accuracy across the periodic table.

Recommendation

Use the same basis set type for all atoms; use ECPs beyond Kr since this accounts
for scalar relativistic effects.

New basis sets (def2-XYZ): MP2 implies RI-MP2 and RICC2

- exploratory: MP2: SVP
- almost quantitative: DFT: SV(P), HF: SVP, MP2: TZVPP; properties (HF and
 DFT): TZVPP
- quantitative: DFT: TZVP, HF: TZVPP, MP2: QZVPP
- basis set limit: DFT: QZVP, HF: QZVP

If you want a better basis than SV(P), assigned automatically, use \texttt{b all def2-TZVP}
(or another basis). The assignment can be checked by \texttt{b1}.

Diffuse functions should only be added if really necessary. E.g. for small anions or
treatment of excited states use: TZVP instead of SVP + diffuse. This is more accurate
and usually faster. Only for excited states of small molecules or excited states with
(a partial) Rydberg character add additional diffuse functions (e.g. by using the aug-
cp-cc-pVTZ basis) as well as the keyword \texttt{diffuse}, for more information, see page 357
in the keyword section.

Old basis sets (def-XYZ): For standard correlated calculations (MP2, RI-MP2,
RI-CC2) use the doubly-polarized TZVPP (or def-TZVPP) basis.
Correlation-Consistent (Dunning) Basis Sets

Dunning basis sets like cc-pVDZ, cc-pVTZ, cc-pVQZ are also supported, e.g. by all cc-pVTZ. But these basis sets employ generalized contractions for which TURBOMOLE is not optimized. This has in particular strong effects on the performance of all programs which use 4-index electron repulsion integrals, for RI-MP2 and RI-CC2 this is partially compensated by the RI-approximation.

The following correlation consistent basis sets are available in the TURBOMOLE basis set library:

- cc-pVXZ standard valence X-tuple zeta basis sets (X = D, T, Q, 5, 6); available for H, He, Li–Ne, Na–Ar, K, Ca, Ga–Kr.
 (cc-pV6Z only for H, He, B–Ne, Al–Ar; for Al–Ar also the recommended newer cc-pV(X+d)Z sets are available)

- cc-pwCVXZ-PP weighted core-valence x-tuple zeta basis sets (X= D, T, Q, 5) are available for post-d main group elements Ga–Kr, In–Xe, and Tl–Rn.
 (also pure valence basis sets cc-pVXZ-PP are available for these elements, but it is not recommended to use them)

- cc-pwCVXZ weighted core-valence X-tuple zeta basis sets (X = D, T, Q, 5); available for B–Ne, Al–Ar, and Ga–Kr
 (for Al–Ar also the recommended combination of the cc-pV(X+d)Z sets with the core valence functions (wC), i.e. the cc-pwCV(X+d)Z basis set are available)

- aug- diffuse functions for combination with the basis sets cc-pVXZ, cc-pV(X+d)Z, cc-pwCVXZ, cc-pV(X+d)Z, cc-pVXZ-PP or cc-pwCVXZ-PP; available for H, He, B–Ne, Al–Ar with X = D–6 and Ga–Kr, In–Xe, and Tl–Rn with X = D–5.

- cc-pVXZ-F12 with X = D, T, Q for use with the explicitly-correlated F12 variants of wavefunction methods (MP2-F12, CCSD(F12*), etc.)

For calculations with the programs that employ the RI approximation with a correlated wavefunction optimized auxiliary basis sets are available for most of the correlation consistent basis set series.

4.2.1 Description of the commands

With b you can specify basis sets for all atoms in your molecule. After entering b you will be asked to specify the atoms to which you want to assign basis sets. You can do this in the usual ways (refer to Section 4.0.4), including all and none. Then you will be asked to enter the nickname of the basis set to be assigned. There are two principal ways to do this:
CHAPTER 4. PREPARING YOUR INPUT FILE WITH DEFINE

1) If you are in the *append* mode, the nickname you entered will be appended to the atomic symbol of the element under consideration. This is especially useful if you want to assign basis sets to different atoms with one command. For example, if you want to assign basis sets to hydrogen and oxygen atoms and you enter only DZ, the basis sets h DZ and o DZ will be read from the basis set library.

2) If you are in the *non-append* mode, no atomic symbol will be inserted in front of the nickname entered. Therefore you have to enter the *full* basis set nickname, e.g. h DZ. This mode is advantageous if you want to assign basis sets to dummy centers (i.e. points without nuclear charge but with basis functions, e.g. for counterpoise calculations) or if you want to use the basis set nickname none (which means no basis functions at this atom).

You can switch between the two modes with ‘+’ (switches to append mode) and ‘-’ (switches to non-append mode).

Once you have specified your basis set nickname, define will look in the standard input file (normally control) for this basis set. If it can not be found there, you can switch to the standard basis set library (if you did not use a standard input file, the standard library will be searched immediately). If the basis set cannot be found there, you are asked either to enter a new standard library (which will be standard only until you leave this menu) or another input file, where the basis set can be found. If you do not know the exact nickname of your basis set, you may abbreviate it by ‘?’, so you could enter h DZ? to obtain basis sets like h DZ, h DZP, h DZ special, etc. define will give you a list of all basis sets whose nicknames match your search string and allows you to choose among them. You may also use the command list to obtain a list of all basis sets cataloged.

bb
bb does essentially the same as b but does not search your default input file for basis sets. Instead it will look in the basis set library immediately.

bl
bl gives you a list of all basis sets assigned so far.

bm
This command is used to modify basis sets which are already assigned. The corresponding submenu is self-explanatory, but we recommend to change directly the file basis.

bp
The TURBOMOLE programs normally work with basis sets of 5d-functions (which means they delete the s-component of the full 6d-set). bp allows to switch between the proper 5d/7f-set and the Cartesian 6d/10f-set.

ecp
This command allows you to specify effective core potentials for some atoms. The assignment works exactly like the specification of basis sets (see above).
4.3. GENERATING MO START VECTORS

ecpb This one does the same as command ecp, but restricted to the basis set library (the input file will not be used).

e CPI e CPI gives you some general information about what type of pseudopotentials is supported. For more information we refer to [29] and references therein.

e CPL e CPL gives you a list of all pseudopotentials assigned so far.

ecprm ecprm allows to remove a pseudopotential assignment from the list. This command is useful if you want to perform an all electron calculation after an ECP treatment.

c Command c assigns a special nuclear charge to an atom. This is useful to define dummy centers for counterpoise calculations where you set the nuclear charge to zero.

m This command allows you to assign non-default atomic masses to an atom. Use this if you want to analyze isotopic shifts of calculated harmonic frequencies. The standard masses are those of the natural isotope mix.

iso This command allows you to assign non-default gyromagnetic ratios to an atom. For practically all isotopes, it is sufficient to enter the mass number (sum of protons and neutrons) to obtain the gyromagnetic ratio.

dat dat gives you a list of all data already specified.

* This is again the usual command to leave a menu and write all data to file control (or any other output file). It is not possible to leave this menu unless basis sets have been specified for all atoms in your molecule. If you do not want to use a basis set for one or more atoms, use the basis set nickname none. On leaving this menu, the data groups $atoms and $basis will be written to the output file.

After you finished this menu, you will enter the third main menu of define which deals with start vectors and occupation numbers.

4.3 Generating MO Start Vectors

4.3.1 The MO Start Vectors Menu

This menu serves to define the occupation numbers, and to generate the start vectors for HF-SCF and DFT calculations. They may be constructed from earlier SCF calculations (perhaps employing another basis set, type use), by Hamilton core guess (hcore), or by an extended Hückel calculation which can be performed automatically (eht). An occupation of the start orbitals will be proposed and can be modified if desired.
CHAPTER 4. PREPARING YOUR INPUT FILE WITH DEFINE

OCCUPATION NUMBER & MOLECULAR ORBITAL DEFINITION MENU

CHOOSE COMMAND

- **infsao**: OUTPUT SAO INFORMATION
- **atb**: Switch for writing MOs in ASCII or binary format
- **eht**: PROVIDE MOS & OCCUPATION NUMBERS FROM EXTENDED HUECKEL GUESS
- **use <file>**: SUPPLY MO INFORMATION USING DATA FROM <file>
- **man**: MANUAL SPECIFICATION OF OCCUPATION NUMBERS
- **hcore**: HAMILTON CORE GUESS FOR MOs
- **flip**: FLIP SPIN OF A SELECTED ATOM

& MOVE BACK TO THE ATOMIC ATTRIBUTES MENU

THE COMMANDS use OR eht OR * OR q(uit) TERMINATE THIS MENU !!!

FOR EXPLANATIONS APPEND A QUESTION MARK (?) TO ANY COMMAND

Recommendation

You will normally only need to enter eht. For the EHT-guess, define will ask for some specifications, and you should always choose the default, i.e. just <enter>. Of importance is only the molecular charge, specified as 0 (neutral, default), 1 or -1 etc.

Based on the EHT orbital energies define proposes an occupation. If you accept you are done, if not you get the “occupation number assignment menu” explained in 4.3.2.

Description of Commands

- **infsao**: Command infsao provides information about the symmetry adapted basis which is used for the SCF-calculation. To exploit the molecular symmetry as efficiently as possible, TURBOMOLE programs do not use the simple basis which you specified during your define session. Instead it builds linear combinations of equal basis functions on different—but symmetry equivalent—atoms. This basis is then called the SAO-basis (Symmetry Adapted Orbital). It has the useful property that each basis function transformed to this basis transforms belongs to one irreducible representation of the molecular point group (that is, the basis reflects the full molecular symmetry as specified by the Schönflies symbol). infsao gives you a listing of all symmetry adapted basis functions and their constituents either on file or on the screen. This may help you if you want to have a closer look at the SCF vectors, because the vector which is output by program dscf is written in terms of these SAOs.

- **atb**: Molecular orbitals can be written either in ASCII or in binary format. This command switches from one option to the other, and it is highly recommended to read which setting is currently active. ASCII format is portable and allows the usage of TURBOMOLE input files on different systems with incompatible binary format. Binary format is faster and smaller files will be written. The external program atbandbta can be
4.3. GENERATING MO START VECTORS

Used to transform existing mos, alpha, and beta files from ASCII to binary format and vice versa.

eht

Eht performs an extended Hückel calculation for your molecule. The orbital energies available from this calculation are then used to provide occupation numbers for your calculation and the Hückel MOs will be projected onto the space that is spanned by your basis set. This start-vectors are not as good as the ones which may be obtained by projection of an old SCF vector, but they are still better than the core Hamiltonian guess that is used if no start vectors are available. When using this command, you will be asked if you want to accept the standard Hückel parameters and to enter the molecular charge. Afterwards you will normally get a list of the few highest occupied and lowest unoccupied MOs, their energies and their default occupation. If you don’t want to accept the default occupation you will enter the occupation number assignment menu, which is described in Section 4.3.2. Note that the occupation based on the Hückel calculation may be unreliable if the difference of the energies of the HOMO and the LUMO is less than 0.05 a.u. (you will get a warning). You will also have to enter this menu for all open-shell cases other than doublets.

use file

With command use you are able to use information about occupied MOs and start vectors from a former calculation on the same molecule. file should be the path and name of the control file of this former calculation, of which all data groups related to occupation numbers and vectors will be read. As the new generated data will overwrite the existing data if both resist in the same directory, it is best and in some cases necessary to have the data of the former calculation in another directory than the one you started the define session in. Then just type use <path>/control to construct a new SCF vector from the data of the old calculation, without changing the old data. The data groups $closed shells and $open shells will be taken for your new calculation and the SCF vector from the old calculation will be projected onto the space which is spanned by your present basis set. These start vectors are usually better than the ones you could obtain by an extended Hückel calculation.

man

Man allows you to declare occupation numbers or change a previous declaration manually. After selecting this command, you will get a short information about the current occupation numbers:

<table>
<thead>
<tr>
<th>actual closed shell orbital selection</th>
<th>range</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td># 1-18</td>
</tr>
<tr>
<td>a2</td>
<td># 1-1</td>
</tr>
<tr>
<td>e</td>
<td># 1-13</td>
</tr>
</tbody>
</table>

Any further closed-shell orbitals to declare? DEFAULT(y)
If you answer this question with y, you enter the orbital specification menu which will be described in Section 4.3.3.

The same procedure applies to the open-shell occupation numbers after you finished the closed-shell occupations.

hcore

hcore tells programs dscf and ridft to run without a start vector (it writes the data group $scfmo none to file control). dscf or ridft will then start from the core Hamiltonian start vector, which is the vector obtained by diagonalizing the one-electron Hamiltonian. Note that you still have to specify the occupation numbers. This concerns only the first SCF run, however, as for the following calculations the converged vector of the previous iteration will be taken. A SCF calculation with a core Hamiltonian start vector typically will take $2−3$ iterations more than a calculation with an extended Hückel start vector (a calculation with the converged SCF vector of a previous calculation will need even less iterations, depending on how large the difference in the geometry between the two calculations is).

flip

flipping of spins at a selected atom. Requirements: converged UHF molecular orbitals and no symmetry (C_1). define will localize the orbitals, assign them to the atoms and give the user the possibility to choose atoms at which alpha-orbitals are moved to beta orbitals, or vice versa. This is useful for spin-broken start orbitals, but not for spatial symmetry breaking.

*

This command (as well as use and eht) terminates this menu, but without providing a start vector. If the keyword $scfmo exists in your input file, it will be kept unchanged (i.e. the old vector will be taken), otherwise $scfmo none will be inserted into your output file, which forces a calculation without start vector to be performed. When you leave this menu, the data groups $closed shells, $open shells (optionally) and $scfmo will be written to file. You will then reach the last of the four main menus (the General Menu) which is described in Section 4.4.

4.3.2 Assignment of Occupation Numbers

If an automatic assignment of occupation numbers is not possible or you do not except the occupation numbers generated by the EHT, you enter the following menu:

OCCUPATION NUMBER ASSIGNMENT MENU (#e=60 #c=0 #o=0)

s : CHOOSE UHF SINGLET OCCUPATION

t : CHOOSE UHF TRIPLET OCCUPATION

u <int> : CHOOSE UHF WITH <int> UNPAIRED ELECTRONS

l <list> : PRINT MO'S FROM EHT IN <list>, (DEFAULT=ALL)

p <index> : PRINT MO-COEFFICIENTS OF SHELL <index>

c <list> : CHOOSE SHELLS IN <list> TO BECOME CLOSED SHELLS
4.3. GENERATING MO START VECTORS

o <index> : CHOOSE SHELL <index> TO BECOME AN RHF OPEN SHELL
a <list> : CHOOSE SHELLS IN <list> TO BECOME UHF ALPHA SHELLS
b <list> : CHOOSE SHELLS IN <list> TO BECOME UHF BETA SHELLS
v <list> : CHOOSE SHELLS IN <list> TO BECOME EMPTY SHELLS
& : REPEAT THE EXTENDED HUECKEL CALCULATION
* : SAVE OCCUPATION NUMBERS & GO TO NEXT ITEM
dis : GEOMETRY DISPLAY COMMANDS
e : CALCULATE EHT-ENERGY
f : FURTHER ADVICE
<int> = INTEGER
<index> = INDEX OF MO-SHELL ACCORDING TO COMMAND s
<list> = LIST OF MO-SHELL INDICES (LIKE 1-5,7-8,11)

Recommendation

Enter 1 to get a list of eht MO energies. Then make up your mind on what to do: closed shell, RHF open shell (not allowed for DFT) or UHF. Look at the examples below.

RHF
c 1-41,43,45 to define these levels to be doubly occupied.

UHF
a 1-5 alpha levels to be occupied, b 1-3,5 beta levels to be occupied.
Or simply, s, t, or u 1 to get singlet, triplet or doublet occupation pattern.

ROHF
c 1-41,43,45 levels to be doubly occupied; o 42 level 42 should be partially occupied. You will then be asked to specify the occupation. If there are more open shells you have to repeat, since only a single open shell can be specified at a time. Watch the headline of the menu, which tells you the number of electrons assigned to MOs.

Description of Commands

s list This command gives you a listing of all MOs and their energies as obtained from the extended Hückel calculation. For NH\textsubscript{3} in C\textsubscript{3v} and TZVP you get, e.g.:

<table>
<thead>
<tr>
<th>SHELL</th>
<th>SYMMETRY</th>
<th>TYPE</th>
<th>ENERGY</th>
<th>SHELL DEGENERACY</th>
<th>CUMULATED SHELL DEG.</th>
<th>CL.SHL OCC.</th>
<th>OP.SHL OCC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a1</td>
<td>-15.63244</td>
<td>2</td>
<td>2</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2a1</td>
<td>-0.99808</td>
<td>2</td>
<td>4</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1e</td>
<td>-0.64406</td>
<td>4</td>
<td>8</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3a1</td>
<td>-0.57085</td>
<td>2</td>
<td>10</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2e</td>
<td>0.30375</td>
<td>4</td>
<td>14</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4a1</td>
<td>0.87046</td>
<td>2</td>
<td>16</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

TO CONTINUE, ENTER <return>

p index This allows you to get the linear combination of basis functions which form the MO-index. Note that this refers not to the basis set you spec-
ified, but to the extended Hückel basis. *index* must be a single index, not an index list.

c_list This command allows you to specify closed shells. Their occupation will be 2 per MO, the total occupation the shell degeneracy which you can obtain by using command *s*. *list* is a list of shell indices like 1-13 or 1,3-5,7.

o_index This command allows you to specify open shells. *index* must be a single shell index, not an index list. You will then be asked for the number of electrons per MO which shall be contained in this shell. For example, for a fluorine atom you should choose o n (where n is the index of the p-shell) and an occupation of 5/3 per MO. You may enter the occupation numbers as simple integers or as integer fractions, e.g. 1 for the s-occupation in sodium, 5/3 for the p-occupation in fluorine.

v_list With this command you can remove an orbital occupation, if you specified a wrong one. *list* is again a list of shell indices in usual syntax.

& This command has a different meaning in this menu than in the rest of *define*. Here it will repeat the extended Hückel calculation (perhaps you want to change some Hückel parameters for the next one).

* will not bring you back to the occupation numbers menu, but will terminate the whole occupation number and start vector section and will bring you to the last main menu, which is described in Section 4.4. If you want to leave this menu without assigning all electrons in your molecule to shells, *define* will issue a warning and suggest to continue defining occupation numbers. You can ignore this warning, if you do not want to assign all electrons.

e Calculates and displays the extended Hückel total energy of your molecule.

f f will give you some information about the commands in this menu.

You may overwrite occupation numbers once given by just redefining the corresponding shell. For example, if you choose shells 1–10 as closed shells and afterwards shell no. 9 as open shell (with any occupation number), the open shell will be correctly assigned.

4.3.3 Orbital Specification Menu

define provides the possibility to assign the occupation numbers of the MOs manually, if you like. To do that, use the command *man* in the occupation number main menu and you will arrive at the following submenu:
4.3. GENERATING MO START VECTORS

------------- ORBITAL SPECIFICATION MENU --------------

<label> <list> : select orbitals within <list>
-<label> <list> : skip orbitals within <list>
& : ignore input for last label
clear : clear all assignments
p(print) : print actual orbital selection
for help, type ? or help // for quit, type * or q(uit)

Depending on whether you are in the closed- or in the open-shell section, the commands of this menu refer only to the corresponding type of orbitals. The commands of this menu do not need much explanation. <label> is the irrep label of one irreducible representation of the molecular point group (e.g. a1, b2, t1g, ...). <list> is a list of orbital indices within this irrep (e.g. 1,2,4 or 1-8,10,11). p or print will give you the same listing of the orbital occupations as you saw before entering this menu. After you leave this submenu, you will be back in the occupation numbers main menu.

4.3.4 Roothaan Parameters

In open-shell calculations within the restricted Hartree–Fock ansatz (ROHF), the coupling between the closed and the open shells must be specified using two parameters a and b, which depend on the type of the open shell, the number of electrons in it (the electron configuration), but also on the state to be calculated. For example, there are three states arising from the s^2p^2 configuration of an atom (^3P, ^1D, ^1S) which have different values of a and b. For the definition of these parameters and their use refer to Roothaan’s original paper [30]. For simple cases, define sets these parameters automatically. If not, you have to enter them yourself. In this case, you will get the following message:

ROOTHAAN PARAMETERS a AND b COULD NOT BE PROVIDED ...
TYPE IN ROOTHAAN a AND b AS INTEGER FRACTIONS
OR ENTER val FOR AN AVERAGE OF STATES CALCULATION
OR ENTER & TO REPEAT OCCUPATION NUMBER ASSIGNMENT

Note that not all open shell systems can be handled in this way. It is possible to specify a and b for atomic calculations with s^n, p^n, d^1, and d^9 configurations and for calculations on linear molecules with π^n and δ^n configurations. Furthermore, it is possible to do calculations on systems with half-filled shells (where $a=1$, $b=2$). In the literature you may find tabulated values for individual states arising from d^n configurations, but these are not correct. Instead, these are parameters for an average of all states arising from these configurations. You can obtain these values if you enter val on the above question. For a detailed description see Section 6.3.

4.3.5 Start-MOs for broken symmetry treatments ("flip")

Broken-symmetry treatments suggested by e.g. Noodleman or Ruiz are a popular tool for the calculation of spin coupling parameters in the framework of DFT. As
an example one might consider two coupled CuII centers, e.g. for a (hypothetical) arrangement like this:

```
$coord
  0.0  2.7  0.0  cu
  0.0 -2.7  0.0  cu
  0.0  -6.1  0.0  f
  0.0   6.1  0.0  f
  2.4   0.0  0.0  f
-2.4   0.0  0.0  f
$end
```

The high-spin case, a doublet with an excess alpha electron at each Cu atom, "aa" in an obvious notation, preserves D_{2h} symmetry, while the low spin state "ba" does not. For a broken-symmetry treatment it is advisable to calculate the high-spin state first, and then broken-symmetry state(s); from the energy difference(s) one may calculate approximate values for the spin-spin coupling parameters as described by e.g. the above authors. Access to broken-symmetry states usually is possible by the choice of appropriate start-MOs, followed by an SCF-procedure. Start MOs may be obtained by first applying a localization procedure to the MOs of the high-spin state and then by "moving" localized alpha orbitals to the beta subset.

The preparation of broken-symmetry start-MOs can be done with define (semi-)automatically. Prerequisite is a converged wave function for the high-spin state in C_1-symmetry, that fulfills the aufbau principle.

If in this case one enters flip in the orbital definition menu, define selects the occupied valence orbitals of the system (by an orbital energy criterion, which one can usually accept, unless the system is highly charged and the orbital energies are shifted). Next a Boys orbital localization procedure is carried out, which - depending on the size of the problem - may take some time. Then the user is asked:

ENTER INDICES OF ATOMS OR ELEMENT TO BE MANIPULATED (example: 1,2-3 or "mn")

In case of our above example one may enter "cu", which immediately leads to the following output (a def-SV(P) basis and the B-P functional were used for the high-spin state):

```
RELEVANT LMOS FOR ATOM 1 cu
ALPHA:
index occupation "energy"  s  p  d  f  (dxx dyy dzz dxy dxz dyz)
15  1.000  -0.357  0.01  0.00  0.98  0.20  0.27  0.01  0.50  0.00  0.00
18  1.000  -0.357  0.01  0.00  0.98  0.20  0.27  0.01  0.50  0.00  0.00
20  1.000  -0.335  0.00  0.00  1.00  0.00  0.00  0.00  0.00  1.00  0.00
22  1.000  -0.333  0.01  0.00  0.99  0.13  0.03  0.32  0.00  0.00  0.51
23  1.000  -0.333  0.01  0.00  0.99  0.14  0.03  0.34  0.00  0.00  0.49
BETA:
39  1.000  -0.326  0.00  0.00  1.00  0.33  0.08  0.09  0.00  0.00  0.50
41  1.000  -0.326  0.00  0.00  1.00  0.33  0.08  0.09  0.00  0.00  0.50
```
4.3. GENERATING MO START VECTORS

As evident from the second column, for each Cu atom five localized alpha and four localized beta orbitals were generated which are of d-type (the sixth column labelled "d" shows values close to 1, the other columns such close to 0). The six columns at the right show the individual contributions of the six cartesian d-functions.

What has to be done to generate start MOs for the "ba"-case? Obviously one of the five localized alpha spin orbitals from the first Cu atom (atom label 1 cu) has to become a beta spin orbital. These five orbitals have the indices 15, 18, 20, 22, 23. In order to avoid linear dependencies, it is advisable to take the orbital that has no beta-analogue. This can be found by comparing the contributions of the six d-functions. In the present example this is the case for the localized alpha orbitals 15 and 18: in contrast to all localized beta orbitals they show significant contributions from \(d_{xy} \). One thus enters

\texttt{a2b 15}

and after confirming the replacement of original MOs with the generated start-MOs one is finally asked

It is advisable to modify damping and orbital shift in the following way:

\texttt{scfdamp start=5.000 step=0.050 min=0.500}
\texttt{scforbitalshift automatic=1.0}
\texttt{scfiterlimit 999}

Do you want to replace the corresponding entries in the control-file? (y)
which should be confirmed, as otherwise the prepared spin state might be destroyed during the SCF iterations.

From this input one may start the SCF(HF/DFT)-procedure. For recommended choices of DFT functionals and formulae to calculate the coupling parameters from these energy differences please consult the papers of the above-mentioned authors. For reasons of economy, a pre-optimization by a pure (non-hybrid) DFT-functional is reasonable.

Important: For the converged wave function one should check, whether the resulting state is really the desired one. This can quite reliably be done by a Mulliken population analysis. For this purpose, add pop to the control file, type ridft -proper or dscf -proper, respectively, and check the signs of the calculated numbers of unpaired electrons in the output.

4.4 The General Options Menu

After you specified all data concerning the molecule you want to examine, you are on your way to the last of the four main menus. Before reaching it, you will perhaps get a message like the following:

DO YOU WANT TO DELETE DATA GROUPS LIKE

- energy
- grad
- hessian
- $\text{hessian (projected)}$
- $\text{last energy change}$
- $\text{maximum norm of internal gradient}$
- dipgrad
- $\text{vibrational normal modes}$
- $\text{vibrational spectrum}$
- $\text{cartesianforce interspace}$

LEFT OVER FROM PREVIOUS CALCULATIONS ? DEFAULT(n)

define has scanned your input file for this session and found some data groups which might have become obsolete. If they are still acceptable depends on the changes you made during your present define session. They are obviously incorrect if you changed the molecule under consideration; but any change in the basis sets or the occupation numbers will make them dangerous, too, because you might not know some day if they really refer to the basis set which is defined in this control file. As a rough guide, delete them whenever you have made changes in one of the first three main menus during your define session.

After that you will reach the last main menu of define which helps you to control the actions of all TURBOMOLE programs. The meanings of the various options are explained in more detail in the description of the individual programs, therefore only a short explanation will be given here.

Now have a look at the menu:
4.4. THE GENERAL OPTIONS MENU

GENERAL MENU : SELECT YOUR TOPIC
scf : SELECT NON-DEFAULT SCF PARAMETER
mp2 : OPTIONS AND DATA GROUPS FOR rimp2 and mpgrad
pnocc : OPTIONS AND DATA GROUPS FOR pnoccad
cc : OPTIONS AND DATA GROUPS FOR ricc2
ex : EXCITED STATE AND RESPONSE OPTIONS
prop : SELECT TOOLS FOR SCF-ORBITAL ANALYSIS
drv : SELECT NON-DEFAULT INPUT PARAMETER FOR EVALUATION
 OF ANALYTICAL ENERGY DERIVATIVES
 (GRADIENTS, FORCE CONSTANTS)
rex : SELECT OPTIONS FOR GEOMETRY UPDATES USING RELAX
stp : SELECT NON-DEFAULT STRUCTURE OPTIMIZATION PARAMETER
e : DEFINE EXTERNAL ELECTROSTATIC FIELD
dft : DFT Parameters
ri : RI Parameters
rijk : RI-JK-HF Parameters
rirpa : RIRPA Parameters
senex : seminumeric exchange parameters
hybno : hybrid Noga/Diag parameters
dsp : DFT dispersion correction
trunc : USE TRUNCATED AUXBASIS DURING ITERATIONS
marij : MULTIPOLE ACCELERATED RI-J
dis : DISPLAY MOLECULAR GEOMETRY
list : LIST OF CONTROL FILE
& : GO BACK TO OCCUPATION/ORBITAL ASSIGNMENT MENU
* or q : END OF DEFINE SESSION

This menu serves very different purposes. The next subsection deals with commands
required to activate and/or specify specific methods of calculation. The subsequent
subsection describes commands used to select non-default options. Standard SCF
calculations do not require special action, just leave the menu. The final subsection
describes the settings for property calculations.

4.4.1 Important commands

DFT calculations

Command dft leads you to the menu:

STATUS OF DFT_OPTIONS:
DFT is NOT used
 functional b-p
 gridsize m3

ENTER DFT-OPTION TO BE MODIFIED

func: TO CHANGE TYPE OF FUNCTIONAL
grid: TO CHANGE GRIDSIZE
on: TO SWITCH ON DFT

Just <ENTER>, q or '*' terminate this menu.
To activate DFT input on and then specify the grid for the quadrature of exchange-correlation terms. TURBOMOLE offers grids 1 (coarse) to 7 (finest), and the multiple grids \texttt{m3} to \texttt{m5} [4]. The latter employ a coarser grid during SCF iterations, and grid 3 to grid 5 in the final SCF iteration and the gradient evaluation. Default is grid \texttt{m3}, for clusters with more than 50 atoms use \texttt{m4}.

The functionals supported within \texttt{define} are obtained with the command \texttt{func}:

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|l|l|}
\hline
\textbf{FUNCTIONAL} & \textbf{TYPE} & \textbf{EXCHANGE} & \textbf{CORRELATION} & \textbf{REFERENCES} \\
\hline
s-vwn & LDA & S & VWN(V) & 1-3 \\
\hline
s-vwn_Gaussian & LDA & S & VWN(III) & 1-3 \\
\hline
pwlda & LDA & S & PW & 1,2,4 \\
\hline
b-lyp & GGA & S+B88 & LYP & 1,2,6 \\
\hline
b-vwn & GGA & S+B88 & VWN(V) & 1-3,5 \\
\hline
b-p & GGA & S+B88 & VWN(V)+P86 & 1-3,5,7 \\
\hline
pbe & MGA & S+PBE(X) & PW+PBE(C) & 1,2,4,8 \\
\hline
\hline
tpss & MGGA & S+TPSS(X) & PW+TPSS(C) & 1,2,4,14 \\
\hline
bh-lyp & HYB & 0.5(S+B88) & LYP & 1,2,5,6,9 \\
\hline
\hline
b3-lyp & HYB & 0.8S+0.72B88 & 0.19VWN(V) & 1-3,5,6,10 \\
\hline
\hline
b3-lyp_Gaussian & HYB & 0.8S+0.72B88 & 0.19VWN(III) & 1-3,5,6,10 \\
\hline
\hline
pbe0 & HYB & 0.75(S+PBE(X)) & PW+PBE(C) & 1,2,4,8,11 \\
\hline
\hline
tpssh & MHYB & 0.9(S+TPSS(X)) & PW+TPSS(C) & 1,2,4,14,15 \\
\hline
\hline
pw6b95 & MHYB & PW91(X)+0.28HF & PW+B95(C) & 19 \\
\hline
\hline
m06 & MHYB & M06(X)+0.27HF & M06(C) & 20 \\
\hline
\hline
m06-l & MHYB & M06-L(X) & M06-L(C) & 20 \\
\hline
\hline
m06-2x & MHYB & M06-2X(X) & M06-2X(C) & 20 \\
\hline
\hline
lh07t-svwn & ODFT & E-EXX & | & 12,13 \\
\hline
\hline
lh07s-svwn & ODFT & S\@t-LMF & VWN(V) & 22 \\
\hline
\hline
lh12ct-ssirpw92 & LHYB & S\@ct-LMF & sirPW92 & 24 \\
\hline
\hline
lh12ct-ssifpw92 & LHYB & S\@ct-LMF & sifPW92 & 24 \\
\hline
\hline
lh14t-calpbe & LHYB & S+0.507PBE & PW92+0.451PBE & 25 \\
\hline
\hline
b2-plyp & DHYB & 0.47(S88) & 0.73LYP+0.27PT2 & 17 \\
\hline
\hline
cam-b3lyp & RSH & \texttt{b(B88)+aHF} & 0.81LYP+0.19VWN5 & 27 \\
\hline
\end{tabular}
\end{table}
This list is far from being complete. Especially with the inclusion of the XCFun and LibXC libraries, uncounted combinations of exchange and correlation functionals are available. To get an overview of further functionals and how to use arbitrary combinations and exact exchange portions, please read section 6.2.

Default is b-p, i.e. B-P86, which is probably best for the whole of Chemistry [31]. For main group compounds we recommend b3-lyp; note that GAUSSIAN uses partly different implementations [31].

The programs dscf and grad are used to carry out conventional DFT treatments, i.e. J and K are evaluated without approximations.

RI-J calculations

For non-hybrid functionals we strongly recommend the RI-J procedure, which speeds up calculations by a factor 10 at least (as compared to conventional treatments) without sacrificing accuracy. Command ri gives:

```
STATUS OF RI-OPTIONS:
  RI IS NOT USED
  Memory for RI: 200 MB
  Filename for auxbasis: auxbasis

ENTER RI-OPTION TO BE MODIFIED
  m: CHANGE MEMORY FOR RI
  f: CHANGE FILENAME
  jbas: ASSIGN AUXILIARY RI-J BASIS SETS
  on: TO SWITCH ON RI

Use <ENTER>, q, end, or * to leave this menu
```

Activate RI-J with on, and choose with m the memory you can dedicate to store three-center integrals (Keyword: $ricore$), default is 200 MB. The more memory, the faster the calculation.

A rough guide: put $ricore$ to about $2/3$ of the memory of the computer. Use OS specific commands (top on most UNIX systems), during an ridft run to find the actual memory usage and then adjust $ricore$, the keyword in control specifying memory.

If the option jbas is selected, define enters a submenu which allows the assignment of auxiliary basis sets (for an explanation of the menu items see Section 4.2). Where available, the program will select by default the auxiliary basis sets optimized for the orbital basis used. Please note that treatment of systems with diffuse wavefunctions may also require an extension of the auxiliary basis. For this cases enlarge the sets of s- and p-functions with diffuse functions.

The RI-J option is only supported by programs ridft and rdgrad, if you use jobex to optimize molecular geometry, put: nohup jobex -ri ...
MARI-J option

RI-J calculations can be done even more efficiently with the Multipole Accelerated RI-J (MARI-J) option, especially for larger molecules where almost linear scaling is achieved [32].

Parameters:
1) precision parameter: 1.00E-06
2) maximum multipole l-moment: 10
3) maximum number of bins: 8
4) minimum separation of bins: 0.00
5) maximum allowed extension: 20.00
6) threshold for multipole neglect: 1.00E-18

Enter the number to change a value or <return> to accept all.

Just rely on the defaults.

Multiple auxiliary basis sets

With the command trunc you can switch on this option. Effect: a reduced auxiliary (or fitting) basis to represent the electron density is employed during SCF iterations, the final SCF iteration and the gradient are computed with the full auxiliary basis.

truncated RI ALREADY SWITCHED ON
DO YOU WANT TO SWITCH OFF truncation ? (default=no)

Note: trunc is presently not compatible with marij!

RI in SCF calculations

Considerable savings in CPU times are achieved with the RI technique for both Coulomb J and exchange K terms in SCF calculations, the RI-JK method [33], provided large basis sets are employed, e.g. TZVPP, cc-pVTZ, or cc-pVQZ. With rijk you get:

STATUS OF RI-OPTIONS:
RI IS NOT USED
Memory for RI: 200 MB
Filename for auxbasis: auxbasis

ENTER RI-OPTION TO BE MODIFIED
m: CHANGE MEMORY FOR RI
f: CHANGE FILENAME
jkbas: ASSIGN AUXILIARY RI-JK BASIS SETS
on: TO SWITCH ON RI
Use <ENTER>, q, end, or * to leave this menu

For an explanation of the menu items see Section 4.4.1. RI-JK calculations can be carried out with the program ridft.
4.4. **THE GENERAL OPTIONS MENU**

Optimization to minima and transition structures using **STATPT**

Structure optimizations can be carried out by the program **STATPT**. For minimizations no additional keywords are required. The default values are assumed, which work in most of the cases. Structure optimization is performed in internal coordinates if they have been set. Otherwise, Cartesian coordinates are used. One can switch the optimization in internal coordinates on or off, respectively in internal redundant or cartesian coordinates. For transition structure optimizations the index of transition vector has to be set to an integer value > 0 (0 means structure minimization). The value of the index specifies transition vector to follow during the saddle point search. Note, that Hessian eigenpairs are stored in ascending order of the eigenvalues, i.e. the eigenpair with the smallest eigenvector has the index 1.

The command **stp** gives:

```
------------------------------------------------------------------------
CONVERGENCE CRITERIA:
 thre 1.000000E-06   thre : threshold for ENERGY CHANGE
 thrd 1.000000E-03   thrd : threshold for MAX. DISPL. ELEMENT
 thrq 1.000000E-03   thrq : threshold for MAX. GRAD. ELEMENT
 rmsd 5.000000E-04   rmsd : threshold for RMS OF DISPL.
 rmsg 5.000000E-04   rmsg : threshold for RMS OF GRAD.
 defl : set default values.
------------------------------------------------------------------------
OPTIMIZATION refers to
 int off int: INTERNAL coordinates
 rdn off rdn: REDUNDANT INTERNAL coordinates
 crt on   crt: CARTESIAN coordinates
NOTE : options int and crt exclude each other

ENTER STATPT-OPTIONS TO BE MODIFIED

itvc 0   itvc : change INDEX OF TRANSITION VECTOR
 updte bfgs updte: change method of HESSIAN UPDATE
 hsfreq 0   hsfreq: frequency of HESSIAN CALCULATION
 kptm 0    kptm : FREEZING transition vector INDEX
 hdiag 5.000000E-01 hdiag: change DIAGONAL HESSIAN ELEMENTS
 rmax 3.000000E-01 rmax : change MAX. TRUST RADIUS
 rmin 1.000000E-04 rmin : change MIN. TRUST RADIUS
 trad 3.000000E-01 trad : change TRUST RADIUS
------------------------------------------------------------------------
Just <ENTER>, q or '*' terminate this menu.
```
Excited states, frequency-dependent properties, and stability analysis

Excited state calculations with RPA or CIS (based on HF-SCF) and TDDFT procedures as well as stability analyses (SCF or DFT) are carried out by the program escf.

You will need a well converged HF-SCF or DFT calculation that were converged to at least $scfconv=7$, see Section 4.4.2.

Details of calculations are specified with the command `ex`:

MAIN MENU FOR RESPONSE CALCULATIONS

<table>
<thead>
<tr>
<th>OPTION</th>
<th>STATUS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>rpas</td>
<td>off</td>
<td>RPA SINGLET EXCITATIONS (TDHF OR TDDFT)</td>
</tr>
<tr>
<td>ciss</td>
<td>off</td>
<td>TDA SINGLET EXCITATIONS (CI SINGLES)</td>
</tr>
<tr>
<td>rpat</td>
<td>off</td>
<td>RPA TRIPLET EXCITATIONS (TDHF OR TDDFT)</td>
</tr>
<tr>
<td>cist</td>
<td>off</td>
<td>TDA TRIPLET EXCITATIONS (CI SINGLES)</td>
</tr>
<tr>
<td>polly</td>
<td>off</td>
<td>STATIC POLARIZABILITY</td>
</tr>
<tr>
<td>dynpol</td>
<td>off</td>
<td>DYNAMIC POLARIZABILITY</td>
</tr>
<tr>
<td>single</td>
<td>off</td>
<td>SINGLET STABILITY ANALYSIS</td>
</tr>
<tr>
<td>triple</td>
<td>off</td>
<td>TRIPLET STABILITY ANALYSIS</td>
</tr>
<tr>
<td>nonrel</td>
<td>off</td>
<td>NON-REAL STABILITY ANALYSIS</td>
</tr>
</tbody>
</table>

ENTER <OPTION> TO SWITCH ON/OFF OPTION, * OR q TO QUIT

If you have selected an option, e.g. `rpas`, and quit this menu, you will get another menu:

SELECT IRREP AND NUMBER OF STATES

ENTER ? FOR HELP, * OR Q TO QUIT, & TO GO BACK

This should be self-evident.

MP2, MP2-F12, RI-MP2, and PNO-MP2

We recommend to use MP2 for standard applications together with the RI technique using the `ricc2` program. The `mpgrad` program is supplied for special benchmark application where the RI approximation needs to be avoided. The `pnoccsd` program is meant only for very large (> 100 atoms and > 3000 basis functions) MP2 and MP2-F12 single point energy calculations. This is more efficient and supports the frozen core option in the gradient calculation.

The entry `mp2` leads to a submenu which allows to set some keywords for MP2 and RI-MP2 calculations, e.g. defining frozen orbitals, maximum memory usage, or assign auxiliary basis sets for RI-MP2 calculations, etc. If you want to use `ricc2`, you have to use the entry `cc` and the submenu `ricc2` in order to assign MP2 as wavefunction model. For the `pnoccsd` program you have to use the entry `pnocc` and the submenu `pnoccsd` to assign the wavefunction model.
Conventional MP2 calculations with \texttt{mpgrad} require a number of additional settings for which it is recommended to invoke the interactive tool \texttt{mp2prep}. For geometry optimizations with \texttt{jobex} use \texttt{nohup jobex -level mp2 -ri ...}

CC2 and CCSD calculations

The entry \texttt{cc} leads to a submenu which allows to set a number of keywords essential for calculations with the programs \texttt{ricc2} and \texttt{ccsdf12}. In particular it allows the assignment of the wavefunction method(s), selection of auxiliary basis sets, the specification of frozen orbitals, and the definition of a scratch directory and of the maximum core memory usage.

The \texttt{ricc2} program must be used for excitation energies and response properties with second-order methods (MP2, CIS(D), ADC(2), CC2, etc. and their spin-scaled variants), while the \texttt{ccsdf12} program must be used for third- and higher-order methods (MP3, CCSD, CCSD(T), etc.).

2nd analytical derivatives for SCF and DFT

The program \texttt{aoforce} computes force constants and IR and Raman Spectra on SCF and DFT level. Analytical second derivative calculations can directly be started from converged SCF or DFT calculations. Note, that the basis is restricted to \textit{d}-functions, and ROHF as well as broken occupation numbers are not allowed. For better efficiency, in case of larger systems, use the keyword \texttt{\maxcor} as described in Chapter 15 to reduce computational cost. RI will be used if the RI option for DFT has been specified.

4.4.2 Special adjustments

Adjustments described by the following menus are often better done directly in the \texttt{control} file; have a look at the keywords in Chapter 22. For common calculations just start with the defaults, and change keywords directly in \texttt{control} if you encounter problems with your calculation.

SCF options

```
ENTER SCF-OPTION TO BE MODIFIED

conv : ACCURACY OF SCF-ENERGY $\texttt{scfconv}$
thi : INTEGRAL STORAGE CRITERIA $\texttt{thize}$ $\texttt{thime}$
ints : INTEGRAL STORAGE ALLOCATION $\texttt{scfintunit}$
iter : MAXIMUM NUMBER OF ITERATIONS $\texttt{scfiterlimit}$
diis : DIIS CONVERGENCE ACCELERATION $\texttt{scfdiis}$
damp : OPTIONS FOR DAMPING $\texttt{scfdamp}$
shift : SHIFTING OF ORBITALS $\texttt{scforbitalshift}$
order : ORDERING OF ORBITALS $\texttt{scforbitalorder}$
fermi: THERMAL SMEARING OF OCC. NUMBERS $\texttt{fermi}$
```
By the command \texttt{fermi} you can switch on smearing of occupation numbers, and thus automatically optimize occupations and spin.

Menu drv

The most important of the derivative menus is the first one which tells the programs which derivatives to calculate. This is only necessary for special purposes and you should better not change default options.

<table>
<thead>
<tr>
<th>derivative data groups '$\texttt{drvopt, drvtol}$'</th>
</tr>
</thead>
<tbody>
<tr>
<td>option</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>crt</td>
</tr>
<tr>
<td>sec</td>
</tr>
<tr>
<td>bas</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>glb</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>dip</td>
</tr>
<tr>
<td>pol</td>
</tr>
<tr>
<td>fa</td>
</tr>
<tr>
<td>tol</td>
</tr>
</tbody>
</table>

The handling of these options is very simple. With the exception of **tol**, all are logical switches which are either true (or on, active) or false (or off, inactive). You can switch between the two states if you enter, for example, **crt** (to switch calculation of Cartesian first derivatives on) or **-crt** (to switch it off). The options **crt**, **sec** and **bas** should provide no problems. **glb** refers to a global scaling factor for all basis set exponents. Imagine that you would like to replace your basis set, which contains basis functions

$$\chi_\mu = (x - x_0)^l(y - y_0)^m(z - z_0)^n \exp \left[-\eta_\mu (r - r_0)^2 \right]$$

by another basis set which contains basis functions

$$\chi_\mu = (x - x_0)^l(y - y_0)^m(z - z_0)^n \exp \left[-\alpha \eta_\mu (r - r_0)^2 \right]$$

where α is the same for all primitive basis functions χ_μ. With command **glb** you are able to calculate analytical derivatives of the total energy with respect to α and can thus easily determine the optimum α.

dip enables you to calculate the first derivatives of the electric dipole moment with respect to nuclear displacements which gives you infrared intensities. **pol** allows you
to calculate the contribution of the nuclear rearrangement on the electric polarizability. _fa_ finally performs only a frequency analysis which means that _aoforce_ will read the force constant matrix (_hessian_ or _hessian (projected)_), diagonalize it and give you the frequencies and normal modes. _tol_ is not a logical switch as the other options in this menu, but a cutoff threshold for the derivative integrals, i.e. integrals below this threshold will be neglected in the derivative calculations.

Entering * will bring you to the second derivative submenu.

Debug Options for the Derivative Programs

The following menu deals only with some debug options for _grad_. Use them with caution, each of them can produce lots of useless output:

```
<table>
<thead>
<tr>
<th>option</th>
<th>status</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disp1e</td>
<td>F</td>
<td>display 1e contributions to desired derivatives</td>
</tr>
<tr>
<td>only1e</td>
<td>F</td>
<td>calculate 1e contributions to desired derivatives only</td>
</tr>
<tr>
<td>debug1e</td>
<td>F</td>
<td>display 1e shell contributions to desired derivatives</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(WARNING : this produces large outputs!)</td>
</tr>
<tr>
<td>debug2e</td>
<td>F</td>
<td>display 2e shell contributions to desired derivatives</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(WARNING : this produces VERY large outputs!)</td>
</tr>
<tr>
<td>debugvib</td>
<td>F</td>
<td>debug switch for vibrational analysis (force only)</td>
</tr>
<tr>
<td>notrans</td>
<td>F</td>
<td>disable transfer relations (gradient only!)</td>
</tr>
<tr>
<td>novirial</td>
<td>F</td>
<td>disable virial scaling invariance in basis set</td>
</tr>
<tr>
<td></td>
<td></td>
<td>optimizations (gradient only)</td>
</tr>
</tbody>
</table>
```

use <opt> for enabling, -<opt> for disabling option <opt>
<&> will bring you back to GENERAL MENU without more changes
<RETURN> OR * OR q(uit) WILL TERMINATE THIS MENU

As there is no need to use these options normally and the menu text is self-explaining, no further description will be given. Note that all options are logical switches and may be enabled and disabled the same way as shown for the last menu. Entering * will bring you to the last derivative submenu.

4.4.3 Relax Options

Program _relax_ has a huge variety of options to control its actions which in program _define_ are grouped together in eight consecutive menus. These are only briefly described in the following sections; for a more detailed discussion of the underlying algorithms refer to the documentation of program _relax_ (see Section 5.3). Only experts should try to change default settings.
Optimization Methods

The first of the relax subgenus deals with the type of optimization to be performed:

```
optimization options for RELAX
```

<table>
<thead>
<tr>
<th>option</th>
<th>status</th>
<th>description : optimization refers to</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>F</td>
<td>INTERNAL coordinates</td>
</tr>
<tr>
<td>crt</td>
<td>F</td>
<td>CARTESIAN coordinates</td>
</tr>
<tr>
<td>bas</td>
<td>F</td>
<td>BASIS SET exponents/scale factors</td>
</tr>
<tr>
<td>glb</td>
<td>F</td>
<td>GLOBAL scaling factor</td>
</tr>
</tbody>
</table>

use <opt> for enabling, -<opt> for disabling option <opt>

<RETURN> OR * OR q(uit) WILL TERMINATE THIS MENU

You can choose between a geometry optimization in the space of internal coordinates (in this case you will need definitions of internal coordinates, of course) or in the space of Cartesian coordinates (these possibilities are mutually exclusive, of course). Furthermore optimizations of basis set parameters (exponents, contraction coefficients and scaling factors) or of a global scaling factor is possible (these options are also exclusive, but can be performed simultaneous to a geometry optimization). For the geometry optimization you should normally use internal coordinates as they provide better convergence characteristics in most cases.

Coordinate Updates

The next submenu deals with the way relax updates the old coordinates. You may choose a maximum change for the coordinates or you can allow coordinate updates by means of extrapolation:

```
coordinate update options for RELAX
```

```
dqmax <real> : coordinates are allowed to change by at most <real> (DEFAULT : 0.3000 ) a.u.
polish : perform an interpolation or extrapolation of coordinates (DEFAULT :y)
-polish : disable inter/extrapolation
```

<RETURN> OR * OR q(uit) WILL TERMINATE THIS MENU

These options result in better convergence of your optimization in most cases.

Interconversion Between Internal and Cartesian Coordinates

The interconversion between internal and Cartesian coordinates is not possible directly (in this direction). Instead it is performed iteratively. The following options
control this conversion:

--
interconversion options for RELAX
--

<table>
<thead>
<tr>
<th>option</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>switch on interconversion (DEFAULT: off)</td>
</tr>
<tr>
<td>qconv <r></td>
<td>set convergence threshold for interconversion</td>
</tr>
<tr>
<td></td>
<td>of coordinates to <r>. DEFAULT : <r> = .1000E-09</td>
</tr>
<tr>
<td>iter <i></td>
<td>allow at most <i> iterations for interconversion</td>
</tr>
<tr>
<td></td>
<td>of coordinates. DEFAULT : <i> = 25</td>
</tr>
<tr>
<td>crtint</td>
<td>transform cartesian into internal coordinates (DEFAULT=n)</td>
</tr>
<tr>
<td>intcrt</td>
<td>transform internal into cartesian coordinates (DEFAULT=n)</td>
</tr>
<tr>
<td>grdint</td>
<td>transform cartesian into internal gradients (DEFAULT=n)</td>
</tr>
<tr>
<td>hssint</td>
<td>transform cartesian into internal hessian (DEFAULT=n)</td>
</tr>
</tbody>
</table>

use -<opt> for disabling any interconversion option

The options qconv and iter are used in each normal relax run to determine the characteristics of the back-transformation of coordinates into the internal space. With the other options and interconversion switched on, you can force relax to perform only the specified coordinate transformation and write the transformed coordinates to file control. To achieve this, enter on to switch to the transformation-only mode, and one of the last four options, e.g. crtint, to specify the desired transformation.

Updating the Hessian

relax provides a variety of methods to generate an updated Hessian every cycle. This includes the well known methods such as BFGS, DFP, or MS update methods as well as some less common procedures:

--
OPTIONS FOR UPDATING THE HESSIAN
--

<table>
<thead>
<tr>
<th>option</th>
<th>status</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>F</td>
<td>NO UPDATE (STEEPEST DESCENT)</td>
</tr>
<tr>
<td>bfgs</td>
<td>F</td>
<td>BROYDEN-FLETCHER-GOLDFARB-SHANNO UPDATE</td>
</tr>
<tr>
<td>dfp</td>
<td>F</td>
<td>DAVIDON-FLETCHER-POWELL UPDATE</td>
</tr>
<tr>
<td>bfgs-dfp</td>
<td>F</td>
<td>COMBINED (BFGS+DFP) UPDATE</td>
</tr>
<tr>
<td>ms</td>
<td>F</td>
<td>MURTAGH-SARGENT UPDATE</td>
</tr>
<tr>
<td>schlegel</td>
<td>F</td>
<td>SCHLEIGEL UPDATE</td>
</tr>
<tr>
<td>diagup</td>
<td>F</td>
<td>DIAGONAL UPDATE (AHLRICHS/EHRIG)</td>
</tr>
<tr>
<td>multidim</td>
<td>F</td>
<td>RANK > 2 BFGS-TYPE UPDATE</td>
</tr>
<tr>
<td>ahlrichs</td>
<td>T</td>
<td>MACRO : AHLRICHS UPDATE (DEFAULT)</td>
</tr>
</tbody>
</table>

USE <opt> FOR ENABLING OPTION <opt> AND THUS DISABLING ALL OTHER OPTIONS.

<RETURN> OR * OR q(uit) WILL TERMINATE THIS MENU
We recommend to use the default method `ahlrichs` which provides excellent convergence in most cases.

General Boundary Conditions for Update

The force constant matrix will only be updated if least `mingeo` cycles exist. The maximum number of cycles used for the update is specified by the parameter `maxgeo`. Normally the default values provided by `define` need not be changed.

```plaintext
DEFINE BOUNDARY CONDITIONS FOR UPDATE

-----------------------------------------------
mingeo <i> | START UPDATE IF THERE ARE AT LEAST <i> CYCLES
           | DEFAULT : min 3
maxgeo <i> | USE LAST <i> CYCLES FOR UPDATE, DEFAULT : max 4
-----------------------------------------------
<RETURN> OR * OR q(u)it) WILL TERMINATE THIS MENU
```

Special Boundary Conditions for Ahlrichs and Pulay Updates

For the default update method `ahlrichs` some additional control parameters are available which can be defined in this menu:

```plaintext
DEFINE BOUNDARY CONDITIONS FOR AHLRICHS OR PULAY UPDATE

-----------------------------------------------
option | description
-----------------------------------------------
modus <i> | DEFINE MODUS FOR GDIIS PROCEDURE : MINIMIZE
         | <dq|dq> IF <i> = 0
         | <g|dq> IF <i> = 1
         | <g|g> IF <i> = 2
         | <dE> IF <i> = 3
         | DEFAULT : <i> = 1
fail <r> | IGNORE GDIIS IF <g|dq> /| <g|dq> | IS
         | LARGER THAN -<r>. DEFAULT : <r> = 0.1
-----------------------------------------------
<RETURN> OR * OR q(u)it) WILL TERMINATE THIS MENU
```

For detailed description consult Section 5.3.

```plaintext
OPTIONS FOR MANIPULATING THE HESSIAN

-----------------------------------------------
option | description
-----------------------------------------------
diagonal | RESTRICT UPDATE TO DIAGONAL-ELEMENTS IF
         | METHOD IS BFGS,DFP OR MS. DEFAULT=n
offreset | DISCARD OFF-DIAGONAL ELEMENTS. DEFAULT=n
offdamp <r> | DAMP OFF-DIAGONAL ELEMENTS BY 1/(1+<r>) DEFAULT= 1.000
damp <real> | DAMP UPDATE BY 1/(1+<real>), DEFAULT= .0000E+00
scale <real> | SCALE INPUT HESSIAN BY <real>, DEFAULT= 1.000
```
allow <real> | SCALE INPUT HESSIAN BY |DE|/|DE| IF |DE|,
| THE OBSERVED ABSOLUTE CHANGE IN ENERGY, IS
| OBEYING THE CONDITION |DE| > <real> > 0.
| DEFAULT : NO SCALING
min <real> | DO NOT ALLOW EIGENVALUES OF HESSIAN TO DROP
| BELOW <real>. DEFAULT= .1000E-02
reset <real> | USE <real> AS A RESET VALUE FOR TOO SMALL
| EIGENVALUES (CP. min). DEFAULT= .1000E-02
max <real> | DO NOT ALLOW EIGENVALUES OF HESSIAN TO BECOME
LARGER THAN <real>. DEFAULT= 1000.
WITH THE EXCEPTION OF min, reset AND max, ALL OPTIONS MAY BE
DISABLED BY ENTERING -<opt> <RETURN> OR * OR q(uit) WILL TERMINATE THIS MENU

Initialization of the Hessian

Finally there are some options to control the choice of the initial Hessian during your
geometry optimization:

--
FORCE CONSTANTS INITIALIZATION OPTIONS FOR RELAX
--
OPTION | DESCRIPTION
--
off | switch off initialization (DEFAULT: on)
cart | use analytical cartesian hessian provided by a
| 2nd derivatives calculation. DEFAULT(n)
diag | use diagonal matrix with diagonal elements set
| individually within data groups $intdef or
| $basis or $global. DEFAULT(n)
unit <r> | use multiple of the unit matrix (H = <r>*E).
DEFAULT(n) - DEFAULT <r> = 1.000
NOTE THAT THESE OPTIONS ARE MUTUALLY EXCLUSIVE
<RETURN> OR * OR q(uit) WILL TERMINATE THIS MENU

Option off will be used if you have already a good Hessian from a previous calcu-
lization which may be used. cart describes an even better state where you have a
Hessian from a calculation of the second derivatives available (aoforce). The other
two options describe real procedures for initialization of the Hessian. Default values:
stretches (0.5), angles (0.2).

4.4.4 Definition of External Electrostatic Fields

This submenu allows you to calculate first and second numerical derivatives of the
energy with respect to an external electric field. The first three options should be
clear; 1st and 2nd are logical switches which are turned on and off the usual way
(1st or -1st) and delta is the increment for the numerical differentiation, that is,
the finite value of the external field, which replaces the (ideally) differential field:

```
---

electrostatic field definition menu
---

<table>
<thead>
<tr>
<th>option</th>
<th>status</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>F</td>
<td>numerical 1st derivative dE/dField</td>
</tr>
<tr>
<td>2nd</td>
<td>F</td>
<td>numerical 2nd derivative d2E/dField2</td>
</tr>
<tr>
<td>delta &lt;real&gt;</td>
<td></td>
<td>increment for numerical differentiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DEFAULT = .5000E-02</td>
</tr>
<tr>
<td>geofield</td>
<td>F</td>
<td>geometry optimization with external field</td>
</tr>
<tr>
<td>man</td>
<td>F</td>
<td>explicit definition of electrostatic field(s)</td>
</tr>
</tbody>
</table>
```

geofield gives the possibility to perform a whole geometry optimization under the influence of a finite external field and thus to obtain the (distorted) minimum geometry in this field. To do this, an external electrostatic field must be defined explicitly which can be done using command `man`. Note that `geofield` must also be switched on if any properties are to be evaluated in the presence of an electric field. The most prominent example is the calculation of hyperpolarizabilities.

Take Care, due to some inconsistencies in `define` it is always necessary to switch on the field calculations manually. Therefore edit the `control` file after having finished your `define` session and enter `on` after the entries of `fields` and `geofield`.

4.4.5 Properties

The program `moloch` used for this purpose is currently being revamped, and will then be much simpler to use. The subsequent description for an older version may not work in all cases—sorry for that.

If you enter `prop` in the general menu, `define` first will check whether the data group `$properties` does already exist in your `control` file or in a file referenced therein. If this is not the case you will be asked to specify the file on which `$properties` shall be written:

```
data group $properties has not yet been specified
FOR INITIALIZING <moloch> KEYWORDS ENTER
   [return] : WRITE TO CONTROL FILE control (DEFAULT),   OR
   filename : WRITE TO ANOTHER FILE
```

Afterwards you will get the following submenu which allows you to control all possible actions of program `moloch`:
4.4. THE GENERAL OPTIONS MENU

switch on one or more of the following options \(<i>\)
\(<i> = 1, \ldots, 9\)
for switching off option \(<i>\), specify \(-<i>\)

(1) trace \hspace{1cm} \text{off}
(2) moments \hspace{1cm} \text{off}
(3) potential \hspace{1cm} \text{off}
(4) cowan-griffin \hspace{1cm} \text{off}
(5) localization \hspace{1cm} \text{off}
(6) population analyses \hspace{1cm} \text{off}
(7) plot \hspace{1cm} \text{off}
(8) firstorder \hspace{1cm} \text{off}

selecting an already active option indicates that
suboptions shall be modified
* or q(uit) = quit \mid \text{for help, type help \(<integer>\)}

All options in this menu are selected by entering their number as indicated in the first column. For example, to switch on option \text{trace} enter 1. The flag \text{off} will then change to \text{active}. To switch off an option enter its negative number, e.g. -1 for \text{trace}. Most of the options require additional input and will therefore lead you to further submenus. These are briefly described below.

Option \text{trace}

\text{trace} will calculate the trace of density times overlap matrix:

\[N = \text{tr}\{DS\} \]

If the orbitals are orthonormal, \(N\) should yield the total number of electrons in your molecule. If this is not true, your MO-vector will most probably be erroneous. For example, the vector might belong to another geometry or basis set. As this is a very sensitive test for errors like these and the calculation requires almost no time, you should always switch on this option.

Option \text{moments}

This option leads you to the following submenu:

<table>
<thead>
<tr>
<th>option</th>
<th>status</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>point (<x> <y> <z>)</td>
<td>T</td>
<td>reference point = (x,y,z)</td>
</tr>
<tr>
<td>atom (<i>)</td>
<td>F</td>
<td>reference point = atom no. (<i>)</td>
</tr>
<tr>
<td>0th</td>
<td>T</td>
<td>compute 0th moment</td>
</tr>
<tr>
<td>1st</td>
<td>F</td>
<td>compute 1st moment</td>
</tr>
<tr>
<td>2nd</td>
<td>F</td>
<td>compute 2nd moment</td>
</tr>
<tr>
<td>3rd</td>
<td>F</td>
<td>compute 3rd moment</td>
</tr>
</tbody>
</table>

\(<\text{-moment}>\) : skip computation of \(<\text{moment}>\)
* or q(uit) = terminate input
This menu serves to specify the electrostatic moments to be calculated (0th=charge, 1st=dipole moment, 2nd=quadrupole moment, 3rd=octuple moment). The reference point is the origin of the coordinate system used in the calculation. The value of any calculated moment will be independent of this reference point, if all lower moments are zero. The default for the reference point is the origin, i.e. the coordinate system used for the calculation of the moments will be the same as the one in which the atomic coordinates are specified. The reference point may be changed by typing `point` with the three new coordinates appended. Alternatively you may choose the coordinates of one of the atoms as reference point by entering `atom` and the atom index.

Option potential

This option collects all possible quantities related to the electrostatic field created by the molecular charge distribution. This includes the following suboptions:

```
list of suboptions:
pot - electrostatic potential
fld - electrostatic field
fldgrd - electrostatic field gradient
shld - diamagnetic shielding
file - file reference
* - quit
```

The meaning of the four suboptions `pot`, `fld`, `fldgrd` and `shld` will probably present no problems to you. For each of them, however, you will have to specify at which point(s) this property should be calculated. This is accomplished by one or more data groups `$points` in file `control`. After you chose one or more of the above options, you will therefore reach the next submenu which deals with the specification of these data groups:

```
there are 1 data groups $points
manipulate data group(s) $points
a - add another data group
m <integer> - modify <integer>th data group
m all - modify all data groups
d <integer> - delete <integer>th data group
d all - delete all data groups
off <integer> - switch off <integer>th data group
off all - switch off all data groups
on <integer> - switch on <integer>th data group
on all - switch on all data groups
s - scan through data groups
* - quit
```

The first line informs you how many of these data groups already exist in your `control` file. Each of these data groups may consist of several points at which the properties will be calculated. You may now create new data groups, delete old
ones or simply switch on or off individual data groups (without deleting them from control). The number of different data groups $points$ as well as the number of points in each of them are not limited. However, if you use many points, you should consider specifying them in a separate file. This is most easily done using option file in the potential menu. This option will create a file for your data groups $points$ and will write a reference of this file to file control.

Option cowan-griffin

This option activates the computation of the first order relativistic correction to the energy as given by the expectation value of the Cowan–Griffin operator.

Option localization

Specifying option localization will switch on a Boys localization of molecular orbitals. define by default chooses a set of MOs to be localized according to a certain threshold for the orbital energy. Information about these are displayed like this:

BOYS localization will be performed with respect to x y z
number of sweeps = 10000
subset of molecular orbitals to be localized :
 --> all occupied molecular orbitals
 with orbital energy above -2.00000 Hartree
---> shells to be localized

--
a1 4-5 # 1- 5
 e 2 # 1- 2
--
you are employing default options for localization
do you want to modify them ? DEFAULT(n)

If you want to change the MO selection or other options for the localization enter y at this point (By default or when typing n you will reach the moloch options menu again). You will then be asked whether to change the MO selection method. If you want this, you will enter a little submenu where you can choose one of three possible selection procedures:

all selects all occupied orbitals
thr selects all occupied orbitals with orbital energy larger than a certain threshold
man enables you to select the MOs manually later in this section

If the selection method thr is specified you then will be asked for the threshold to be applied for the selection. Afterwards you have the possibility to change some other topics concerning the localization:
• specify other localization directions

• switch on utilization of localized orbitals for population analysis and/or preparation of plot data within the same moloch run

• set the maximum number of sweeps in the localization procedure

• specify a file where localized orbitals shall be written to

Option population analyses

When activating this option you first have to specify whether the population analysis (PA) should be performed in the CAO (default) or AO basis. Afterwards define will ask you whether you want to perform a Mulliken population analysis. In this case, the following submenu will be displayed:

```
add or delete one or more special options for a
mulliken population analysis

<table>
<thead>
<tr>
<th>option</th>
<th>status</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>spdf</td>
<td>F</td>
<td>compute MO contributions to atomic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>brutto populations</td>
</tr>
<tr>
<td>molap</td>
<td>F</td>
<td>compute MO contributions to atomic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>overlap populations</td>
</tr>
<tr>
<td>netto</td>
<td>F</td>
<td>compute atomic netto populations</td>
</tr>
<tr>
<td>irpspd</td>
<td>F</td>
<td>compute IRREP contributions to atomic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>brutto populations</td>
</tr>
<tr>
<td>irpmol</td>
<td>F</td>
<td>compute IRREP contributions to atomic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>overlap populations</td>
</tr>
<tr>
<td>mommul</td>
<td>F</td>
<td>print electrostatic moments resulting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>from atomic charges</td>
</tr>
</tbody>
</table>

-<option> : switch off <option>
* or q uit) : leave this menu
```

Here you can activate several optional quantities to be computed along with the Mulliken PA. To switch on one or more of these options you must enter the corresponding option keywords, e.g. `spdf netto` for computation of atomic netto populations and MO contributions to atomic brutto populations. The status flags for these tasks will then change from F (false) to T (true). To switch off any option you simply have to enter the corresponding keyword preceded by a ‘-’, e.g. `-netto` for disabling calculation of atomic netto populations.

After having left the Mulliken PA section you will be asked whether a population analysis based on occupation numbers (a modified Roby–Davidson PA) should be performed by moloch. When typing `y` you will see the following submenu, where you can switch on several special options for the PA in the same manner as described above.
4.4. THE GENERAL OPTIONS MENU

add or delete one or more special options for a population analysis based on occupation numbers

<table>
<thead>
<tr>
<th>option</th>
<th>status</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>momao</td>
<td>F</td>
<td>compute MO contributions to modified atomic orbital (MAO) occupation numbers</td>
</tr>
<tr>
<td>maodump</td>
<td>F</td>
<td>dump all MAOs onto standard output</td>
</tr>
<tr>
<td>maofile</td>
<td>F</td>
<td>write MAOs onto a separate file</td>
</tr>
<tr>
<td>select</td>
<td>F</td>
<td>write only those MAOs which have been employed in the population analysis</td>
</tr>
<tr>
<td>all</td>
<td>F</td>
<td>write all MAOs</td>
</tr>
</tbody>
</table>

note that the options select and all are complementary

-<option> : switch off <option>
* or q(uit) : leave this menu

Afterwards you have the possibility to change the criterion to be applied for the selection of modified atomic orbitals (MAOs) within the following little submenu:

global criterion for selection of Modified Atomic Orbitals (MAOs):

<table>
<thead>
<tr>
<th>option</th>
<th>status</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eig <r></td>
<td>T</td>
<td>select by eigenvalues of the 'atomic' density matrices</td>
</tr>
<tr>
<td>occ <r></td>
<td>F</td>
<td>select by occupation numbers</td>
</tr>
</tbody>
</table>

<r> is the selection threshold (DEFAULT=.1000)

* or q(uit) : leave this menu

The criterion applied by default is the so-called atomic density eigenvalue with a threshold of 0.1. You can switch the criterion to occupation numbers by entering occ. If you also want to change the threshold, you just have to append its new value to the selection keyword, e.g. occ .2. Finally you can select or disable various options in connection with the computation of shared electron numbers (SEN) within the following menu:
CHAPTER 4. PREPARING YOUR INPUT FILE WITH DEFINE

Option plot

This option allows you to prepare the data needed for contour plots of orbital amplitudes or total electron densities. We do not recommend to prepare plotting data this way; an easier method—with an easier syntax—is to generate these data directly by the programs, where densities (also MP2 or excited ones) and Molecular orbitals are calculated. This is described in Chapter 19. If you nevertheless want to prepare the input for plotting data as needed by moloch using define, on activating plot you get the following menu:
there are 1 data groups

manipulate data group(s) grid

- add another data group
- modify integerth data group
- modify all data groups
- delete integerth data group
- delete all data groups
- switch off integerth data group
- switch off all data groups
- switch on integerth data group
- switch on all data groups
- scan through data groups
- quit

The commands in this menu serve for the manipulation of data groups grid in an analogous way as described for points in the potential section above. grid data groups contain the input information necessary to create the plot data by moloch (one data group for each plot). If you want to add a new data group you will enter this submenu:

specify the input orbital / input density:

- use occupied molecular orbital label
- use one electron density built from the occupied molecular orbitals
- use localized molecular orbital no. lmo
- use modified atomic orbital no. i centered on atom no. k
- explanation of the syntax for label
- quit

Here you may specify the orbital to be plotted. To plot the amplitude of the fifth orbital in irrep a_1, e.g., you would enter mo 5a1. Equivalently you can use localized orbitals from a Boys localization procedure or modified atomic orbitals as obtained in a Roby–Davidson–Ahlrichs–Heinzmann population analysis. In the latter cases you will not have to enter an irrep label, as these orbitals are necessarily in C_1 symmetry. Instead you will have to enter the index of the orbital to be plotted (and for option mao the index of the atom at which it is situated). In all cases you will additionally have to specify the plane in which the amplitudes or densities will be monitored. To do this, you have to declare two vectors which span that plane and the origin of this new coordinate system relative to the one in which the atomic coordinates are given. Furthermore, you will have to create a grid of points on this plane. The orbital amplitude or electron density will then be calculated for every point in this grid. The grid is created by telling define the range to be included along both vectors spanning the plane (where the unit in each direction is the length of the corresponding basis vector) and the number of points to be calculated in this range. It is advantageous to use a wide grid while you test the ranges or planes which give the best results and then to switch to a finer grid for the final calculation. Finally input (MO vector) and output (plot data) files can be specified.

In case you do not want to add a new data group as described above but to change
an existing one, you will be asked which one of the specifications you want to modify.
Chapter 5

Calculation of Molecular Structure and *Ab Initio* Molecular Dynamics

5.1 Structure Optimizations using the JOBEX Script

In its normal mode of operation, the shell script *jobex* controls and executes automatic optimizations of molecular geometry parameters. It will cycle through the direct SCF, gradient and force relaxation programs and stop if either the maximum number of cycles is reached or the convergence criteria (change in the total energy, maximum norm of the gradient) are fulfilled. By default, the executable programs are taken from the load modules library within the TURBOMOLE directory.

5.1.1 Options

Given a shell the usage is:

```
nohup jobex &
```

This command invokes structure optimization using the default program *statpt*. Structure optimizations using program *relax* can be performed using `-relax` flag:

```
nohup jobex -relax &
```

n unh means that the command is immune to hangups, logouts, and quits. & runs a background command. *jobex* accepts the following arguments controlling the level of calculation, convergence criteria and many more (for example *nohup jobex -gcart 4 &*):

```
-energy integer converge total energy up to 10^(−integer) Hartree (default: 6)
```
-gcart integer converge maximum norm of cartesian gradient up to 10^{-<\text{integer}>} atomic units (default: 3)
-c integer perform up to integer cycles (default: 100)
-dscf begin with a direct SCF step
-grad begin with a gradient step
-statpt begin with a force relaxation step
-relax use the relax program for force relaxation
-trans perform transition state search
-level level define the optimization level, level=scf, mp2, cc2, uff, rirpa or xtb (default is scf).
-ri use RI modules ridft and rdgrad (fast Coulomb approximation) instead of dscf and grad as well as rimp2 instead of mpgrad; obligatory option if -level rirpa
-rijk in connection with '-level cc2', the RI-JK versions of HF and CPHF are switched on
-ex perform excited state geometry optimization using egrad
-l <path> employ programs from directory <path>
-1s <path> load scripts from directory <path>
-md a molecular dynamics (MD) run (using frog instead of relax)
-mdfile file commands for MD run are contained in this file (default: mddmaster).
-mdscript file option to execute a shell script before the frog step
-keep keep program output from all optimization steps
-help shows a short description of the commands above

5.1.2 Output

There will be an output written to file job.start which informs you about the current options. The convergence is signalled by the file converged; otherwise, you should find the file not.converged within your working directory. If jobex finds a file named stop or STOP in the working directory, jobex will stop after the present step has terminated. You can create stop by the command touch stop.

The output of the last complete cycle is written to file job.last, while the output of the running cycle is collected within the file job.<cycle>, where <cycle> is the index of the cycle. The convergence criteria and their current values are written out at the bottom of the job.last file.
5.2 Program **Statpt**

5.2.1 General Information

Stationary points are places on the potential energy surface (PES) with a zero gradient, i.e. zero first derivatives of the energy with respect to atomic coordinates. Two types of stationary points are of special importance to chemists. These are minima (reactants, products, intermediates) and first-order saddle points (transition states).

The two types of stationary points can be characterized by the curvature of the PES at these points. At a minimum the Hessian matrix (second derivatives of energy with respect to atomic coordinates) is positive definite, that is the curvature is positive in all directions. If there is one, and only one, negative curvature, the stationary point is a transition state (TS). Because vibrational frequencies are basically the square roots of the curvatures, a minimum has all real frequencies, and a saddle point has one imaginary vibrational “frequency”.

Structure optimizations are most effectively done by so-called quasi-Newton–Raphson methods. They require the exact gradient vector and an approximation to the Hessian matrix. The rate of convergence of the structure optimization depends on anharmonicity of the PES and of the quality of the approximation to the Hessian matrix.

The optimization procedure implemented in **statpt** belongs to the family of quasi-Newton–Raphson methods [34]. It is based on the restricted second-order method, which employs Hessian shift parameter in order to control the step length and direction. This shift parameter is determined by the requirement that the step size should be equal to the actual value of the trust radius, $$\text{tradius}$$, and ensures that the shifted Hessian has the correct eigenvalue structure, all positive for a minimum search, and one negative eigenvalue for a TS search. For TS optimization there is another way of describing the same algorithm, namely as a minimization on the "image" potential. The latter is known as TRIM (Trust Radius Image Minimization) [35].

For TS optimizations the TRIM method implemented in **statpt** tries to maximize the energy along one of the Hessian eigenvectors, while minimizing it in all other directions. Thus, one “follows” one particular eigenvector, hereafter called the “transition” vector. After computing the Hessian for your guess structure you have to identify which vector to follow. For a good TS guess this is the eigenvector with negative eigenvalue, or imaginary frequency. A good comparison of different TS optimization methods is given in [36].

Structure optimizations using **statpt** are controlled by the keyword statpt to be present in the control file. It can be set either manually or by using the stp menu of define. The type of stationary point optimization depends on the value of itrvec specified as an option within statpt. By default itrvec is set to 0, which implies a structure minimization. A value $\text{itrvec} > 0$ implies a transition state optimization using the eigenvalue-following TRIM algorithm, where the index of the transition vector is specified by itrvec. Note, that **statpt** orders eigenvalues (and
eigenvectors) of the Hessian in ascending order, shifting six (or five in the case of linear molecules) zero translation and rotation eigenvalues to the end.

Note: this order differs from that used for vibrational frequencies in the control file, where rotational and translational eigenvalues are not shifted.

By default a structure optimization is converged when all of the following criteria are met:

- the energy change between two optimization cycles drops below the value given by `threchange` (default: 10^{-6} a.u.),
- the maximum displacement element drops below the value given by `thrmax\-displ` (default: 10^{-3} a.u.),
- the maximum gradient element drops below the value given by `thrmaxgrad` (default: 10^{-3} a.u.),
- the root mean square of the displacement elements drops below the value given by `thrrmsdispl` (default: $5 \cdot 10^{-4}$ a.u.),
- the root mean square of the gradient elements drops below the value given by `thrrmsgrad` (default: $5 \cdot 10^{-4}$ a.u.).

The default values for the convergence criteria can be changed using the `stp` menu of `define`. The necessary keywords are described in Section 22.2.24 below.

For structure optimization of minima with `statpt` as relaxation program just use:

```bash
jobex &
```

TS optimizations are performed by the `jobex` invocation:

```bash
jobex -trans &
```

5.2.2 Hessian matrix

The choice of the initial Hessian matrix has a great effect on the convergence of the structure optimization. At present, there are three choices for the Hessian matrix in `statpt`. For minimization, a diagonal matrix or approximate Hessian matrix from a forcefield calculation using `uff` (see Section 5.4) can be used. For transition state optimizations you have to provide either the “exact” Hessian or results from the lowest eigenvalue search (LES, see Section 15). Note also that you can calculate the Hessian with a smaller basis set and/or at a lower wavefunction level, and use it for higher level structure optimization. Usually, a Hessian matrix calculated in a minimal basis using RI-DFT is good enough for all methods implemented in TURBOMOLE.
STATPT automatically takes the best choice of the Hessian from the control file. For minimizations it first looks for the exact Hessian and then for the UFF Hessian. If none of them is found it takes the scaled unit matrix. For transition state optimization the exact Hessian has a higher priority than the results of LES.

The results of LES can be used to obtain an initial Hessian matrix for transition state optimizations involving large molecules, where calculation of the full Hessian is too expensive. Note, that LES calculations for statpt, in addition to the $les keyword require the following keywords to be added manually in the control file:

```
$h0hessian
$nomw
```

The default Hessian update for minimization is bfgs, which is likely to remain positive definite. The powell update is the default for transition state optimizations, since the Hessian can develop a negative curvature as the search progresses.

5.2.3 Finding Minima

Simply specify the $statpt keyword in the control file and run jobex as explained above. You can very often speedup the optimization by calculating the initial Hessian matrix using uff.

5.2.4 Finding transition states

Locating minima on a PES is straightforward. In contrast, transition state optimization requires much more input. The diagonal guess Hessian will almost never work, so you must provide a computed one. The Hessian should be computed at your best guess as to what the TS should be.

The real trick here is to find a good guess for the transition state structure. The closer you are, the better. It is often difficult to guess these structures. One way to obtain a good guess is to build an approximate TS and to perform a constrained minimization by freezing internal coordinates that change most during the reaction. Alternatively, you can generate several structures intermediate to reactants and products, and compute the energy at each point. The maximum energy structure is usually a good guess for the true TS.

After obtaining a reasonable initial guess for the TS structure you have to perform a vibrational analysis (or LES calculation for a large molecule) and to identify the index of the transition vector to follow during the optimization. Ideally, this is a vector with a negative eigenvalue, or "imaginary" frequency. The best way to find the right vector is to use some graphical interface to visualize vibrations. For a reasonable guess structure there should be one vibration that resembles the reaction under study. Remember that statpt uses a different ordering of eigenvalues as compared to the aoforce output—six (five) zero eigenvalues are shifted to the end.
CHAPTER 5. STRUCTURE OPTIMIZATIONS

There is an important thing to remember at this point. Even such sophisticated optimization methods like TRIM will not replace your own chemical intuition about where transition states may be located. If you need to restart your run, do so with the coordinates which have the smallest RMS gradient. Note that the energy does not have necessarily to decrease in a transition state search (as opposed to minimizations). It is sometimes necessary to do restart several times (including a recomputation of the Hessian) before the saddle point can be located.

Assuming you do find the TS, it is always a good idea to recompute the Hessian at this structure. It is fairly common, especially when using symmetry, that at your “TS” there is a second imaginary frequency. This means that you have not found the correct TS. The proper procedure is to distort the structure along the “extra” imaginary normal mode using the tool screwer (see Section 1.5). Very often such a distortion requires also lowering the point group symmetry. The distortion must be large enough, otherwise the next run will come back to the invalid structure.

5.3 Program Relax

5.3.1 Purpose

relax drives and controls a non-linear optimization procedure to locate the minimum (or a stationary point) of a function $f(x)$. In TURBOMOLE f is always the electronic energy, and the coordinates x will be referred to as general coordinates. They include

- cartesian atomic coordinates
- internal atomic coordinates
- exponents, contraction coefficients and scaling factors of basis functions
- a global scaling factor (a common scaling factor for all basis set exponents)

The optimization employs an iterative procedure based on gradients ∇f of the current and, if available, previous iterations. Various procedures can be applied: steepest descent, Pulay’s DIIS, quasi–Newton, conjugate gradients, as well as combinations of them. relax carries out:

- update of general coordinates
- update of approximate hessians if needed
- conversion of coordinates (internal \leftrightarrow cartesian)

The mode of operation is chosen by the keywords $\$optimize$ and $\$interconversion$ and the corresponding options, which will be described in the following sections.
5.3.2 Optimization of General Coordinates

After gradients G_k have been calculated for coordinates q^k in optimization cycle k, new coordinates (or basis set exponents) q^{k+1} can be obtained from the quasi–Newton update:

$$q^{k+1} = q^k - F^k G^k$$

where F^k is the inverse of an approximate force constant matrix H^k. This method would immediately converge to the equilibrium geometry if F^k would be the inverse of the exact force constant matrix and the force field would be quadratic. In real applications usually none of these requirements is fulfilled. Often only a crude approximation to the force constant matrix H^k is known. Sometimes a unit matrix is employed (which means coordinate update along the negative gradient with all coordinates treated on an equal footing).

The optimization of nuclear coordinates in the space of internal coordinates is the default task performed by relax and does not need to be enabled. Any other optimization task requires explicit specifications in data group $optimize$, which takes several possible options:

$optimize$ options

- **internal on/off** Structure optimization in internal coordinates.
- **redundant on/off** Structure optimization in redundant coordinates.
- **cartesian on/off** Structure optimization in cartesian coordinates.
- **basis on/off** Optimization of basis set exponents, contraction coefficients, scaling factors.
- **global on/off** Optimization of global scaling factor for all basis set exponents.

Note: All options except **internal** are switched off by default, unless they have been activated explicitly by specifying **on**.

Some of the options may be used simultaneously, e.g.

- **internal, basis**
- **internal, global**
- **cartesian, basis**

Other options have to be used exclusively, e.g.

- **internal, cartesian**
- **basis, global**
The update of the coordinates may be controlled by special options provided in data group `$coordinateupdate` which takes as options:

- `dqmax=real` Maximum total coordinate change (default: 0.3).
- `interpolate on/off` Calculate coordinate update by inter/extrapolation using coordinates and gradients of the last two optimization cycles (default: `interpolate on`) if possible.
- `statistics integer/off` Display optimization statistics for the integer previous optimization cycles. Without integer all available information will be displayed. `off` suppresses optimization statistics.

The following data blocks are used by program `relax`:

1. Input data from gradient programs `grad`, `rdgrad`, `egrad`, `rimp2`, `mpgrad`, etc.:
 - `$grad` cartesian atomic coordinates and their gradients.
 - `$egrad` exponents and scale factors and their gradients.
 - `$globgrad` global scale factor and its gradient.

2. Input data from force constant program `aoforce`:
 - `$grad` cartesian atomic coordinates and their gradients.
 - `$globgrad` global scale factor and its gradient.
 - `$hessian` the force constant matrix in the space of cartesian coordinates.

3. Output data from program `relax`:
 - `$coord` cartesian atomic coordinates.
 - `$basis` exponents and scale factors.
 - `$global` global scale factor.

For structure optimizations the use of (redundant) internal coordinates is recommended, see Section 4.0.6. Normally internal coordinates are not used for input or output by the electronic structure programs (`dscf`, `mpgrad`, etc.). Instead the coordinates, gradients, etc. are automatically converted to internal coordinates by `relax` on input and the updated positions of the nuclei are written in cartesians coordinates to the data group `$coord`. Details are explained in the following sections.

5.3.3 Force Constant Update Algorithms

In a Newton-type geometry update procedure often only a crude approximation to the force constant matrix H^k is available. What can be done then is to update $F^k = (H^k)^{-1}$ in each iteration using information about previous coordinates and gradients. This constitutes the quasi–Newton or variable metric methods of which there are a few variants:
5.3. PROGRAM RELAX

1. Murtagh/Sargent (MS):

\[F^k = F^{k-1} + Z^{k-1}(Z^{k-1})^\dagger (Z^{k-1})^\dagger dG^{k-1} \]

2. Broyden/Fletcher/Goldfarb/Shanno (BFGS):

\[F^k = F^{k-1} + \frac{S(dq^{k-1})^\dagger dq^{k-1} - dq^{k-1}(dG^{k-1})^\dagger F^{k-1} - F^{k-1}dG^{k-1}(dq^{k-1})^\dagger}{S1} \]

3. Davidon/Fletcher/Powell (DFP):

\[F^k = F^{k-1} + \frac{(dq^{k-1})^\dagger dq^{k-1}}{S1} - \frac{F^{k-1}dG^{k-1}(dG^{k-1})^\dagger F^{k-1}}{(S - 1)S1} \]

4. combined method (BFGS/DFP): If \(S1 < (S - 1)S1 \) and \(S1 > 0 \) perform DFP update, otherwise BFGS.

The meaning of the symbols above is as follows:

- \(F^k \) approximate inverse force constant matrix in the k-th iteration.
- \(q^k \) general coordinates in the k-th iteration.
- \(G^k \) gradients in the k-th iteration.
- \(dq^{k-1} = q^k - q^{k-1} \)
- \(dg^{k-1} = g^k - g^{k-1} \)
- \(Z^{k-1} = dq^{k-1} - F^{k-1}dG^{k-1} \)
- \(S1 = (dq^{k-1})^\dagger dg^{k-1} \)
- \(S = 1 + ((dg^{k-1})^\dagger F^{k-1}dG^{k-1})/(S1) \)

An alternative is to use update algorithms for the hessian \(H^k \) itself:

Ehrig, Ahlrichs: **Diagonal** update for the hessian by means of a least squares fit

\[H^k_{ii} = \sqrt{H^{k-1}_{ii}(h_i + d_i)} \]

with the new estimate \(h \) for the diagonal elements obtained by

\[h_i = \frac{\sum_k dG_i^k dq_i^k}{\sum_k (dq_i^k)^2} \]

and the error \(d \) obtained by the regression

\[d_i = \sqrt{\frac{\sum_k (dq_i^k)^2}{\sum_k (dq_i^k)^2} - h_i^2} \cdot \frac{k - 2}{k - 2}. \]
Another alternative is to use DIIS-like methods: structure optimization by direct
inversion in the iterative subspace. (See ref. [37] for the description of the algorithm).
The DIIS procedure can often be applied with good success, using static or updated
force constant matrices.

Any of the algorithms mentioned above may be chosen. Recommended is the macro
option \texttt{ahlrichs}, which leads to the following actions (n is the maximum number of
structures to be included for the update, default is $n = 4$):

- $\text{ncycles} < n$: geometry update by inter/extrapolation using the last 2 geometries.
- $\text{ncycles} \geq n$: diagonal update for the hessian as described above; DIIS–like update
 for the geometry.
- $||G|| < \text{thr}$: BFGS-type update of the hessian and quasi–Newton update of (general-
 ized) coordinates.

References for the algorithms mentioned above: [34,37–41]

5.3.4 Definition of Internal Coordinates

If structure optimizations are to be performed in the space of internal coordinates
($\texttt{optimize internal}$, is the default setting), appropriate internal coordinate defi-
nitions have to be provided on data block \texttt{intdef}. The types available and their
definitions are described in Section 4.1.2. For recommendations about the choice
of internal coordinates consult ref. [28]. Nevertheless the structure of \texttt{intdef} will
shortly be described. The syntax is (in free format):

\begin{verbatim}
1 k 1.00000000 bend 1 2 3 val=1.9500 fdiag=.6666
\end{verbatim}

The first items have been explained in Chapter 4.

Two additional items $\texttt{val=real, fdiag=real}$ may be supplied for special purposes:

- $\texttt{val=}$ serves for the input of values for internal coordinates for the intercon-
 version internal \rightarrow cartesian coordinates; it will be read in by \texttt{relax} if the
 flag for interconversion of coordinates has been activated ($\texttt{interconversion on}$
), or by the interactive input program \texttt{define} within the geometry spec-
 ification menu.

- $\texttt{fdiag=}$ serves for the input of (diagonal) force constants for the individual in-
 ternal coordinates to initialize $\texttt{forceapprox}$.

5.3.5 Structure Optimizations Using Internal Coordinates

This is the default task of \texttt{relax} ($\texttt{optimize internal on}$ does not need to be
specified!) You need as input the data groups:
5.3. PROGRAM RELAX

$grad cartesian coordinates and gradients as provided and accumulated in subsequent optimization cycles by the programs grad, or rdgrad etc.

$intdef definitions of internal coordinates.

$redundant definitions of redundant coordinates.

Output will be the updated coordinates on $coord and the updated force constant matrix on $forceapprox. If any non-default force constant update option has been chosen, relax increments its counting variables <numgeo>, <numpul> within command keyword $forceupdate. If the approximate force constant has been initialized ($forceinit on) relax switches the initialization flag to $forceinit off. Refer also to the general documentation of TURBOMOLE. It is recommended to check correctness of your definition of internal coordinates:

1. Calculate their values for your cartesian start coordinates using the relax program (see Section 5.3.11) or within a define session.

2. Have a look at the eigenvectors of the BmB†-matrix. Set some ‘?’ behind keyword $intdef, if there are any eigenvalues close to zero (<10−2 is to be considered bad for small molecules, but there is no general rule) check those internal coordinates for consistency which contribute to the corresponding eigenvector(s)!

5.3.6 Structure Optimization in Cartesian Coordinates

For this task you have to specify:

$optimize
 cartesian on
 internal off

These lines switch on the non-default optimization in cartesian coordinates and switch off the optimization in internal coordinates (this has to be done explicitly!). As input data groups you need only $grad as provided by on of the gradient programs. For the first coordinate update an approximate force constant matrix is needed in data group $forceapprox. Output will be the updated coordinates on $coord, and the updated force constant matrix on $forceapprox.

The coordinates for any single atom can be fixed by placing an ‘f’ in the third to eighth column of the chemical symbol/flag group. As an example, the following coordinates specify acetone with a fixed carbonyl group:

$coord
 2.02693271108611 2.03672551266230 0.00000000000000 c
 1.08247228252865 -0.68857387733323 0.00000000000000 c f
 2.53154870318830 -2.48171472134488 0.00000000000000 o f
5.3.7 Optimization of Basis Sets (SCF only)

For this task you have to specify:

```
$optimize
  basis on
  internal off
```

This example would perform only a basis set optimization without accompanying geometry optimization. It is possible, of course, to optimize both simultaneously: Just leave out the last line of the example (internal off). Input data groups are:

- `$egrad` Basis set exponents, contraction coefficients, scaling factors and their respective gradients as provided and accumulated in subsequent optimization cycles by one of the programs `grad` or `mpgrad`, if `$drvopt basis on` has been set.
- `$basis` Description of basis sets used, see Section 4.2.

Output will be the updated basis on `$basis`, and the updated force constant matrix on `$forceapprox`.

For an example, see Section 23.5.

5.3.8 Simultaneous Optimization of Basis Set and Structure

The optimization of geometry and basis set may be performed simultaneously and requires the specification of:

```
$optimize
  internal on (or: cartesian on)
  basis on
```

and needs as input data groups `$grad` and `$egrad`. Output will be on `$coord`, `$basis`, also on `$forceapprox` (updated).
5.3.9 Optimization of Structure and a Global Scaling Factor

Optimization of a global scaling factor is usually *not* performed in geometry optimizations. It is a special feature for special applications by even more special users. As reference see [42].

To optimize the structure and a global scaling factor specify:

\$optimize

 internal on (or: cartesian on)
 global on

You need as input data groups \$grad and \$globgrad, the latter contains the global scaling factors and their gradients accumulated in all optimization cycles. Output will be on \$coord, \$global, also on \$forceapprox (updated). Note that for optimization of a global scaling factor a larger initial force constant element is recommended (about 10.0).

5.3.10 Conversion from Internal to Cartesian Coordinates

Due to translational and rotational degrees of freedom and the non-linear dependence of internal coordinates upon cartesian coordinates, there is no unique set of cartesian coordinates for a given set of internal coordinates. Therefore an iterative procedure is employed to calculate the next local solution for a given cartesian start coordinates. This task may be performed using the `relax` program, but it is much easier done within a `define` session.

5.3.11 Conversion of Cartesian Coordinates, Gradients and Force Constants to Internals

To perform this tasks, you have to activate the interconversion mode by

\$interconversion on

 cartesian --> internal coordinate gradient hessian

Note that any combination of the three options showed is allowed! The default value is `coordinate`, the two other have to be switched on explicitly if desired.

You need as input data groups:

 intdef Definitions of (redundant) internal coordinates
 coord Cartesian coordinates (for option `coordinate`)
 grad Cartesian coordinates and gradients as provided and accumulated in subsequent optimization cycles by the various gradient programs (for `coordinate` and `gradient`)
hessian Analytical force constant matrix (as provided by the force constant program aoforce) (only if option hessian is specified). The data group $hessian (projected) may be used alternatively for this purpose.

All output will be written to the screen except for option hessian (output to data group $forceapprox)

5.3.12 The m-Matrix

The m-matrix serves to fix position and orientation of your molecule during geometry optimizations. It cannot be used to fix internal coordinates! The m-matrix is a diagonal matrix of dimension $3n^2$ (where n is the number of atoms). Normally m will be initialized as a unit matrix by relax. As an example consider you want to restrict an atom to the xy-plane. You then set the m(z)-matrix element for this atom to zero. You can use at most six zero m-matrix diagonals (for linear molecules only five)—corresponding to translational and rotational degrees of freedom. Note that the condition of the B_mB^\dagger-matrix can get worse if positional restrictions are applied to the m-matrix. m-matrix elements violating the molecular point group symmetry will be reset to one. Non-default settings for m-matrix diagonals of selected atoms have to be specified within data group $m-matrix$ as:

$m-matrix$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

5.3.13 Initialization of Force Constant Matrices

The most simple initial hessian is a unit matrix. However, better choices are preferable. For structure optimizations using internal coordinates you may use structural information to set up a diagonal force constant matrix with elements chosen in accord to the softness or stiffness of the individual modes. For detailed information refer to ref. [40]. For optimization of basis set parameters less information is available. When neither data block $forceapprox$ is available nor $forceinit on$ is set, the force constant matrix will be initialized as a unit matrix. Specifying the force constant initialization key $forceinit on diag=... will lead to:

diag=real Initialization with real as diagonal elements.

diag=default Initial force constant diagonals will be assigned the following default values:
5.4. FORCE FIELD CALCULATIONS

internal coordinates : stretches 0.50
angles 0.20
scaling factors : s,p 1.50
d 3.00
exponents : uncontracted 0.15
contracted 10.00
contraction coefficients : 100.00
global scaling factor : 15.00
cartesian force constants : 0.50
diag=individual Initial force constant diagonals will be taken from
$intdef fdiag=... or
$global fdiag=...
Similar initialization modes are NOT supported for geometry
optimization in cartesian space and for the optimization of basis
set parameters!
carthess Data group $hessian (projected) is used.

5.3.14 Look at Results

The energy file includes the total energy of all cycles of a structure optimization
completed so far. To get a display of energies and gradients use the UNIX command
grep cycle gradient which yields, e.g. H$_2$O.

cycle = 1 SCF energy = -76.3432480651 |dE/dxyz| = 0.124274
cycle = 2 SCF energy = -76.3575482860 |dE/dxyz| = 0.082663
cycle = 3 SCF energy = -76.3626983371 |dE/dxyz| = 0.033998
cycle = 4 SCF energy = -76.3633251080 |dE/dxyz| = 0.016404
cycle = 5 SCF energy = -76.3634291559 |dE/dxyz| = 0.010640
cycle = 6 SCF energy = -76.3634910117 |dE/dxyz| = 0.000730

This should be self-evident. To see the current—or, if the optimization is con-
verged, the final—atomic distances use the tool dist. Bond angles, torsional an-
gles etc. are obtained with the tools bend, tors, outp, etc. In the file gradient
are the collected cartesian coordinates and corresponding gradients of all cycles.
The values of the general coordinates and corresponding gradients are an output of
relax written to job.<cycle> of job.last within jobex. To look at this search for
'Optimization statistics' in job.last or job.<cycle>.

5.4 Force Field Calculations

5.4.1 Purpose

uff preoptimizes a structure and calculates an analytical Hessian which can be used
as a start Hessian in a geometry optimization. This will accelerate the convergence
of an optimizations. For optimizations in cartesian space this will be faster by a factor of two for any molecule.

5.4.2 How to Perform a UFF Calculation

You have to generate cartesian coordinates (file coord), nothing else. You can start an single-point calculation calculation by typing

```
uff
```

To start an uff geometry optimization, one has to change the number of cycles (parameter maxcycle) in the block uff in the file control. The output is the optimized structure (file coord), the analytical gradient (file uffgradient) and the analytical cartesian hessian (file uffhessian0-0). Furthermore the control file will be modified:

```
$forceinit on
carthess
$uffhessian file=uffhesian0-0
```

These commands have the effect to initialize the force constant matrix for a geometry optimization with the hessian one.

In some cases uff cannot recognize the connectivity, then one can specify the connectivity in the file ufftopology. The program will calculate the bond, angle, torsion, inversion and non-bonded terms (force field terms) based on the connectivity specified in the topology file.

5.4.3 The UFF implementation

The uff implementation follows the paper by Rappé [7]. The energy expression in uff is as follows:
5.4. FORCE FIELD CALCULATIONS

\[E_{UFF} = \sum_{i}^{N_B} \frac{1}{2} \cdot K_{JJ} \cdot (r - r_{JJ})^2 \] (5.1)

\[+ \sum_{i}^{N_A} \left\{ \begin{array}{ll}
K_{IJK} \cdot \left(\frac{K_{IJK}}{K_{IJK}} \cdot (1 - \cos(2\theta)) \right) & \text{linear case} \\
K_{IJK} \cdot \left(\frac{K_{IJK}}{K_{IJK}} \cdot (1 - \cos(3\theta)) \right) & \text{trigonal planar case} \\
K_{IJK} \cdot \left(\frac{K_{IJK}}{K_{IJK}} \cdot (1 - \cos(4\theta)) \right) & \text{quadratic planar case} \\
K_{IJK} \cdot \left(\frac{K_{IJK}}{K_{IJK}} \cdot (1 - \cos(4\theta)) \right) & \text{octahedral case} \\
\end{array} \right. \\
\]

\[+ \sum_{i}^{N_T} \frac{1}{2} \cdot V_\phi \cdot (1 - \cos(n\phi_0) \cos(n\phi)) \\
+ \sum_{i}^{N_I} V_\omega \cdot (C_0^I + C_1^I \cos \omega + C_2^I \cos 2\omega) \\
+ \sum_{i}^{N_{nb}} D_{JJ} \cdot \left(-2 \left(\frac{x_{JJ}}{x} \right)^6 + \left(\frac{x_{JJ}}{x} \right)^{12} \right) \\
+ \sum_{i}^{N_{nb}} q_I \cdot q_J \cdot \epsilon \cdot x \]

The Fourier coefficients \(C_0^A, C_1^A, C_2^A \) of the general angle terms are evaluated as a function of the natural angle \(\theta_0 \):

\[C_2^A = \frac{1}{4 \sin^2 \theta_0} \] (5.2)

\[C_1^A = -4 \cdot C_2^A \cos \theta_0 \] (5.3)

\[C_0^A = C_2^A \left(2 \cos^2 \theta_0 + 1 \right) \] (5.4)

The expressions in the energy term are:

\(N_B, N_A, N_T, N_I, N_{nb} \) the numbers of the bond-, angle-, torsion-, inversion- and the non bonded-terms.

\(K_{JJ}, K_{IJK} \) force constants of the bond- and angle-terms.

\(r, r_{JJ} \) bond distance and natural bond distance of the two atoms \(I \) and \(J \).

\(\theta, \theta_0 \) angle and natural angle for three atoms \(I - J - K \).

\(C_0^A, C_1^A, C_2^A \) Fourier coefficients of the general angle terms.

\(\phi, \phi_0 \) torsion angle and natural torsion angle of the atoms \(I - J - K - L \).

\(V_\phi \) height of the torsion barrier.

\(n \) periodicity of the torsion potential.

\(\omega \) inversion- or out-of-plane-angle at atom \(I \).
\(V_\omega \) \hspace{1em} \text{height of the inversion barrier.}

\(C_0^I, C_1^I, C_2^I \) \hspace{1em} \text{Fourier coefficients of the inversions terms.}

\(x, x_{IJ} \) \hspace{1em} \text{distance and \textit{natural} distance of two non bonded atoms} \(I \) and \(J \).

\(D_{IJ} \) \hspace{1em} \text{depth of the Lennard–Jones potential.}

\(q_I, \epsilon \) \hspace{1em} \text{partial charge of atoms} \(I \) \text{ and dielectric constant.}

One major difference in this implementation concerns the atom types. The atom types in Rappé’s paper have an underscore "_". In the present implementation an sp\(^3\) C atom has the name "C 3" instead of "C\(_3\)". Particularly the bond terms are described with the harmonic potential and the non-bonded van der Waals terms with the Lennard–Jones potential. The partial charges needed for electrostatic nonbond terms are calculated with the Charge Equilibration Model (QEq) from Rappé [43]. There is no cutoff for the non-bonded terms.

The relaxation procedure distinguishes between molecules with more than 90 atoms and molecules with less atoms. For \textit{small} molecules it consists of a Newton step followed by a linesearch step. For \textit{big} molecules a quasi-Newton relaxation is done. The BFGS update of the force-constant matrix is done [38, 44–46]. Pulay’s DIIS procedure is implemented for \textit{big} molecule to accelerate the optimization [37, 47].

The coordinates for any single atom can be fixed by placing an 'f' in the third to eighth column of the chemical symbol/flag group. As an example, the following coordinates specify acetone with a fixed carbonyl group:

```
$coord
 2.02693271108611 2.03672551266230 0.00000000000000 c
 1.08247228252865 -0.68857387733323 0.00000000000000 c f
 2.53154870318830 -2.48171472134488 0.00000000000000 o f
-1.78063790034738 -0.04586399389434 0.00000000000000 c
-2.64348282517094 -0.13141435997713 1.68855816889786 h
-2.23779643042546 -3.09026673535431 0.00000000000000 h
-2.64348282517094 -0.13141435997713 -1.68855816889786 h
 1.3100893646566 3.07002878668872 1.68840815751978 h
 1.3100893646566 3.07002878668872 -1.68840815751978 h
 4.12184425921830 2.06288409251899 0.00000000000000 h
$end
```

5.5 Semiempirical Extended Tight-Binding Calculations

5.5.1 Purpose

\texttt{tb} optimizes a structure using GFN2-xtb as described in the papers of S. Grimme et. al [48, 49].
5.5.2 How to Perform a xTB Calculation

There are two ways to run xTB calculations:

- Either prepare a usual TURBOMOLE input with arbitrary basis set and method. Only the coordinates will be used, all other settings are ignored. If you want to add a charge, please note that you have to use the \$tb keyword.

- Or just use a simple cartesian coordinate file (coord) in TURBOMOLE format. No control file is needed. Start a geometry optimization by typing

\[\text{jobex -level xtb}\]

To add options the control file has to be modified:

\[
\begin{align*}
\text{$tb} \\
\quad \text{charge } -1 \\
\quad \text{gfn } <\text{method}> \\
\quad \text{accuracy } 1.0 \\
\quad \text{etemp } 300 \\
\quad \text{broydamp } 0.4 \\
\quad \text{maxiter } <\text{number}>
\end{align*}
\]

The options are:

\[
\begin{align*}
\text{charge } 0 & \quad \text{optionally sets the molecular total charge. If not specified, a neutral input is assumed.} \\
\text{gfn } 2 & \quad \text{choose method, GFN(1)-xTB or GFN2-xTB, default is 2} \\
\text{accuracy } 1.0 & \quad \text{accuracy for SCC calculations, lower value means higher accuracy. Default is 1.0} \\
\text{etemp } 300 & \quad \text{electronic temperature in Kelvin, default is 300K} \\
\text{broydamp } 0.4 & \quad \text{Broyden damping for charge mixing, default is 0.4} \\
\text{maxiter } 250 & \quad \text{maximum number of SCC iterations, default is 250}
\end{align*}
\]
5.6 Molecular Dynamics Calculations

Ab initio molecular dynamics (MD) can be carried out on the ground and excited state Born–Oppenheimer potential hypersurface. In addition non-adiabatic Tully-type *Surface Hopping* MD can be performed using TDDFT. At the start of an MD run the user must specify the initial atomic positions and velocities and give some general instructions for the run. This is managed by running the interactive program *Mdprep* and generating the command file *mdmaster*. If this is successful, the MD run itself may be started: *jobex -md*. Time is then advanced in steps. The electronic potential energy and its gradients are calculated quantum mechanically at the required coordinates each timestep (as detailed above, e.g. *dscf* and *grad*). The MD program *frog* uses the Leapfrog Verlet algorithm [50] to turn the gradients into new atomic positions and velocities. The atoms thus undergo classical Newtonian dynamics on the *ab initio* potential hypersurface. Trajectory information is recorded in a log file (*mdlog*). It is possible to instruct *frog* to heat or cool the system, use a thermostat for canonical dynamics, conserve total energy or read in new positions or velocities: the appropriate keywords are described in Section 22.2.27 below.

5.7 Global Structure Optimization – The DoDo Program

5.7.1 Genetic Algorithm

The reliable structure prediction of gas-phase clusters is complicated by a large number of possible structural isomers, often in combination with several low-lying electronic states. Brut force determination of the most stable configuration by manual construction of all models and following local structure optimizations is a formidable task. Instead, the DoDo program allows the automatic determination of the most stable molecular structures using the genetic algorithm (GA) to locate the global minimum of the total (electronic) energy. The GA is a search heuristic that employs principal mechanisms of natural evolution such as inheritance, mutation, selection, and crossover for exploration of the potential energy surface.

Generally, in GA a population of candidate structures is evolved toward improved solutions. Within the DoDo program the GA is initialized with a pool of randomly (automatically) generated structures, with initial structure models supplied by the user – so called seeds – or a combination of both. Every seed is used one or more times to create initial structures by randomly adding or removing atoms until the predefined composition and system size is reached. All initial structures are subsequently geometry optimized to the nearest local minimum. Next, two evolutionary operators – crossover and mutation – are used to exchange structure information between the members of the current population. In the crossover, pairs of structures are chosen to act as parents that will produce a new structure for the next generation. Within each parent pair, random pieces are exchanged to form the new mixed structure, the child, which is subsequently optimized to the nearest local minimum as well. The assumption is that the child will combine the good structural features of the parents and thus will be more stable than either one. Evolutionary pressure
towards improved children is added to bias the search in the right direction. This is achieved by selecting parents that have a relatively high fitness that is defined as a function of their total energy:

\[
 f_i = \frac{\exp\left(-\alpha \cdot \frac{E_i - E_{\text{min}}}{E_{\text{max}} - E_{\text{min}}} \right)}{\sum_{i=1}^{n} \left(\exp\left(-\alpha \cdot \frac{E_i - E_{\text{min}}}{E_{\text{max}} - E_{\text{min}}} \right)\right)} \tag{5.5}
\]

where \(f_i \) is the fitness of the \(i \)th individual, \(n \) is the number of individuals, \(\alpha \) is a constant scaling factor, and \(E_i \) is the energy of that individual relative to the maximum \((E_{\text{max}}) \) and minimum \((E_{\text{min}}) \) energies of structures in the whole population. Since the child structures not always present a better fitness than their parents, elitism or natural selection is applied. It is achieved by simply replacing parents with a worse fitness by children with a better one in the structures pool. In order to maintain a maximum diversity during the GA runs similarity recognition is used that allows only distinct structures to be included in the pool. To prevent trapping of the population in local minima mutation is added in which random changes are introduced to randomly chosen structures in the pool.

The determination of the global minimum structure typically requires, depending on the system size, several hundreds to few thousands of local structure optimizations of the children and mutated structures. Therefore, the DoDo program uses a simple parallelization in which a predefined number (usually 10-100, depending on computer resources) of local optimizations are performed simultaneously, each preferably running on a single or just a few CPU cores. When a number of local optimizations finish, i.e. the number of running/queued geometry optimizations falls below a minimum value \(a \), natural selection is applied and new child structures are generated by crossover or mutation and submitted for local optimization until the maximum number \(b \) of simultaneously running/queued optimizations is reached. This pool-based GA allows for an optimal utilization of computer resources since the algorithm is not required to wait for the completion of local optimizations of all children structures in a particular generation. The progress of the pool-based GA is then measured by number of locally optimized structures rather than by the generation count as in case of the generation-based GA \((a = 1) \).

More details of the implemented GA and application examples can be found in Ref. [51] and references therein.

5.7.2 How to Perform

In order to start a global optimization procedure one directory is required containing at least:

1. **DoDo input file** that specifies the parameters of the GA run (see also section 5.7.3).

2. **Tmole input file** that contains setup information for all local optimizations (see also Tmole documentation).
3. **job script** for the automatic submission of local optimization jobs to the queueing system during the GA. Such a script starts a geometry optimization using `tmole20` and, *e.g.*, a `Tmole input file` named “turbo.in” with the line:

```
tmole20 -l -c coord turbo.in > turbo.log >& turbo.err
```

A file containing seed structures can be optionally included in the directory. The GA is started by calling the DoDo main program with:

```
nohup genetic --gen_inp=INPUT_FILE >& OUTPUT_FILE &
```

This initiates a process running in background of the clusters front-end that: i) supervises the GA run, ii) stores the population and the history of the run, iii) performs the natural selection algorithm, iv) calls specialized genetic operator modules, v) performs input/output operations, vi) interacts with the queueing system. The generated output file summarizes the progress of the run including information about minimal and average energies of structures in a certain population, crossover and mutation operations as well as the status of queued jobs.

Each local optimization is performed in a separate directory and as an independent job (stored in “calculations”). The `Tmole input file` and `job script` supplied by the user are copied into the created working directory. Then, the molecular structure to be optimized is automatically exported as `coord` file and the job is submitted to the queueing system using the command compatible with the given job scheduling software (*e.g.* `qsub` for PBS). The DoDo package stores the unique identifier returned by the queueing system upon the job submission. Job progress is periodically checked using the identifier and the proper command (*e.g.* `qstat` for PBS). After the job is finished, the relevant output files created by `TURBOMOLE` are parsed in order to obtain the final structure definition and the corresponding energy.

The structures of the current population (with the highest fitness) are stored in a file named “POPULATION.dodo” while the file “DEAD.dodo” contains all structures that were removed from population due to the natural selection algorithm. A complete history of previous populations and rejected structure models is stored in the directory “structures”. These files as well as the files for the initial seed structures use the internal DoDo format (distance units: Bohr).

For conversion between the DoDo format and other commonly used file formats (*e.g.*, car and xyz) one can employ the script `dodoconvert` along with the following options:

```
--inppfile=FILE       name of file to dodoconvert (default: POPULATION.dodo)
--inppform=FORMAT     file format of base structure: car, xyz or dodo (default: dodo)
--outform=FORMAT      output file format: car, arc, xyz, mxyz (xyz file optimized for molden) or dodo (default: mxyz)
--ab                  change coordinates from Ångstrom to Bohr (default: False)
```
Should it be necessary to abort a GA run one can use `genetic --clear` to remove all submitted jobs from the queue before stopping the main process. In order to restart the GA, set the number of (random) initial structures to zero and remove the declaration of the seed file (if used) in the DoDo input file. Then, the latest “POPULATION.dodo” and “DEAD.dodo” files from the previous run are automatically read when `genetic` is executed again.

5.7.3 The DoDo Input File

A sample input file used for the DoDo genetic algorithm, “genetic_example.inp”, is generated by calling:

```
    genetic --tmole_example
```

Such an input file presents all keywords implemented in the program. For clarity, these keywords are separated in sections but the file is (almost) free formatted. The hash sign `#` starts a comment. The keywords and corresponding default values are summarized in the list presented below.

General settings

population size `SIZE(int)`
- Defines the maximum population size. `SIZE > 1`, default: `SIZE = 20`.

min max queued structures `MIN(int) MAX(int)`
- Defines the minimum and maximum number of the local optimization jobs present at any moment in the queue. Use `MIN = 1` to have a ‘standard’ generation-based GA run. `MAX ≥ MIN ≥ 1`, defaults: `MIN = 1, MAX = 10`.

optimized structures `MAX(int)`
- Defines the total number of structures optimized during the run. Default: `MAX = 100`.

Initial structures generator settings

gen ini max tries `MAX(int)`
- Defines the maximum number of tries performed in order to generate a single initial structure model. Default: `MAX = 1000`.

initial structures `NUMBER(int)`
- Defines the total number of generated initial structures. Default: `NUMBER = 20`.
atomic radii bounds $A(\text{float}) B(\text{float})$

Defines the multipliers for atomic radii used to check whether two atoms are bound. Defaults: $A = 0.7$, $B = 1.2$.

composition

$\text{SYMBOL1(string) MIN1(int) MAX1(int)}$
$\text{SYMBOL2(string) MIN2(int) MAX2(int)}$
$\text{SYMBOL3(string) MIN3(int) MAX3(int)}$
...

end composition

The composition block defines the desired atomic composition of the initial structures. SYMBOL is a chemical symbol of the given element. MIN and MAX define minimum and maximum number of atoms for that element. Only systems with constant composition during the GA run are currently available ($\text{MAX} = \text{MIN}$).

seed file FILENAME(string)

Declares the file that contains seeds given in the internal DoDo format. Default: $\text{FILENAME} = \text{OLD_POPULATION.dodo}$.

seeds amount $\text{NUMBER1(int) NUMBER2(int) NUMBER3(int)}...$

Defines how many initial species will be generated from each seed given in the seed file. The number of the values has to be the same as the count of the seeds given in the seed file, i.e. each seed in the seed file has to be accounted for.

Crossover and mutation settings

constant composition mode

This line is a sanity check. If this line is present in the input file, MIN has to be equal to MAX for each SYMBOL in the composition section. Otherwise, an error is raised. Only this mode is currently available.

crossover max tries MAX(int)

Defines the maximum number of tries performed in order to generate a single structure model. Default: $\text{MAX} = 1000$.

fitness scaling FACTOR(float)

Defines the scaling factor α used in Eq. (5.5). Default: $\text{FACTOR} = 1.0$.

mutation probability VALUE(float)

Defines the mutation probability of structures within the GA population. Default: $\text{VALUE} = 0.01$.

Selection settings
5.7. GLOBAL STRUCTURE OPTIMIZATION – THE DODO PROGRAM

selection RMS VALUE(float)
- Defines the maximum root mean square of the distances between the corresponding atoms for which two structures are considered similar. Default: \(VALUE = 0.3 \).

selection dstmax VALUE(float)
- Defines the maximum distance [Å] used to seek for the corresponding atoms. Default: \(VALUE = 0.3 \).

Software control settings

queueing system NAME(string)
- Defines which job scheduling software interface should be used. \(NAME = pbs \) or \(NAME = hlrn \), default: \(NAME = pbs \).

time interval VALUE(int)
- Defines how often [seconds] the GA checks the queuing system for the presence of submitted optimization jobs. Default: \(VALUE = 600 \).

computational platform NAME(string)
- Defines the computational platform (TURBOMOLE in combination with Tmole). \(NAME = turbomole \).

job file NAME(string)
- Defines the name of file which will be submitted to the queueing system. Default: \(NAME = job.run \).

tmole file NAME(string)
- This file is used by Tmole2.0. \(NAME \) given here HAS to agree with data given in job file.
5.8 Counterpoise-Corrections using the JOBBSSE Script

The shell script {	exttt{jobbsse}} controls and executes the automatic calculation of the counterpoise correction as it has been formulated by Boys and Bernadi (S. F. Boys and F. Bernardi, Mol. Phys., 19, 553 (1970)) to estimate the Basis Set Superposition Error (BSSE). For a dimer, the cp-correction takes the form for the monomers A and B:

$$E_{AB}^{CP} = E_{AB} - (E_{A(B)} - E_A) - (E_{B(A)} - E_B)$$

Where parentheses denote ghost basis sets without electrons or nuclear charges. For a trimer {	exttt{jobbsse}} used by default the conventional so-called site-site functional counterpoise corrections:

$$E_{ABC}^{CP} = E_{ABC} - (E_{A(BC)} - E_A) - (E_{B(AC)} - E_B) - (E_{C(AB)} - E_C)$$

{	exttt{jobbsse}} works similar as the {	exttt{jobex}} script: it cycles through the SCF/DFT and, if needed, gradient and force relaxation programs and stops if either the maximum number of cycles is reached or the convergence criteria (change in the total energy, maximum norm of the gradient) are fulfilled. It does either only energy calculations or a full geometry optimization including up to three fragments. By default, the executable programs are taken from the load modules library within the TURBOMOLE directory.

Note that you need to set up the fragments (and possibly their symmetries using {	exttt{define}} in the geometry menu beforehand. The general structure of a {	exttt{jobbsse}} calculation is as follows:

1. {	exttt{bsseenergy}} is invoked to generate input files for {	exttt{define}}, which is then used to prepare the control files (including occupation numbers, initial guess MOs, etc.) for the different “ghost” and monomer calculations and shell scripts with commands for calculations on these fragments.

2. {	exttt{jobbsse}} cycles over the supermolecular complex and the fragments and computes the energies and, if requested, gradients for them. Then the counterpoise-corrected results are evaluated and written to the standard data groups (\$energy and \$grad).

3. For geometry optimizations one of the structure relaxation codes ({\texttt{statpt}} or {\texttt{relax}}) is invoked to update the coordinates and check for convergence. If the structure optimization is not converged {	exttt{jobbsse}} continues with the previous step.

Note, that counterpoise-corrected calculations with {	exttt{jobbsse}} are NOT as black-box as ordinary geometry optimizations with {	exttt{jobex}}. The input generated for the fragments are based on the default occupation numbers obtained from the EHT guess, default assignments for the frozen orbitals, memory, etc. Since this might be different from what is needed (or even fail), it is recommended to let {	exttt{jobbsse}} stop after the initial setup step using the flag -\texttt{setup} and to check carefully the assigned basis sets,
occupations number and subsystem symmetries. In particular, for MP2 or CC2 calculations with molecules containing not only the atoms H–Ar also the number of frozen orbitals should be checked, and if necessary corrected.

5.8.1 Options

Given a shell the usage is:

```
nohup jobbsse &
```

This command invokes cp-correction, and, if needed structure optimization using the default program `statpt`. Note, that the program needs to know which calculation is being done. Structure optimizations using program `relax` can be performed using `-relax` flag:

```
nohup jobbsse -opt -relax &
```

`nohup` means that the command is immune to hangups, logouts, and quits. `&` runs a background command. `jobbsse` accepts the following arguments controlling the level of calculation, convergence criteria and many more (for example `nohup jobbsse -gcart 4 &`):

- `-energy integer` converge total energy up to $10^{(<\text{integer}>)}$ Hartree (default: 6)
- `-gcart integer` converge maximum norm of cartesian gradient up to $10^{(<\text{integer}>)}$ atomic units (default: 3)
- `-c integer` perform up to integer cycles (default: 100)
- `-gradient` calculate the gradient as well
- `-opt` optimise the structure
- `-relax` use the `relax` program for force relaxation
- `-level level` define the optimization level, `level=\text{scf, dft, mp2, or cc2}` (default is `scf`). Note that the program needs this input! If the level is DFT, the grid will be automatically set to m4.
- `-ri` use RI modules `ridft` and `rdgrad` (fast Coulomb approximation) instead of `dscf` and `grad` as well as `rimp2` instead of `mpgrad`
- `-l <path>` employ programs from directory `<path>`
- `-mem integer` is able to control the memory from outside define Note that if you did not define any memory, it is automatically set to 1 GB
-trimer calculates, in case we have a trimer:
\[\text{Energy} = ABC - AB(C) + AB - AC(B) + AC - BC(A) + BC \]
rather than
\[\text{Energy} = ABC - A(BC) + A - B(AC) + B - C(AB) + C \]
(note that the first term neglects the BSSE in the dimer)

-setup Interrupt calculation after the initial setup step to check and possibly correct the control files for the fragments and the supermolecule. To continue, start jobbsse without the -setup option.

-help shows a short description of the commands above

5.8.2 Output

There will be an output written to file bsse_out. In this file, you will find all individual energies computed which were used to calculate the last cp-corrected energy. The same holds true for the last gradients, which are written to grad_out.

The convergence criteria and their current values are written out at the not.converged file. For the possible options to control convergence check the subsection for the optimization program used (statpt, which is used by default, or relax). Since for weak complexes the force constants for intra- and intermolecular bonds very strongly in magnitude, it is recommended to use whenever possible redundant internal coordinates.
5.9 Reaction Path Optimization

5.9.1 Background and Program structure

The goal of self-consistent optimization of the reaction path (RP) is usually to obtain an initial guess for Transition State Search or an approximation to the barrier. Methods that use reactant and product structure to compute the RP are often referred to as 'double-ended' methods or, if the RP is discretized, 'chain-of-states' methods. [52–54]

The RP connects reactant and product, its highest point being the transition state. It is a steepest descent path, which means that its tangent t is always parallel to the gradient g. The RP is in actual calculations discretized by a finite number of structures n. The tangents are parallel to the gradients for all structures $i = 1,..,n$. Assuming normalized tangents $t_i^T t_i = 1$, this can be written as:

$$0 = (1 - t_i^T t_i) g_i$$ \hspace{1cm} (5.6)

Several approximations for the tangents t_i exist [54,55], usually using finite difference schemes. The most common methods, the Nudged Elastic Band (NEB) [54,55] and String Method (SM) [56] prevent the structures from 'sliding' down the reaction path towards products and reactants with additional springs or interpolation/redistribution algorithms. The method used here achieves equal spacing via constrained optimization assuming a quadratic potential. [57] An initial path is provided using a slight variation of the Linear Synchronous Transit [52].

The structure of the optimization is the same as in other TURBOMOLE structure optimizations: As the jobex script drives optimizations by calling statpt/relax as well the SCF and gradient modules. The woelfling-job script drives optimizations by calling woelfling as well as the SCF and gradient modules. The woelfling-job scripts reads the current path from file path.xyz which is the output of the woelfling program. woelfling-job then creates folders to run the calculations of each structure in, gathers coordinates and gradients, and then calls woelfling again.

The aim of RP optimization is usually not to optimize the RP to some accuracy, but to obtain an initial guess for a TS optimization. It is in general not possible to find a convergence criterion (and a corresponding threshold) that guarantees a good initial guess. The maximum number of iterations and the convergence threshold are therefore relatively high and tight. One can extract a TS guess also during the course of the optimization. If the TS search is successful (or not) you can stop (or restart) the RP optimization. Apart from simply killing the program you can add a 'stop' file in the (scratch) directory, in which the script runs. It will then terminate at the end of the current cycle and can easily be restarted.

5.9.2 Input Structure

Options can be modified using keywords in the $woelfling$ data-group. The most important options are:
CHAPTER 5. STRUCTURE OPTIMIZATIONS

[$woelfling$
\begin{verbatim}
 ninter 14
 riter 0
 ncoord 2
 align 0
 maxit 40
 dlst 3.00000000000000
 thr 1.000000000000000E-004
 method q
\end{verbatim}

The values above are the default values. If $woelfling$ is missing, it will be added during the first woelfling run and default values will be set. Most importantly, ncoord is the number of input structures provided, ninter is the number of structures to be used for discretization of the path and maxit is the number of cycles to run. If align 0, structures will be rotated/translated to minimize the cartesian distance, for align 1 structures will be used as provided. Using method qg instead of method q, a reaction path will be grown as in the growing string method. To start a RP optimization you need to provide at least a reactant and a product structure ncoord \geq 2. You may provide more structures if you have a guess for the reaction path. The input structures will be used to compute an initial guess with ncoord structures that is then optimized. Reactant and product structure will stay fixed throughout the optimization. All structures have to have the same ordering of atoms!

The input structures are provided in a file coords, which contains merged coord files. All ncoord structures are given in the right order in the typical TURBOMOLE coord format.

5.9.3 How it works

Minimum Input/Quick and Dirty

1. Make a usual TURBOMOLE input using the coord file of either reactant of product structure.
2. Join the coord-files of reactant and product in a file coords.
3. Run woelfling-job
4. Check the output and the path (path.xyz) to extract a TS guess.

It is usually a good idea to check the initial path before starting the calculation. Once you have prepared the input, simply run woelfling directly and check path.xyz. If it looks reasonable, just run the woelfling-job script.

Unsuccessful Optimization If there is no reasonable TS guess or a frequency calculation does not give the correct number of imaginary frequencies, you can:
5.9. REACTION PATH OPTIMIZATION

1. Check if have used the best structure as TS guess, maybe the structure with the highest energy is not the best.

2. Check if the RP has a reasonable amount of structures (if they are far apart, it is unlikely that a structure is close to the TS)

3. Check if the RP is reasonably converged (mean of \(\text{rms}(g_i) \) in output <1.0d-3; path is continuous in terms of energy and structure)
 (a) If it is not yet converged, converge it.
 (b) If it is not going to converge, provide useful structures for the initial guess or maybe use more structures for the path.

Restart

1. If you have stopped the calculation adding a 'stop' file, you can just run `woelfling-job` again.

2. If you have run the maximum number of cycles, just increase `maxit` and run `woelfling-job` again. It will then run from the old `maxit` to the new `maxit`.

If the calculation crashed 'on its own' it is likely that the SCF failed to converge - improve the corresponding options. If the optimization crashed in the middle of the run, it is most likely that it crashed during a SCF or gradient step, since basically all cpu time is spent there. In that case, remove at least the folder where the SCF and gradient program had been running when the program crashed. The files necessary for `woelfling` should be intact and you can simply restart it.

Restart - more details If the files are not intact, one can still use the optimized coordinates in one way or the other. There are basically three phases which are explicitly indicated by the number of iterations \(riter =: \):

0 `woelfling` reads `control`, `coords` to generate an initial guess `path.xyz`

1 `woelfling` reads `control`, `gradients` to compute an optimized `path.xyz`. Hessian are initialized and written to `hessians-new`

>1 `woelfling` reads `control`, `gradients`, `oldgradients` and `hessians` to update hessians and compute an optimized `path.xyz`. Hessian are updated and written to 'hessians-new'.

Therefore repeated execution of `woelfling` will yield the same output (unless new energies/gradients are computed). The `woelfling-job` script takes care of the file-handling and should enable restart at any time. If files are damaged it will be hard to gather gradients and corresponding hessian- and oldgradient-information. If you have an intact `gradients` or `oldgradients`-file (necessary condition: number of lines=(3 + 2 \times \text{natoms}) \times \text{number of structures}), name it `gradients`, set `riter` in the
control-file to 1 and restart. If those file are not intact, you can extract whatever structure information you have obtained and use it to provide a better initial guess: Modify file `coords` and `ncoord` in the `control`-file accordingly, set `riter` to 0 and restart.
Chapter 6

Hartree–Fock and DFT Calculations for Molecular Systems

Energy and gradient calculations at the Hartree–Fock (HF) and DFT level can be carried out in two ways: \texttt{dscf} and \texttt{grad} perform conventional calculations based on four–center two–electron repulsion integrals (ERI’s); \texttt{ridft} and \texttt{rdgrad} employ the RI–\textit{J} approximation, as detailed below.

\texttt{dscf} and \texttt{grad} are modules for energy and gradient calculations at the HF and DFT level, which use an efficient semi–direct SCF algorithm. Calculation of the Coulomb and HF exchange terms is based on the conventional method employing four–center two–electron repulsion integrals (ERI’s). These modules should be used for HF and DFT calculations with exchange-correlation functionals including HF exchange contribution, e.g. B3–LYP, if further approximations (RI–\textit{J}) are to be avoided. All functionalities are implemented for closed–shell RHF and open–shell UHF reference wavefunctions. Restricted open shell treatments (ROHF) are supported on the HF level only, i.e. not for DFT.

The most important special features of the \texttt{dscf} and \texttt{grad} modules are:

- Selective storage of the most time consuming and frequently used integrals. The integral storage is controlled by two threshold parameters, \texttt{thize} and \texttt{thime}, related to integral size and computational cost.

- Efficient convergence acceleration techniques for energy calculations. They include standard methods for convergence acceleration (DIIS), which reduce the number of SCF iterations needed as well as methods to reduce the effort within each iteration when the calculation is almost converged (integral prescreening and differential density scheme).
ridft and **rdgrad** are modules for very efficient calculation of energy and gradient at the Hartree–Fock (HF) and DFT level [58]. Both programs employ the Resolution of the Identity approach for computing the electronic Coulomb interaction (RI–J). This approach expands the molecular electron density in a set of atom–centered auxiliary functions, leading to expressions involving three–center ERI's only. This usually leads to a more than tenfold speedup for non–hybrid DFT compared to the conventional method based on four–center ERI's (for example the **dscf** or **grad** module).

The combination of RI–J for Coulomb–interactions with a case–adapted conventional exchange treatment reduces the scaling behaviour of the (conventional) exchange evaluation required in HF–SCF and hybrid DFT treatments. Usage of **ridft** and **rdgrad** for HF and hybrid DFT is of advantage (as compared to **dscf** and **grad**) for larger systems, where it reduces computational costs significantly.

The most important special features of the **ridft** and **rdgrad** modules are:

- A very efficient semi-core algorithm for energy calculation. The most expensive three–center integrals are kept in memory which significantly reduces the computational time for small and middle sized molecules. The amount of stored integrals is controlled by simply specifying the amount of free memory using the keyword $ricore$.

- Multipole accelerated RI for Coulomb (MARI–J) linear scaling ($O(N)$) method for large molecules. It significantly reduces calculation times for molecules with more than 1000 basis functions.

All algorithms implemented in **dscf**, **grad**, **ridft**, and **rdgrad** modules can exploit molecular symmetry for all finite point groups. Typically, the CPU time is proportional to $1/N_G$, where N_G is the order of the nuclear exchange group. Another important feature is a parallel implementation using the MPI interface.

Additionally **dscf** and **ridft** modules include the following common features:

- An UHF implementation [59] with automatic generation of optimal start vectors by solving the HF instability equations [60] in the AO basis (see the keyword $scfinstab$ for detailed information).

- Occupation number optimization using (pseudo-Fermi) thermal smearing.

RI-techniques can also be used for the Hartree–Fock exchange part of the Fock matrix (RI-HF). This is done by the ridft-module, if the keyword rik is found in the control file. In this case ridft performs a Hartree–Fock-SCF calculation using the RI- approximation for both J and K, if suitable auxiliary basis sets (which differ from that used for fitting of the Coulomb part only) are specified. This is efficient only for comparably large basis sets like TZVPP, cc-pVTZ and larger.

HF-exchange can also be calculated semi-numerically [61]. The calculation of 4c-2e-Integrals is split into an analytical and a numerical part. The latter is evaluated on a dft-type integration grid. The semi-numerical calculation scales better with system size than RIK and is suitable for large molecules and large basis sets.
Prerequisites

Both \texttt{dscf} and \texttt{ridft} require the \texttt{control} file and starting orbitals obtained from the extended Hückel guess using \texttt{define}.

Energy calculations using \texttt{dscf} can be performed in a direct or semi-direct mode. In the direct mode all four-center ERI's are recalculated at each SCF iteration. The semi-direct mode uses a selective storage of the most time consuming and frequently used integrals. The amount of integrals stored is controlled by the keywords \texttt{$thize$} and \texttt{$thime$}, related to integral size and computational cost. The semi-direct mode requires a separate \texttt{dscf} statistics run to estimate the disk space needed for integral storage. The statistics run requires the keyword \texttt{$statistics$ \texttt{dscf}} to be present in the \texttt{control} file. It can be set either manually or using the tool \texttt{Stati}.

For \texttt{ridft} and \texttt{rdgrad} following additional prerequisites are required:

1. An auxiliary basis defined in the data group \texttt{$jbas$}. This group is created automatically when using \texttt{ri} menu of \texttt{define}.

2. The maximum core memory the program is allowed to allocate should be defined in the data group \texttt{$ricore$}; the recommended value is 75–85\% of the available (physical) core memory.

3. Calculations using MARI-J method require the keyword \texttt{$marij$}.

4. For RI-HF-calculations auxiliary bases defined in the data group \texttt{$jkbas$} are needed. This group is created by the \texttt{rijk} menu in \texttt{define}.

How to Perform a Calculation

Single point calculations
Call the \texttt{dscf} or \texttt{ridft} program after running \texttt{define}.

Geometry optimizations and molecular dynamics
For HF or DFT calculations using \texttt{dscf} and \texttt{grad} simply invoke \texttt{jobex}.
For DFT calculations using \texttt{ridft} and \texttt{rdgrad} type \texttt{jobex -ri}; see Section 5.1 for additional options and parameters for geometry optimizations and \textit{ab initio} molecular dynamics calculations.

6.1 Background Theory

In Hartree–Fock theory, the energy has the form,

\[E_{HF} = h + J - K + V_{nuc}, \]

(6.1)

where \(h \) is the one-electron (kinetic plus potential) energy, \(J \) is the classical Coulomb repulsion of the electrons, \(K \) is the exchange energy resulting from the quantum (fermion) nature of electrons, and \(V_{nuc} \) is the nuclear repulsion energy.
In density functional theory, the exact Hartree–Fock exchange for a single determinant is replaced by a more general expression, the exchange-correlation functional, which can include terms accounting for both exchange energy and the electron correlation which is omitted from Hartree–Fock theory. The DFT energy is expressed as a functional of the molecular electron density $\rho(r)$,

$$E_{\text{DFT}}[\rho] = T[\rho] + V_{ne}[\rho] + J[\rho] + E_x[\rho] + E_c[\rho] + V_{\text{nuc}}, \quad (6.2)$$

where $T[\rho]$ is the kinetic energy, $V_{ne}[\rho]$ is the nuclei-electron interaction, $E_x[\rho]$ and $E_c[\rho]$ are the exchange and correlation energy functionals.

The exchange and correlation functionals normally used in DFT are integrals of some function of the density and possibly the density gradient. In addition to pure DFT methods, dscf and grad modules support hybrid functionals in which the exchange functional includes the Hartree–Fock exchange, e.g. B3-LYP.

6.2 Exchange-Correlation Functionals Available

The following exchange-correlation functionals are available:

- LDAs: S-VWN, PWLDA
- GGAs: B-VWN, B-LYP, B-P, PBE
- MGGA: TPSS; SCAN; M06 (using XCFun)
- hybrid functionals: BH-LYP, B3-LYP, PBE0, TPSSh; M06-2X (using XCFun)
- range-separated hybrid functionals: CAM-B3LYP (using XCFun, LibXC), wB97(X) (using LibXC)
- double–hybrid functional: B2-PLYP (energy calculations only!)
- local hybrid functionals: Lh07t-SVWN, Lh07s-SVWN, Lh12ct-SsirPW92, Lh12ct-SsifPW92, Lh14t-calPBE

For EXX and LHF, see Chapter 20

The XCFun library (Arbitrary-Order Exchange-Correlation Functional Library) by Ulf Ekström and co-workers has been included [62] and some of the functionals implemented there can now be utilized. Among them are the empirically fitted MGGAs M06 and M06-2X from the Truhlar group [63]. XCFun functionals are available for energy, gradient, vib. frequencies and TDDFT excited state energy calculations - with and without RI approximation. For details and the license of XCFun please refer to its web site https://github.com/dftlibs/xcfun

The LibXC 4.3.0 library has been included [64] and some of the functionals implemented there can now be utilized. Among them are the empirically fitted MGGAs
from the Truhlar group as well as the range-separated wB97(X) group of Head-Gordon [65]. For details and the license of LibXC please refer to its web site https://tddft.org/programs/libxc/

See the next chapters for available functionals from LibXC and XCFun. For range-separated hybrid functionals see the notes and restrictions in the corresponding section.

In detail, the Turbomole own functional library consists of:

- The Slater–Dirac exchange functional only (S) [66,67].
- The 1980 correlation functional (functional V in the paper) of Vosko, Wilk, and Nusair only (VWN) [68].
- A combination of the Slater–Dirac exchange and Vosko, Wilk, and Nusair 1980 (functional V) correlation functionals (S-VWN) [66–68].
- The S-VWN functional with VWN functional III in the paper. This is the same functional form as available in the Gaussian program [66–68].
- A combination of the Slater–Dirac exchange and Becke's 1988 exchange functionals (B88) [66,67,70].
- Lee, Yang, and Parr’s correlation functional (LYP) [71].
- The B-LYP exchange-correlation functional (B88 exchange and LYP correlation functionals) [66,67,70,71].
- The B-VWN exchange-correlation functional (B88 exchange and VWN (V) correlation functionals) [66–68,70].
- The B-P86 exchange-correlation functional (B88 exchange, VWN(V) and Perdew’s 1986 correlation functionals) [66–68,70,72].
- The Perdew, Burke, and Ernzerhof (PBE) exchange-correlation functional [66,67,69,73].
- The Tao, Perdew, Staroverov, and Scuseria functional (Slater–Dirac, TPSS exchange and Perdew-Wang (1992) and TPSS correlation functionals) [66,67,69,74].
- The Strongly Constrained and Appropriately Normed (SCAN) meta-GGA functional [75].

For the SCAN functional, be advised that the convergence of the total energy and energy gradients with respect to the radial grid used to integrate the exchange-correlation energy and potential is slower than previous non-empirical functionals [76]. A radial grid size of 40 is typically needed to converge the total energy.
(dscf or ridft) to μH accuracy, while a radial grid size of 50 is typically needed to converge the energy gradients (grad or rdgrad). Convergence with respect to the angular grids remains unchanged. The radial grid size can be set in the control file through the radsize keyword.

Additionally, for all four modules (dscf, grad, ridft, and rdgrad) the following hybrid functionals are available (a mixture of Hartree–Fock exchange with DFT exchange-correlation functionals):

- The BH-LYP exchange-correlation functional (Becke’s half-and-half exchange in a combination with the LYP correlation functional) \[66,67,70,71,77\].

- The B3-LYP exchange-correlation functional (Becke’s three-parameter functional) with the form,

$$0.8S + 0.72B88 + 0.2HF + 0.19VWN(V) + 0.81LYP$$

where HF denotes the Hartree-Fock exchange \[66,67,70,71,78\].

- The B3-LYP exchange-correlation functional with VWN functional V in the paper. This is the same functional form as available in the Gaussian program.

- The 1996 hybrid functional of Perdew, Burke, and Ernzerhof, with the form,

$$0.75(S + PBE(X)) + 0.25HF + PW + PBE(C)$$

where PBE(X) and PBE(C) are the Perdew–Burke–Ernzerhof exchange and correlation functionals and PW is the Perdew–Wang correlation functional \[66,67,69,73,79\].

- The TPSSH exchange-correlation functional of Staroverov, Scuseria, Tao and Perdew with the form,

$$0.9(S + TPSS(X)) + 0.1HF + PW + TPSS(C)$$

where HF denotes the Hartree–Fock exchange \[66,67,69,74,80\].

The Double-Hybrid Functional B2-PLYP can be used for single point energy calculations. Note that one has to run an MP2 calculation after the DFT step to get the correct B2-PLYP energy!

B2-PLYP is a so-called double-hybrid density functional (DHDF) \[81\] that uses in addition to a non-local exchange contribution (as in conventional hybrid-GGAs) also a non-local perturbation correction for the correlation part. In the following options/restrictions in the present version of this method:

- single point calculations only (computed with the DSCF/RIDFT and RIMP2/RICC2 modules).
- UKS treatment for open-shell cases.
6.2. EXCHANGE-CORRELATION FUNCTIONALS AVAILABLE

- can be combined with resolution-of-identity approximation for the SCF step (RI-JK or RI-J option).
- can be combined with the dispersion correction (DFT-D method, \(s_6(\text{B2-PLYP}) = 0.55 \)).

The non-local perturbation correction to the correlation contribution is given by second-order perturbation theory. The idea is rooted in the \textit{ab initio} Kohn-Sham perturbation theory (KS-PT2) by Görling and Levy \cite{82, 83}. The mixing is described by two empirical parameters \(a_x \) and \(a_c \) in the following manner:

\[
E_{XC}(DHDF) = (1 - a_x)E_X(GGA) + a_xE_X(HF) + (1 - a_c)E_C(GGA) + a_cE_C(KS - PT2), \tag{6.6}
\]

where \(E_X(GGA) \) is the energy of a conventional exchange functional and \(E_C(GGA) \) is the energy of a correlation functional. \(E_X(HF) \) is the Hartree-Fock exchange of the occupied Kohn-Sham orbitals and \(E_C(KS - PT2) \) is a Møller-Plesset like perturbation correction term based on the KS orbitals:

\[
E_C(KS - PT2) = \frac{1}{2} \sum_{ia} \sum_{jb} (ia|jb)(ia|jb) - (ib|ja) e_i + e_j - e_a - e_b. \tag{6.7}
\]

The method is self-consistent only with respect to the first three terms in Eq. 6.6, i.e., first a SCF using a conventional hybrid-GGA is performed first. Based on these orbitals \(E_C(KS - PT2) \) is evaluated afterwards and added to the total energy.

For B2-PLYP, B88 exchange \cite{70} and LYP correlation \cite{71} are used with the parameters \(a_x = 0.53 \) and \(a_c = 0.27 \). Due to the relatively large Fock-exchange fraction, self-interaction error related problems are alleviated in B2-PLYP while unwanted side effects of this (reduced account of static correlation) are damped or eliminated by the PT2 term.

How to use B2-PLYP:

- during preparation of your input with DEFINE select \texttt{b2-plyp} in the DFT menu.
- carry out a DSCF run. Prepare and run a RI-MP2 calculation with either \texttt{rimp2} or \texttt{ricc2} program modules.
- the RI-MP2 program directly prints the B2PLYP energy if this functional has been chosen before

Or use the \texttt{b2plypprep} script to setup up the calculation.

- define coord and basis set
- (optional: switch on ri or rijk and define jbasis or jkbasis)
- run b2plypprep
Local hybrid functionals [84] feature an admixture of the exact-exchange energy density to a (semi-)local exchange energy density in real space managed by a local mixing function (LMF). They can therefore be viewed as a more flexible generalization of global hybrid functionals.

So far, local hybrid functionals are available in the modules ridft, [85] grad, rdgrad, [86] and escf. [87] For the calculation of non-standard exact-exchange integrals, a semi-numerical integration scheme is used. The usual DFT grids are employed for this task and small grids are thus recommended if possible. To accelerate local hybrid calculations, the analytical integrals for exact exchange are screened using the overlap and the density matrix (see S- and P-junctions Sec. 22.2.8 for details). In escf-calculations, a larger amount of main memory is required for the semi-numerical integration. Therefore, additional main memory of approximately $0.0004 \cdot N_{BF}^2$ MB should be provided (for each CPU).

The following local hybrid functionals are available so far:

- Lh07t-SVWN: [88] Slater-Dirac exchange [66,67] and VWN [68] with t-LMF (prefactor of 0.48)
- Lh07s-SVWN: [89] Slater-Dirac exchange [66,67] and VWN [68] with s-LMF
- Lh12ct-ssirPW92: [90] Slater-Dirac exchange [66,67] and self-correlation-reduced PW92 correlation with common t-LMF (prefactor of 0.646)
- Lh12ct-ssifPW92: [90] Slater-Dirac exchange [66,67] and self-correlation-free PW92 correlation with common t-LMF (prefactor of 0.709)
- Lh14t-calPBE: [91] PBE exchange and correlation [66,67,69,73] with t-LMF (prefactor pf 0.5) and pig1 calibration [92]

D3 parameters for these local hybrid functionals have been implemented. [93] Note that Lh14t-calPBE is not available in grad, and rdgrad and requires larger numerical grids in escf-calculations.

For gradient calculations it is strongly recommended to use the weight derivatives keyword in the $\$dft$ data group to avert numerical inaccuracies.

6.2.1 Exchange-Correlation Functionals from LibXC library

The LibXC library is taken from https://tddft.org/programs/libxc/

The current TURBOMOLE version uses LibXC 4.3.0.

For some functionals included in LibXC shortcuts have been set. If a shortcut is present LibXC functionals can be similar to TURBOMOLE own functionals

```bash
$\$dft
    functional wb97x
```
Shortcuts are available for the following functionals:

```
wb97  -- wb97 range-separated hybrid GGA
wb97x -- wb97x range-separated hybrid GGA
sogga11 -- sogga11 GGA
sogga-11x -- sogga-11x hybrid GGA
mn12-l -- MN12-L metaGGA
mn12-sx -- MN12-SX short-range-separated metaGGA
mn15 -- MN15 hybrid metaGGA
mn15-l -- MN15-L metaGGA
m06-libxc -- M06 hybrid metaGGA
cam-b3lyp-libxc -- CAM-B3LYP range-separated hybrid GGA
hse06-libxc -- HSE06 short-range-separated GGA
```

Apart from these shortcuts other functionals from the LibXC may be accessed using the index numbers from LibXC Readme. To trigger the usage of LibXC functionals, use the keyword `libxc` in the `$dft` section.

```
$dft
  functional libxc <index_of_main_exchange_functionals>
  functional libxc add <no. of add. func.> <index_of_add_funcs>
```

For example the M11 hybrid metaGGA may be specified by the following lines

```
$dft
  functional libxc 297
  functional libxc add 1 76
```

In the first line the number (297) specifies the index number of the exchange part of the M11 functional. As LibXC has stores the definition of a functional (amount of HF exchange, range-separation parameters etc.) on the exchange part of a functional it is mandatory to first specify the exchange part and add the correlation part. The second line then specifies how many and which further functional parts are added. The first number (1) specifies that one additional part is used. The number (76) is the index number of the correlation part of the M11 functional. A maximum of three additional X/C functionals may be specified. If exchange and correlation are specified together then the second line can be skipped. A example for this case is the Keal-Tozer 1 functional with index number (176):

```
$dft
  functional libxc 176
```
The functionals described in this section can be used for ground state energies, gradients and frequency calculations as well as TDDFT spectra of the corresponding derivatives are supported by LibXC. TDDFT analytic gradients (egrad) and periodical calculations (riper) from LibXC functionals are not supported till TURBOMOLE 7.4, please use the TURBOMOLE own functionals instead. Later versions of TURBOMOLE will support TDDFT analytic gradients (egrad) and periodical calculations (riper) from the LibXC.

Upon request a dynamically linked TURBOMOLE version which allows to use your own version of LibXC may be requested from support@turbomole.com.

Using a dynamically linked version one has to take special care of the second derivatives of metaGGAs, where the Fortran interface of LibXC is inconsistent. In TURBOMOLE 7.4 the following ordering of second derivatives in the mGGA case is expected: v2rho2, v2sigma2, v2lapl2, v2tau2, v2rhosigma, v2rholaapl, v2rhotau, v2sigmalapl, v2sigmates, v2lapltau. This does only affect second derivatives of metaGGAs and may change upon future versions.

6.2.2 Exchange-Correlation Functionals from XCFun library

The XCFun library is taken from: https://github.com/dftlibs/xcfun

The current TURBOMOLE version uses XCFun 1.99 and enables the usage of individual mixtures of the available exchange and correlation functionals.

To trigger the usage of XCFun functionals, use the keyword xcfun in the $dft section:

```
$\texttt{dft}
    \texttt{functional xcfun set-gga}
    \texttt{functional xcfun <name1> <factor1>}
    \texttt{functional xcfun <name2> <factor2>}
```

In addition to the name of the functional, it is necessary to tell TURBOMOLE whether the used functional is of GGA or MGGA type. Pure LDA functionals are currently not supported.

Available settings are:

- **functional xcfun set-gga** – sets a GGA functional
- **functional xcfun set-mgga** – sets a meta-GGA functional
- **functional xcfun set-hybrid 0.2** – defines a hybrid functional with a portion of 0.2 of Hartree-Fock exchange

Add the switch for either GGA or meta-GGA but not both in the same input!

List of available XCFun functionals (copied from XCFun documentation), in arbitrary order:
6.2. EXCHANGE-CORRELATION FUNCTIONALS AVAILABLE

slaterx -- Slater exchange
beckex -- Becke exchange
beckecorrx -- Becke GGA exchange
ktx -- Keal-Tozer exchange
pbex -- Perdew-Burke-Ernzerhof exchange
tpssx -- TPSS original exchange functional
m05x -- Truhlar M05 exchange
m05x2x -- Truhlar M05-2X exchange
m06x -- Truhlar M06 exchange
m06x2x -- Truhlar M06-2X exchange
m06lx -- Truhlar M06L exchange
m06hfx -- M06-HF Meta-Hybrid Exchange Functional
b97x -- B97 exchange
b97_1x -- B97-1 exchange
b97_2x -- B97-2 exchange
b97_dx -- B97-D exchange ($disp3 in addition required)
optx -- OPTX Handy & Cohen exchange GGA exchange functional
optxcorr -- OPTX Handy & Cohen exchange -- correction part only
brx -- Becke-Roussells exchange with jp dependence
brxc -- Becke-Roussells exchange and correlation with jp dependence
pw86xtot -- Perdew-Wang 86 GGA exchange including Slater part
pw91x -- Perdew-Wang 1991 GGA Exchange Functional
ldaerfx -- Short range exchange LDA functional
cam-b3lyp -- range-separated hybrid version of B3LYP

vwn5c -- VWN5 correlation
vwn3c -- VWN3 correlation
lypc -- LYP correlation
pw91c -- PW91 Correlation
pw92c -- PW92 LDA correlation
pz81c -- PZ81 LDA correlation
pbec -- PBE correlation functional
vwn_pbec -- PBE correlation functional with VWN LDA correlation
spbec -- Simplified PBE correlation functional for use with the SSB functionals
tpssc -- TPSS original correlation functional
revtpssc -- Revised TPSS correlation functional
p86c -- P86C GGA correlation
m05c -- M05 Meta-Hybrid Correlation Functional
m05x2c -- M05-2X Meta-Hybrid Correlation Functional
m06c -- M06 Meta-Hybrid Correlation Functional
m06lc -- M06-L Meta GGA Correlation Functional
m06x2c -- M06-2X Meta-Hybrid Correlation Functional
csc -- Colle-Salvetti correlation functional
brc -- Becke-Roussells correlation with jp dependence
b97_1c -- B97-1 correlation
b97_2c -- B97-2 correlation
b97_dc -- B97-D correlation ($disp3$ in addition required)
b97c -- B97 correlation
ldaerfc -- Short range correlation LDA functional

pw91k -- PW91 GGA Kinetic Energy Functional
btk -- Borgoo-Tozer kinetic energy functional
tfk -- Thomas-Fermi Kinetic Energy Functional
vw -- von Weizsaecker kinetic energy

Some common functionals are pre-defined in XCFun and their individual parts do not have to be set manually. Those aliases can be directly used as names with a following factor of 1.0:
blyp, pbe, bp86, kt1, kt2, kt3, pbe0, b3lyp, m06, m06-2x, m06L, b3lyp-g, b3p86, b97, b97d, olyp and some more.

Note that if the functional needs a portion of HF exchange, this has to be added manually in the control file using `functional xcfun set-hybrid <number>`

Example for B3-LYP using VWN3 instead of VWN5:

```
$dft
  functional xcfun set-gga
  functional xcfun b3lyp-g 1.0
  functional xcfun set-hybrid 0.2

CAM-B3LYP from the XCFun may be used by using the shortcut:

```
$dft
 functional cam-b3lyp
```

The functionals described in this section can be used for ground state energies, gradients and frequency calculations as well as TDDFT spectra. TDDFT analytic gradients are not yet supported up to TURBOMOLE version 7.4, please use the TURBOMOLE
6.2. EXCHANGE-CORRELATION FUNCTIONALS AVAILABLE

own functionals instead. Later versions of TURBOMOLE will support TDDFT analytic gradients from XCfun functionals.

Notes about range-separated hybrid functionals

As of TURBOMOLE version 7.4 range-separated hybrid functionals (RSHs) can be used for one-component (1c) and two-component (2c) ground state energies, gradients and TDDFT spectra using the RI-J approximation (ridft, rdgrad, escf). Later TURBOMOLE versions support RSHs in all modules. With RSHs the use of RI-K or seminumerical exchange is not supported.

Notes about DFT-D3, gCP and functionals using those corrections

For details about the options of DFT-D3 please see section 6.5.

In the original TURBOMOLE implementation of the B97-D functional only energy and gradient calculations are possible due to missing higher derivatives of the functional itself. Using the XCfun version of B97-D, analytic 2nd derivatives using aoforce and TDDFT excited state energies are possible. The names in the $dft section are b97-d for the TURBOMOLE own version and b97d for the XCfun version. However, the total energies of those two flavours are slightly different due to the fact that the parameters used are either the originally published ones (TURBOMOLE) or re-computed (XCfun). For properties like geometries and frequencies the differences are negligible, but one should not mix the total energies.

The PBEh-3c functional needs, besides the functional name pbeh-3c also DFT-D3 dispersion correction including the three-body term and geometrical counterpoise correction method called gCP. For details see: Stefan Grimme, University Bonn. In order to get the full version of PBEh-3c, your control file has to include:

\[$dft$
\begin{verbatim}
  functional pbeh-3c
  gridsize m4
$disp3 -bj -abc
\end{verbatim}

Note: gcp is automatically added if pbeh-3c functional is used, but the D3 part has to be switched on manually by adding $disp3 as given above. It is, however, sufficient to use $disp3 -bj since the abc term is added automatically for PBEh-3c and B97-3c.

To use HF-3c (R. Sure, S. Grimme, J. Comput. Chem. 2013, 34, 1672–1685), an input without DFT functional (and without $dft keyword) but with DFT-D3 correction is required. Calculations with and without RI are possible to perform, but due to the very small basis set non-RI calculations are usually as efficient as those with RI. Note that it is important to use the 'Minix' basis set and to select hf-3c as functional name for DFT-D3:
The gCP correction (H. Kruse, S. Grimme, J. Chem. Phys. 2012, 136, 154101) will by default be added to the DFT-D3 correction term if pbeh-3c or hf-3c is selected.
6.3 Restricted Open-Shell Hartree–Fock

6.3.1 Brief Description

The spin-restricted open-shell Hartree–Fock method (ROHF) can always be chosen to systems where all unpaired spins are parallel. The TURBOMOLE keywords for such a case (one open shell, triplet $e^2$) are:

\begin{verbatim}
$open shells type=1
  eg 1
$roothaan 1
  a=1  b=2
\end{verbatim}

It can also treat more complicated open-shell cases, as indicated in the tables below. In particular, it is possible to calculate the $[\text{xy}]$singlet case. As a guide for expert users, complete ROHF TURBOMOLE input for O$_2$ for various CSFs (configuration state function) is given in Section 23.6. Further examples are collected below.

The ROHF ansatz for the energy expectation value has a term for interactions of closed-shells with closed-shells (indices $k, l$), a term for purely open-shell interactions (indices $m, n$) and a coupling term ($k, m$):

\[
E = 2 \sum_k h_{kk} + \sum_{k,l} (2J_{kl} - K_{kl}) + f[2 \sum_m h_{mm} + f \sum_{m,n} (2aJ_{mn} - bK_{mn}) + 2 \sum_{k,m} (2J_{km} - K_{km})]
\]

where $f$ is the (fractional) occupation number of the open-shell part ($0 < f < 1$), and $a$ and $b$ are the Roothaan parameters, numerical constants which depend on the particular configuration of interest.

6.3.2 One Open Shell

Given are term symbols (up to indices depending on actual case and group) and $a$ and $b$ coefficients. $n$ is the number of electrons in an irrep with degeneracy $n_{ir}$. Note that not all cases are Roothaan cases.

All single electron cases are described by:

\[
a = b = 0
\]
Table 6.1: Roothaan-coefficients $a$ and $b$ for cases with degenerate orbitals.

<table>
<thead>
<tr>
<th>$n_{ir}$</th>
<th>$f$</th>
<th>$e^n$</th>
<th>$\pi^n$</th>
<th>$\delta^n$</th>
<th>$a$</th>
<th>$b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1/2</td>
<td>$^3\Sigma$</td>
<td>$^3\Sigma$</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$^1\Delta$</td>
<td>$^1\Gamma$</td>
<td>1/2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$^1\Sigma$</td>
<td>$^1\Sigma$</td>
<td>0</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3/4</td>
<td>$^2E$</td>
<td>$^2\Pi$</td>
<td>$^2\Delta$</td>
<td>8/9</td>
<td>8/9</td>
</tr>
</tbody>
</table>

$n_{ir}=3$: p (O(3)), t (T, O, I)$^T$

<table>
<thead>
<tr>
<th>$n$</th>
<th>$f$</th>
<th>$p^n$</th>
<th>$a$</th>
<th>$b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1/3</td>
<td>$^3P$</td>
<td>3/4</td>
<td>3/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$^1D^{**}$</td>
<td>9/20</td>
<td>-3/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$^1S$</td>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>3</td>
<td>1/2</td>
<td>$^4S$</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$^2D^{**}$</td>
<td>4/5</td>
<td>4/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$^2P$</td>
<td>2/3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2/3</td>
<td>$^3P$</td>
<td>15/16</td>
<td>9/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$^1D^{**}$</td>
<td>69/80</td>
<td>27/40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$^1S$</td>
<td>3/4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5/6</td>
<td>$^2P$</td>
<td>24/25</td>
<td>24/25</td>
</tr>
</tbody>
</table>

only irrep g($I$)

(mainly high spin available)

<table>
<thead>
<tr>
<th>$n$</th>
<th>$f$</th>
<th>$g^n$</th>
<th>$a$</th>
<th>$b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/8</td>
<td>$^2G$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1/4</td>
<td>$^1T$</td>
<td>2/3</td>
<td>4/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$^1A$</td>
<td>0</td>
<td>-4</td>
</tr>
<tr>
<td>3</td>
<td>3/8</td>
<td>$^4G$</td>
<td>8/9</td>
<td>16/9</td>
</tr>
<tr>
<td>4</td>
<td>1/2</td>
<td>$^3A$</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>5/8</td>
<td>$^4G$</td>
<td>24/25</td>
<td>32/25</td>
</tr>
<tr>
<td>6</td>
<td>3/4</td>
<td>$^1T$</td>
<td>26/27</td>
<td>28/27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$^1A$</td>
<td>8/9</td>
<td>4/9</td>
</tr>
<tr>
<td>7</td>
<td>7/8</td>
<td>$^2G$</td>
<td>48/49</td>
<td>48/49</td>
</tr>
</tbody>
</table>

continues on next page
Table 6.1: Roothaan-coefficients $a$ and $b$ for cases with degenerate orbitals (continued).

<table>
<thead>
<tr>
<th>$n$</th>
<th>$f$</th>
<th>$d^n$</th>
<th>$a$</th>
<th>$b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/10</td>
<td>$^2D$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1/5</td>
<td>$^3F + ^3P$</td>
<td>5/8</td>
<td>5/4</td>
</tr>
<tr>
<td>3</td>
<td>3/10</td>
<td>$^4F + ^4P$</td>
<td>5/6</td>
<td>5/3</td>
</tr>
<tr>
<td>4</td>
<td>2/5</td>
<td>$^5D, ^5H$</td>
<td>15/16</td>
<td>15/8</td>
</tr>
<tr>
<td>5</td>
<td>1/2</td>
<td>$^6S, ^6A$</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3/5</td>
<td>$^5D, ^5H$</td>
<td>35/36</td>
<td>25/18</td>
</tr>
<tr>
<td>7</td>
<td>4/10</td>
<td>$^4F + ^4P$</td>
<td>95/98</td>
<td>55/49</td>
</tr>
<tr>
<td>8</td>
<td>4/5</td>
<td>$^4F + ^4P$</td>
<td>125/128</td>
<td>65/64</td>
</tr>
<tr>
<td>9</td>
<td>9/10</td>
<td>$^2D, ^2H$</td>
<td>80/81</td>
<td>80/81</td>
</tr>
</tbody>
</table>

* except cases (e.g., $D_{2d}$ or $D_{4h}$) where $e^*$ gives only one-dimensional irreps, which are not Roothaan cases.

† only $p^n$ given, the state for groups $T_d$ etc. follows from $S \rightarrow A$ ($T,O,I$) $P \rightarrow T$ ($T,O,I$) $D \rightarrow H$ ($I$), $E+T$ ($T,O$)

** This is not a CSF in $T$ or $O$, $(a,b)$ describes average of states resulting from $E+T$

†† $(a,b)$ describes weighted average of high spin states, not a CSF.

Example

The $4d^9 5s^2 \ 2D$ state of Ag, in symmetry $I$

$closed shells$

<table>
<thead>
<tr>
<th>$a$</th>
<th>1-5</th>
<th>( 2 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_1$</td>
<td>1-3</td>
<td>( 2 )</td>
</tr>
<tr>
<td>$h$</td>
<td>1</td>
<td>( 2 )</td>
</tr>
</tbody>
</table>

$open shells type=1$

| $h$ | 2 | ( 9/5 ) |

$roothaan$

| 1 |

$a = 80/81$  
$b = 80/81$
6.3.3 More Than One Open Shell

A Half-filled shell and all spins parallel

All open shells are collected in a single open shell and

\[ a = 1 \quad b = 2 \]

**Example:** The \(4d^6\) \(5s^1\) \(7S\) state of Mo, treated in symmetry I

\[
\texttt{$\text{roothaan}$ 1} \\
\texttt{a = 1 \quad b = 2} \\
\texttt{$\text{closed shells}$} \\
\texttt{a 1-4 ( 2 )} \\
\texttt{t1 1-3 ( 2 )} \\
\texttt{h 1 ( 2 )} \\
\texttt{$\text{open shells type=1}$} \\
\texttt{a 5 ( 1 )} \\
\texttt{h 2 ( 1 )}
\]

**Two-electron singlet coupling**

The two MOs **must** have different symmetries (not required for triplet coupling, see example 6.3.3). We have now two open shells and must specify three sets of \((a,b)\), i.e. one for each pair of shells, following the keyword \texttt{$\text{rohf}$}.

**Example:** \(\text{CH}_2\) in the \(^1\text{B}_2\) state from \((3a_1)^1\) \((1b_2)^1\), molecule in \((x,z)\) plane.

\[
\texttt{$\text{closed shells}$} \\
\texttt{a1 1-2 ( 2 )} \\
\texttt{b1 1 ( 2 )} \\
\texttt{$\text{open shells type=1}$} \\
\texttt{a1 3 ( 1 )} \\
\texttt{b2 1 ( 1 )} \\
\texttt{$\text{roothaan}$ 1} \\
\texttt{$\text{rohf}$} \\
\texttt{3a1-3a1 a = 0 \quad b = 0} \\
\texttt{1b2-1b2 a = 0 \quad b = 0} \\
\texttt{3a1-1b2 a = 1 \quad b = -2}
\]
Two open shells

This becomes tricky in general and we give only the most important case:

shell 1 is a Roothaan case, see 6.3.2

shell 2 is one electron in an a (s) MO \((n_{ir} = 1)\)
with parallel spin coupling of shells.

This covers e.g. the \(p^5s^1\) 3P states, or the \(d^4s^1\) 6D states of atoms. The coupling information is given following the keyword \$rohf. The \((a, b)\) within a shell are taken from above (6.3.2), the cross term (shell 1)–(shell 2) is in this case:

\[
a = 1 \quad \text{always} \quad b = \begin{cases} 2 & \text{if } n \leq n_{ir} \\ \frac{2n_{ir}}{n} & \text{if } n > n_{ir} \end{cases}
\]

where \(n_{ir}\) and \(n\) refer to shell 1.

**Example 1:** The \(4d^45s^1\) 6D state of Nb, in symmetry I

\[
\begin{align*}
&$closed shells \\
&\text{a} & 1-4 & (2) \\
&\text{t1} & 1-3 & (2) \\
&\text{h} & 1 & (2) \\
&$open shells type=1 \\
&\text{a} & 5 & (1) \\
&\text{h} & 2 & (4/5) \\
&$roothaan & 1 \\
&$rohf \\
&5a-5a & a = 0 & b = 0 \\
&5a-2h & a = 1 & b = 2 \\
&2h-2h & a = 15/16 & b = 15/8
\end{align*}
\]

**Example 2:** The \(4d^55s^1\) 7S state of Mo, symmetry I (see Section 6.3.3) can also be done as follows.

\[
\begin{align*}
&$roothaan & 1 \\
&$rohf \\
&5a-5a & a = 0 & b = 0 \\
&5a-2h & a = 1 & b = 2 \\
&2h-2h & a = 1 & b = 2
\end{align*}
\]
$closed shells$
\begin{align*}
  a & \quad 1-4 \quad (2) \\
  t1 & \quad 1-3 \quad (2) \\
  h & \quad 1 \quad (2)
\end{align*}

$open shells type=1$
\begin{align*}
  a & \quad 5 \quad (1) \\
  h & \quad 2 \quad (1)
\end{align*}

The shells 5s and 4d have now been made *inequivalent*. Result is identical to 6.3.3 which is also more efficient.

**Example 3:** The $4d^8 5s^1 3D$ state of Ni, symmetry $I$

$closed shells$
\begin{align*}
  a & \quad 1-3 \quad (2) \\
  t1 & \quad 1-2 \quad (2)
\end{align*}

$open shells type=1$
\begin{align*}
  a & \quad 4 \quad (1) \\
  h & \quad 1 \quad (9/5)
\end{align*}

$roothaan$ \quad 1

$rohf$
\begin{align*}
  4a-4a & \quad a = 0 \quad b = 0 \\
  1h-1h & \quad a = 80/81 \quad b = 80/81 \\
  4a-1h & \quad a = 1 \quad b = 10/9
\end{align*}

(see basis set catalogue, basis SV.3D requires this input and gives the energy you must get)

### 6.3.4 Miscellaneous

**Valence states**

Valence states are defined as the weighted average of *all* CSFs arising from an electronic configuration (occupation): $(\text{MO})^n$. This is identical to the average energy of all Slater determinants.

\[ a = b = \frac{2n_{ir}(n-1)}{(2n_{ir} - 1)n} \]

This covers, e.g. the cases $n = 1$ and $n = 2n_{ir} - 1$: $p^1$, $p^5$, $d^1$, $d^9$, etc, since there is only a single CSF which is identical to the average of configurations.
Totally symmetric singlets for 2 or \((2n_{ir}-2)\) electrons

\[
\begin{align*}
n = 2 & \quad a = 0 \quad b = -n_{ir} \\
n = (2n_{ir} - 2) & \quad a = \frac{n_{ir}(n_{ir} - 2)}{(n_{ir} - 1)^2} \\
 & \quad b = \frac{n_{ir}(n_{ir} - 3)}{(n_{ir} - 1)^2}
\end{align*}
\]

This covers the \(^1S\) states of \(p^2, p^4, d^2, d^8\), etc.

**Average of high-spin states:** \(n\) electrons in MO with degenerate \(n_{ir}\).

\[
\begin{align*}
a &= n_{ir}\left(4k(k + l - 1) + l(l - 1)\right) \\
& \quad (n_{ir} - 1)n^2 \\
b &= \frac{2n_{ir}(2k(k + l - 1) + l(l - 1))}{(n_{ir} - 1)n^2}
\end{align*}
\]

where: \(k = \max(0, n - n_{ir})\) , \(l = n - 2k = 2S\) (spin)

This covers most of the cases given above. A CSF results only if \(n = \{1, (n_{ir} - 1), n_{ir}, (n_{ir} + 1), (2n_{ir} - 1)\}\) since there is a single high-spin CSF in these cases.

The last equations for \(a\) and \(b\) can be rewritten in many ways, the probably most concise form is

\[
\begin{align*}
a &= \frac{n(n - 2) + 2S}{(n - 2f)n} \\
b &= \frac{n(n - 2) + (2S)^2}{(n - 2f)n}.
\end{align*}
\]

This applies to shells with one electron, one hole, the high-spin couplings of half-filled shells and those with one electron more or less. For \(d^2, d^3, d^7\), and \(d^8\) it represents the (weighted) average of high-spin cases: \(^3F + ^3P\) for \(d^2,d^8\), \(^4F + ^4P\) for \(d^3, d^7\).
6.4 Relativistic effects

TURBOMOLE provides two different possibilities for the treatment of relativistic effects: Via effective core potentials (ECPs) or via all-electron approaches (X2C, DKH, BSS). Both techniques can be employed in a one-component (scalar-relativistic) or two-component (including spin-orbit coupling) framework. The latter is only available in the modules RIDFT, RDGRAD, ESCF and RICC2.

6.4.1 One- and two-component relativistic methods

Incorporation of scalar-relativistic effects leads to additional contributions to the one-electron integrals (either from ECP or all-electron approach). The program structure is the same as in non-relativistic theory (all quantities are real). Two-component treatments allow for self-consistent calculations including spin-orbit interactions. These may be particularly important for compounds containing heavy elements (additionally to scalar-relativistic effects). Two-component treatments require the use of complex two-component orbitals (spinors)

\[
\psi_i(x) = \begin{pmatrix} \psi_i^\alpha(r) \\ \psi_i^\beta(r) \end{pmatrix}
\]

instead of real (non-complex) one-component orbitals in non-relativistic or scalar-relativistic treatments. The Hartree-Fock and Kohn-Sham equations are now spinor equations with a complex Fock operator

\[
\left( \hat{F}_{\alpha\alpha} \hat{F}_{\alpha\beta} \right) \begin{pmatrix} \psi_i^\alpha(r) \\ \psi_i^\beta(r) \end{pmatrix} = \epsilon_i \begin{pmatrix} \psi_i^\alpha(r) \\ \psi_i^\beta(r) \end{pmatrix}.
\]

The wavefunction is no longer eigenfunction of the spin operator, the spin vector is no longer an observable.

In case of DFT for open-shell systems rotational invariance of the exchange-correlation energy is ensured by the non-collinear approach. In this approach the exchange-correlation energy is a functional of the particle density and the absolute value of the spin-vector density \( \vec{m}(r) \) (\( \vec{\sigma} \) are the Pauli matrices)

\[
\vec{m}(r) = \sum_i \psi_i^\dagger(x) \vec{\sigma} \psi_i(x).
\]

This quantity replaces the spin-density (difference between density of alpha and beta electrons) of non- or scalar-relativistic treatments.

For closed-shell species the Kramers-restricted scheme, a generalization of the RHF-scheme of one component treatments, is applicable.

Effective core potentials

The most economic way to account for relativistic effects is via effective core potentials by choosing either the one- or the two-component ECP (and for the latter
Relativistic all-electron approaches (X2C, DKH, BSS)

Relativistic calculations are based on the Dirac rather than on the Schrödinger Hamiltonian. Since the Dirac Hamiltonian introduces pathological negative-energy states and requires extensive one-electron basis set expansions, methods have been devised which allow one to calculate a matrix representation of that part of the Dirac Hamiltonian, which describes electronic states only. For this, a unitary transformation is employed to block-diagonalize the Dirac Hamiltonian and thus to decouple the negative-energy states from the electronic states. For reasons of efficiency, this transformation is carried out only for the one-electron part of the full Hamiltonian (as a consequence, the two-electron interaction will then be slightly affected by a so-called picture-change effect). The resulting quantum chemical approach, "exact two-component" (X2C), was developed by several groups starting with formal work in the mid 1980s. X2C is related to the step-wise Douglas-Kroll-Hess (DKH) approach, which achieves decoupling in sequential manner. For the latter, the number of transformation steps is called the order of DKH. Infinite order DKH is identical to X2C, but - in contrast to the latter - not feasible. Eight order DKH usually yields results similar to X2C at similar cost. X2C is also related to the Barysz-Sadlej-Snijders (BSS) method, that first applies the free-particle Foldy-Wouthuysen transformation (which is the first mandatory step in DKH), and then constructs the one-step exact decoupling transformation of X2C. These three approaches have been reviewed and directly compared in terms of formalism and results, respectively, in Ref. [95] (see also this reference for a complete bibliography on exact-decoupling methods).

Essentially, X2C methods change the one-electron Hamiltonian in a basis-set representation. The Schrödinger one-electron Hamiltonian (including the external potential of the atomic nuclei) is replaced by the transformed (upper-left block of the) Dirac Hamiltonian. Since the transformation is carried out in the fully decontracted primitive basis, all matrix operations needed for the generation of the relativistic one-electron Hamiltonian can be cumbersome and even prohibitive if the size of the molecule is large. In order to solve this unfavorable scaling problem, a rigorous local approach, called DLU, has been devised [96] and is recommended.

X2C, DKH and BSS exist in full two-component (spin-(same-)orbit coupling including) and in a one-component scalar-relativistic form. Both have been implemented into the TURBOMOLE package and all details on the efficient implementation have been described in Ref. [97]. Additionally implemented modifications like a finite nucleus model based on a Gaussian charge distribution [98] and a screened nuclear spin-orbit (SNSO) approach [99–101] are documented in Ref. [102], together with the implementation of analytical one- and two-component X2C gradients, also in their local variant.
Calculation of analytical energy gradients is available within the (local) X2C approach. The implementation is described in Ref. [102]. The finite nucleus model based on a Gaussian charge distribution can be used for energy and gradient calculations. To model the effect of spin-orbit coupling on the two-electron interaction a (modified) screened-nuclear-spin-orbit approximation can be applied to the spin-dependent one-electron integrals. The scalar-relativistic approach can be used with the modules GRAD, RDGRAD, EGRAD, RICC2 and RIRPA. The two-component Hamiltonian is only available in RDGRAD.

In relativistic all-electron calculations additional contributions from point charges or COSMO (see chapter 18.2) are not part of the relativistic decoupling. These contributions are evaluated after the X2C, DKH or BSS step. Thus, they are calculated without picture-change transformation.

6.4.2 How to use

Scalar-relativistic calculations with ECPs

In case of scalar-relativistic calculations with ECPs, relativity is taken into account simply by the choice of a relativistic ECP together with a suited basis set. A reasonable choice are the Dirac-Hartree-Fock effective core potentials by the Stuttgart-Köln group labelled dhf-ecp in TURBOMOLE, together with optimized basis sets termed dhf-XVP (X=S, TZ, QZ) [103]. These ECPs and bases are available for Rb to Xe, except for f-elements. For H to Kr dhf and def2 bases are identical non-relativistic all-electron basis sets. For lanthanides and actinides at present no DHF ECPs are available. The usage of Wood-Boring type ECPs [104], for lanthanides together with def2-bases [105], for actinides together with the original Stuttgart-Köln bases [106, 107] (labelled def in TURBOMOLE) is recommended here. Note that for def2-bases the underlying ECPs are of different type (due to history). For p-elements def2-bases are optimized for Dirac-Hartree-Fock ECPs, for the other elements for Wood-Boring ECPs.

Two-component calculations (general)

The keyword $soghf enforces the two-component calculations. Keywords for specification of the method of calculation are the same as for the one-component case. Additionally, for closed-shell species a Kramers invariant density functional formalism can be switched on with the keyword $kramers. The DIIS scheme for complex Fock operators (GDIIS) can be activated by $gdiis. For improvements on the SCF-convergence behavior see Ref. [108]. It is recommended to use exact exchange for double- and triple-zeta bases instead of semi-numerical [109] or RI-K approximations. These keywords can be inserted into the control file manually or added in the scf section of define.

As start wavefunctions Hückel-, SCF wavefunctions may be used. For open-shell molecules it is often helpful to increase the value for $scforbitalshift closedshell;
6.4. RELATIVISTIC EFFECTS

a value of ca. 1.0 may serve as a rough recommendation.

Two-component calculations with ECPs

For spin-orbit treatments the two-component variants of ECPs (suffix -2c) are required, the use of extended basis sets accounting for the spatial splitting of inner p-shells (also suffix -2c) is recommended. ECPs dhf-ecp-2c and bases dhf-XVP-2c (X=S, TZ, QZ) \[103\] are available for Rb to Kr (f elements excepted); for references concerning ECPs see \url{http://www.tc.uni-koeln.de/PP/clickpse.en.html}. The two-component formalism may be most easily prepared and applied in the following way:

- Run \textit{define}: choose C\textsubscript{1}-symmetry; select ECPs and basis sets with suffices \textminus\textsubscript{2}c for the respective elements. RI-\textit{J} and RI-\textit{JK} auxiliary basis sets are the same for dhf and def2 bases. Moreover, they are of sufficient flexibility for two-component treatments and provided automatically upon request. Switch on \texttt{soghf} and further desired options in the \texttt{scf} menu.

- Start the two-component calculation with \texttt{ridft}

- At the end of the SCF procedure real and imaginary parts of spinors are written to files spinor.r and spinor.i, eigenvalues and spinor occupations are collected in the file EIGS, the total energy is added to data group \$energy. The data groups \$closed shells (\$alpha shells and \$beta shells for open shell cases) are no longer significant, but nevertheless kept in the control file; additionally the spinor occupations are deposited in data group \$spinor.

One- and two-component all-electron calculations

All-electron calculations are prepared similarly to ECP calculations, however, relativistic all-electron basis sets are necessary. It is recommended to use the x2c-type basis sets and RI-\textit{J} auxiliary basis sets x2c-XVPall for one-component and x2c-XVPall-2c for two-component treatments \[110,111\]. At present, they are available for X=S, TZ for H to Rn, except for actinides. The keywords \$rx2c, \$rbss and \$rdkh \[Order of DKH\] are used to activate the X2C, BSS or DKH Hamiltonian. The default order of the DKH Hamiltonian is four. It is not recommended to go beyond, but to use X2C instead. For details on the arbitrary-order DKH Hamiltonians see Ref. \[112\] for details on the infinite-order DKH theory, \[113\] for the implementation, and \[114\] for a conceptual review of DKH theory. The local approach (DLU) can be optionally activated by \$rlocal for all one- and two-component all-electron Hamiltonians. For symmetric molecules, point-group symmetry is not exploited by default, but can be used in the one-component case by setting \$rsym. Without setting \$rsym symmetry is only exploited in the rest of the program. Note that \$rsym cannot be combined with \$rlocal. The exploitation of symmetry is also supported in X2C gradient calculations \[115\]. Therein nuclear symmetry is exploited without setting \$rsym. The finite nucleus model based on a Gaussian charge distribution is selected by \$finnuc.
Two-component calculations are invoked by the keyword $soghf$ as outlined above. The SNSO approach may be used to estimate the effect of spin-orbit coupling on the two-electron interaction by using the keyword $snso$. By default, the original parameters [99] are taken, however, a set of modified parameters [100,101] can be applied by setting $snsopara$ to 1. All options can be specified in the scf section of define. The SNSO, GDIIS and scforbitalshift parameters are set in the soghf part of the scf section. It is further recommended to use grids with an increased number of radial points [111] in DFT calculations. These grids are selected by appending “a” to the gridsize. In NMR shielding calculations, the use of tailored basis sets, i.e. x2c-SVPall-s and x2c-TZVPall-s [111] etc., is recommended.
6.5 Dispersion Correction for DFT Calculations

Grimme DFT+Dispersion, DFT-D3, DFT-D4

Based on an idea that has earlier been proposed for Hartree-Fock calculations [116, 117], a general empirical dispersion correction has been proposed by Stefan Grimme for density functional calculations [118]. A modified version of the approach with extension to more elements and more functionals has been published in ref. [119]. A more recent implementation [120] is less empirical, i.e. the most important parameters are computed by first principles, and it provides a consistent description across the whole periodic system. This version, named DFT-D3 with Becke-Johnson damping, has been the default for dispersion correction ever since.

In 2017 a new model, termed D4, was published [121,122] and released 2018. For details see below.

- The first version (DFT-D1) can be invoked by the keyword $olddisp$ in the control file.
- The second version (DFT-D2) is used if the keyword $disp$ is found.
- For the usage of DFT-D3 just add keyword $disp3$ to the control file. For DFT-D3 with Becke-Johnson damping, please add $disp3 -bj$.
- The latest version, DFT-D4, can be invoked by the keyword $disp4$.

Only one of the four keywords is expected to be present.

DFT-D3

If DFT-D3 is used, the total energy is given by

\[ E_{DFT-D3} = E_{KS-DFT} - E_{\text{disp}} \]

(6.8)

where \( E_{KS-DFT} \) is the usual self-consistent Kohn-Sham energy as obtained from the chosen functional and \( E_{\text{disp}} \) is a dispersion correction given by the sum of two- and three-body energies

\[ E_{\text{disp}} = E^{(2)} + E^{(3)}, \]

(6.9)

with the dominating two-body term

\[ E^{(2)} = \sum_{AB} \sum_{n=6,8,10,...} s_n \frac{C_n^{AB}}{r_{AB}^n} f_{d,n}(r_{AB}). \]

(6.10)

The first sum runs over all atom pair, \( C_n^{AB} \) denotes the \( n \)-th order dispersion coefficient for atom pair \( AB \), \( r_{AB} \) is their interatomic distance, and \( f_{d,n} \) is a damping function.
Becke-Johnson (BJ) damping can be invoked by adding the option bj or -bj to the $disp3$ keyword: $disp bj$. If you use this damping option please also cite [123].

The three-body term can be switched on by adding abc to the $disp3$ input line, i.e. to use it in combination with Becke-Johnson damping just add $disp3 bj abc$

It is also possible not to use the functional name given in the control file but to tell the DFT-D3 routines to use the parameters which have been fitted to a specific functional. Just as in the original DFT-D3 routines, this can be selected by adding the func option, for example $disp3 bj func pbe0$. It is recommended to use this option as the last one in the $disp3$ input line.

Please have look at DFT-D3 homepage, Grimme group Bonn for more detailed information.

**DFT-D4**

DFT-D4 computes molecular dipole-dipole and dipole-quadrupole dispersion coefficients based on dynamic dipole polarizabilities calculated with TD-PBE38/daug-def2-QZVP used as atomic reference polarizabilities for elements up to radon (Z=86). In DFT-D4, all atomic reference polarizabilities are scaled according to Mulliken partial charges which are obtained by semi-empirical quantum mechanical tight binding, within the 2018 developed GFN2-xTB framework [49]. Alternatively a fallback option is provided in case GFN2-xTB fails to converge the electronic structure. Either classical, non-interactive EN and CN dependent Gasteiger charges (option ‘gasteiger’) or (externally provided) Hirshfeld-charges obtained at least at PBE0/def2-TZVP level of theory can be used (option ‘hirshfeld’).

For the scaling of the atomic reference polarizabilities, a special charge-function was designed containing one global parameter and the chemical hardnesses as elementspecific parameter to get a smooth scaling behavior. The charge-scaled dipole polarizabilities are Gaussian interpolated according to an empirically generated fractional coordination number to obtain the fully weighted dynamic polarizabilities $\alpha(i\omega)\sigma$ for all atoms which are then numerically integrated via the Casimir-Polder scheme to obtain charge- and geometry-dependent dipole-dipole dispersion coefficients. The two-body energy expression has the usual sum over pair interactions form for dipole-dipole and dipole-quadrupole interactions.

Based on this expression, a self-consistent dispersion potential has been developed and implemented into the GFN2-xTB Hamiltonian to circumvent a costly coupled-perturbed SCF procedure when calculating analytical gradients. Furthermore, dynamic polarizabilities $\alpha(i\omega)\sigma$ are used within an RPA-like expression to capture many-body interactions beyond the two-body terms.

The DFT-D4 energy expression differs for single point energies and gradient calculations, for reasons of computational efficiency. The gradient of the RPA-like dispersion energy scales as $O(N^4)$ and cannot be screened, therefore the gradient is approximated by the ATM three-body dispersion expression as used in DFT-D3, which is computational less demanding and yields approximately similar gradients.
Parameters for the rational damping scheme introduced by Becke and Johnson are included for a large number of density functionals (including all standard functionals implemented in Turbomole) in the DFT-D4 code. The rational damping is the only scheme available in DFT-D4, also many-body dispersion terms are included by default.

The DFT-D4 keyword \$disp4 can have, similar to \$disp3, a couple of options. To see the list of options, just add -help to the keyword and inspect the output file.

As mentioned above, the gradient of the many body dispersion energy is done by using the Axilrod-Teller-Muto (ATM) three-body term, which is only an approximation compared to the term used in the energy evaluation. Hence, for larger molecules, the DFT-D4 energy and the DFT-D4 gradient do not match exactly. Very tight convergence criteria for both energy and gradient norm can not be expected in all cases.

**Density-based dispersion corrections of non-local vdW-DF type**

A non-local, electron density dependent dispersion correction which is based on Vydrov and Van Voorhis' VV10 [124] has been implemented by the Grimme group [125] and is available for ridft and rdgrad. This correction can either be applied in a post-SCF and non-self-consistent way for energy calculations or self-consistently which is required to compute the gradients.

To switch on DFT-NL in a non-self-consistent way, just add

\$donl

to the control file. For a self-consistent treatment of the dispersion correction add

\$doscnl

instead. Note that dispersion corrections of DFT-DN and NL–DFT type must not be combined. The grid size for the non-local integration is set automatically by adapting the grid for the quadrature of the functional evaluation.

Currently only \(C_1\) symmetry and serial jobs are possible. DFT-NL is an interesting scientific alternative to DFT-D3, but we recommend to use DFT-D3 for applications instead.
6.6 Energy Decomposition Analysis (EDA)

The interaction energy between molecules can be calculated with the supermolecular approach: one performs calculations for the supersystem and for the subsystems with size-consistent methods and derive the interaction energy $\Delta E$ by taking the energy difference. The energy decomposition analysis (EDA) allow a partitioning of the Hartree-Fock (HF) or DFT interaction energy in physically meaningful contributions: the classical electrostatic interaction $\Delta E_{\text{ele}}$, the exchange-repulsion $\Delta E_{\text{exrep}}$, the orbital relaxation energy $\Delta E_{\text{orb}}$ and additionally for DFT the correlation interaction $\Delta E_{\text{cor}}$:

\[
\Delta E_{\text{HF}} = \Delta E_{\text{ele}} + \Delta E_{\text{exrep}} + \Delta E_{\text{orb}},
\]

\[
\Delta E_{\text{DFT}} = \Delta E_{\text{ele}} + \Delta E_{\text{exrep}} + \Delta E_{\text{orb}} + \Delta E_{\text{cor}}. 
\]

(6.11)

(6.12)

Further details and derivations of the different energy contributions can be found in [126].

6.6.1 How to perform

The EDA scheme is implemented in the module \texttt{ridft} and can be done with RI-Hartree-Fock and with all local, gradient corrected, hybrid and meta density functionals (please note that the functionals included in the XCFun library are not supported!).

- Calculation of the subsystems:
  In HF and hybrid DFT calculations please insert $\$\texttt{scfdenapprox0} 0$ in the control file, at least in a second run. The EDA scheme needs the exchange and Coulomb energies of every system separately. After the subsystem calculation you will find under $\$\texttt{subenergy}$ the different energy contribution to the total energy of the system: the one electron energy, Coulomb- and exchange energy, correlation energy in case of DFT calculations, nuclear repulsion energy and optionally the dispersion energy.

- Preparation of the supersystem control file:
  First run define for the supersystem and take for consistency the same basis set and the same method (i.e. the same functional and the same grid). Please use in case of DFT calculations not the multiple grids \texttt{m3} to \texttt{m5}, because this would lead to erroneous orbital relaxation energies. If the subsystems are open-shell species the occupation in the EHT submenu of define of the supersystem must be chosen open-shell, too. For open-shell systems the Fermi-smearing is recommended. The sequence of the supersystem coordinates must have the same sequence as the subsystem coordinates. In the case of HF and hybrid DFT calculation use again $\$\texttt{scfdenapprox0}$.

Then please insert in the control file:
$\text{subsystems}
\begin{align*}
molecule#1 & \text{ file=\text{sub1/control}} \\
molecule#2 & \text{ file=\text{sub2/control}}
\end{align*}

If you use the supermolecular basis set for the calculation of the monomers please insert after $\text{subsystems}$ the option $\text{copo}$:

$\text{subsystems copo}
\begin{align*}
molecule#1 & \text{ file=\text{sub1/control}} \\
molecule#2 & \text{ file=\text{sub2/control}}
\end{align*}

It is possible to generate orthogonal product wave functions when you use $\text{opro}$ instead of $\text{copo}$. But with this choice it is not possible to calculate the different energy contributions of the interaction energy.

You can choose at most ten subsystems.

- Generation of the product molecular wave functions:
The module $\text{promova}$ generates RHF and UHF product molecular wave functions. The new (product) start vectors can be found in the files $\text{mos}$ for closed-shell systems or in $\text{alpha}$ and $\text{beta}$ for open-shell systems. Please note that the molecular orbitals of the different subsystems are not orthogonal to each other.

- Energy decomposition analysis:
After the supersystem $\text{ridft}$ calculation you will find the following output with the different contributions of the interaction energy in Hartree:

\begin{verbatim}
| * Total Interaction energy = -0.0058700698 |
\end{verbatim}

\begin{verbatim}
: * Electrostatic Interaction = -0.0134898233 :
: Nuc---Nuc = 18.2843363825 :
: 1-electron = -36.5372802833 :
: 2-electron = 18.2394540775 :
: * Exchange-Repulsion = 0.0112325934 :
: Exchange Int. = -0.0139477002 :
: Repulsion = 0.0251802936 :
: * Orbital Relaxation = -0.0036128399 :
\end{verbatim}
Chapter 7

DFT Calculations for Molecular and Periodic Systems

7.1 Functionalities of Ripper

The ripper module is an implementation of Kohn–Sham DFT with Gaussian-type orbitals (GTO) as basis functions that treats molecular and periodic systems of any dimensionality on an equal footing. Its key component is a combination of resolution of identity (RI) approximation and continuous fast multipole method (CFMM) applied for the electronic Coulomb term [127, 128]. This RI-CFMM scheme operates entirely in the direct space and partitions Coulomb interactions into far-field part evaluated using multipole expansions and near-field contribution calculated employing density fitting. Evaluation of the exchange-correlation term is performed using an octree-based adaptive numerical integration scheme [129]. ripper offers computational efficiency and favorable scaling behavior approaching $O(N)$ for the formation of Kohn–Sham matrix [127] and gradient calculation [128]. In addition, for calculations on very large molecular systems a low-memory modification of the RI approximation has been implemented [130]. This low-memory iterative density fitting (LMIDF) scheme is based on a combination of CFMM and a preconditioned conjugate gradient (CG) solver. Compared with the standard RI implementation, up to 15-fold reduction of the memory requirements is achieved at a cost of only slight increase in computational time.

Functionalities of ripper:

- Kohn–Sham DFT for molecular systems and systems with 1D, 2D and 3D periodicity
- Closed– and open–shell energies and gradients, structure optimization including optimization of cell parameters
- Metals and semiconductors can be treated using fractional occupation numbers scheme employing Gaussian smearing
7.2. THEORETICAL BACKGROUND

- Efficient \( k \) point sampling scheme for periodic systems allowing for consistent results across different definitions of unit cells
- Sequential and parallel runs (OpenMP parallelization for shared-memory computers, see Sec. 3.2.2)
- All LDA, GGA and meta-GGA exchange-correlation functionals including interface to the XCFun library (see Sec. 6.2)
- DFT-D3 dispersion correction for energies and gradients (see Sec. 6.5)
- Favorable scaling behavior for the formation of the Kohn–Sham matrix approaching \( O(N) \)
- Memory-efficient calculations for very large molecular systems using the LMIDF scheme

Limitations of riper:

- No hybrid exchange-correlation functionals yet
- Only \( C_1 \) symmetry point group for molecules and \( P_1 \) space group for periodic systems

7.2 Theoretical Background

Detailed description of methods implemented in the riper module is provided in Refs \[127–131\] and references therein. Here, only a short summary of the underlying theory is provided.

7.2.1 Kohn-Sham DFT for Molecular and Periodic Systems

In periodic systems translational symmetry of solids leads to Bloch orbitals \( \psi_{k p\sigma} \) and one-particle energies \( \epsilon_{k p\sigma} \), depending on the band index \( p \), spin \( \sigma \), and the wave vector \( k \) within the Brillouin zone (BZ), which is the unit cell of reciprocal space. The orbitals

\[
\psi_{k p\sigma}(r) = \frac{1}{\sqrt{N_{UC}}} \sum_L e^{i k \cdot L} \sum_{\mu} C_{\mu p\sigma}^{k} \lambda_L(r)
\]

(7.1)

are expanded in GTO basis functions \( \mu(r - \mathbf{R}_\mu - \mathbf{L}) \equiv \mu_L(r) \) centered at atomic positions \( \mathbf{R}_\mu \) in direct lattice cells \( \mathbf{L} \) over all \( N_{UC} \) unit cells. This results in unrestricted Kohn-Sham equations

\[
\mathbf{F}_\sigma^k C_\sigma^k = \mathbf{S}_\sigma^k C_\sigma^k \epsilon_{\sigma}^k,
\]

(7.2)

which may be solved separately for each \( k \) in the BZ. The same equations hold for the molecular case, where only \( \mathbf{L} = \mathbf{k} = \mathbf{0} \) is a valid choice and \( N_{UC} \) is one. Equation (7.2) contains the reciprocal space Kohn-Sham and the overlap matrices \( \mathbf{F}_\sigma^k \) and \( \mathbf{S}_k^k \), respectively, obtained as Fourier transforms of real space matrices

\[
F_{\mu\nu\sigma}^k = \sum_L e^{i k \cdot L} F_{\mu\nu\sigma}^L \quad S_{\mu\nu}^k = \sum_L e^{i k \cdot L} S_{\mu\nu}^L.
\]

(7.3)
The elements $F_{\mu\nu\sigma}^L$ contain three contributions: elements $T_{\mu\nu}^L$ of the kinetic energy matrix, elements $J_{\mu\nu}^L$ of the Coulomb matrix, and elements $X_{\mu\nu\sigma}^L$ of the exchange-correlation matrix,
\begin{equation}
F_{\mu\nu\sigma}^L = T_{\mu\nu}^L + J_{\mu\nu}^L + X_{\mu\nu\sigma}^L. \tag{7.4}
\end{equation}

The total energy per unit cell $E$ is calculated as the sum of the kinetic $T$, Coulomb $J$, and exchange-correlation $E_{XC}$ contributions,
\begin{equation}
E = T + J + E_{XC}. \tag{7.5}
\end{equation}

### 7.2.2 RI-CFMM Approach

The key component of ripper is a combination of RI approximation and CFMM applied for the electronic Coulomb term [127,128,131]. In the RI scheme the total crystal electron density $\rho^{\text{crys}}$ is approximated by an auxiliary crystal electron density $\tilde{\rho}^{\text{crys}}$,
\begin{equation}
\rho^{\text{crys}} \approx \tilde{\rho}^{\text{crys}} = \sum_\mathbf{L} \tilde{\rho}_{\mathbf{L}}, \tag{7.6}
\end{equation}
composed of unit cell auxiliary densities $\tilde{\rho}_{\mathbf{L}}$ with
\begin{equation}
\tilde{\rho}_{\mathbf{L}} = \sum_\alpha c^T \alpha_\mathbf{L}, \tag{7.7}
\end{equation}
where $\alpha_\mathbf{L}$ denotes the vector of auxiliary basis functions translated by a direct lattice vector $\mathbf{L}$. The vector of expansion coefficients $c$ is determined by minimizing the Coulomb repulsion $D$ of the residual density $\delta \rho = \rho - \tilde{\rho}$
\begin{equation}
D = \int \int \delta \rho \left( \frac{1}{|\mathbf{r} - \mathbf{r}'|} \sum_\mathbf{L} \delta \rho_{\mathbf{L}}(\mathbf{r}') \right) d\mathbf{r} d\mathbf{r}' = \sum_\mathbf{L} (\delta \rho \mid \delta \rho_{\mathbf{L}}) = \sum_\mathbf{L} (\rho - \tilde{\rho} \mid \rho_{\mathbf{L}} - \tilde{\rho}_{\mathbf{L}}). \tag{7.8}
\end{equation}

The RI approximation allows to replace four-center electron repulsion integrals (ERIs) by two- and three-center ones. In this formalism, elements $J_{\mu\nu}^L$ of the Coulomb matrix are defined as
\begin{equation}
J_{\mu\nu}^L = \sum_{\mathbf{L}'} \langle \mu\nu \mid \tilde{\rho}_{\mathbf{L}'} - \rho_n \rangle_{\mathbf{L}'}, \tag{7.9}
\end{equation}
where $\rho_n$ denotes the unit cell nuclear charge distribution. The total Coulomb energy including the nuclear contribution is
\begin{equation}
J = \sum_{\mu\nu} D_{\mu\nu}^L J_{\mu\nu}^L - \frac{1}{2} \sum_{\mathbf{L}} (\tilde{\rho} + \rho_n \mid \tilde{\rho}_{\mathbf{L}} - \rho_{n\mathbf{L}}), \tag{7.10}
\end{equation}
with the real space density matrix elements obtained by integration
\begin{equation}
D_{\mu\nu\sigma}^L = \frac{1}{V_k} \int_{BZ} D_{\mu\nu\sigma}^k c^{k\mathbf{L}} d\mathbf{k}, \tag{7.11}
\end{equation}
of the reciprocal space density matrix
\begin{equation}
D_{\mu\nu\sigma}^k = \sum_p f_{p\sigma}^k (C_{\mu\nu\sigma}^k)^* C_{\nu\sigma}^k \tag{7.12}
\end{equation}
over the BZ with volume $V_k$.

Equations (7.9) and (7.10) as well as other expressions appearing in the RI scheme require calculation of infinite lattice sums of the form

$$\sum_L (\rho_1 | \rho_{2L}),$$  

where the distribution $\rho_1$ in the central cell interacts with an infinite number of distributions $\rho_{2L}$, i.e., $\rho_2$ translated by all possible direct lattice vectors $L$. In the RI-CFMM scheme \[127,128\] the sum in Eq. (7.13) is partitioned into crystal far-field (CFF) and crystal near-field (CNF) parts. The CFF part contains summation over all direct space lattice vectors $L$ for which the overlap between the distributions $\rho_1$ and $\rho_{2L}$ is negligible. This part is very efficiently calculated using multipole expansions. The CNF contribution is evaluated using an octree based algorithm. In short, a cubic parent box enclosing all distribution centers of $\rho_1$ and $\rho_{2L}$ is constructed that is large enough to yield a predefined number $n_{\text{targ}}$ of distribution centers per lowest level box. The parent box is successively subdivided in half along all Cartesian axes yielding the octree. In the next step, all charge distributions comprising $\rho_1$ and $\rho_{2L}$ are sorted into boxes based on their extents. Interactions between charges from well-separated boxes are calculated using a hierarchy of multipole expansions. Two boxes are considered well-separated if the distance between their centers is greater than sum of their lengths times $0.5 \times \text{wsicl}$, where $\text{wsicl}$ is a predefined parameter $\geq 2$. The remaining contribution to the Coulomb term is obtained from direct integration. This approach results in nearly linear scaling of the computational effort with the system size.

### 7.2.3 k Point Sampling Scheme

The integral in Eq. (7.11) is evaluated approximately using a set of sampling points $k$. riper uses a $\Gamma$-point centered mesh of $k$ points with weights $w_k$, so that Eq. (7.11) can be written as

$$D_{\mu\nu\sigma}^L \approx \sum_k w_ke^{i\mathbf{k}^\top \mathbf{L}} D_{\mu\nu\sigma}^k.$$  

(7.14)

In 3D periodic systems each sampling point is defined by its components $k_1$, $k_2$ and $k_3$ along the reciprocal lattice vectors $\mathbf{b}_1$, $\mathbf{b}_2$ and $\mathbf{b}_3$ as

$$\mathbf{k} = k_1 \mathbf{b}_1 + k_2 \mathbf{b}_2 + k_3 \mathbf{b}_3.$$  

(7.15)

For 2D periodic systems $k_3 = 0$. In case of 1D periodicity $k_3 = 0$ and $k_2 = 0$. In riper the three components $k_j$ ($j = 1, 2, 3$) of $k$ are given as

$$k_j = \frac{i}{n_j} \text{ with } i = -\frac{n_j}{2}, -\frac{n_j}{2} + 1, \ldots, \frac{n_j}{2} - 1, \frac{n_j}{2}.$$  

(7.16)

with $n_j$ ($j = 1, 2, 3$) as integer numbers. riper reduces the number of $k$ points employed in actual calculation by a factor of two using time-inversion symmetry, i.e., the vectors $k$ and $-k$ are symmetry equivalent. The $k$ point mesh can be specified providing the integer values $n_j$ within the data group $\$kpoints$. 
The number of \( k \) points required in a calculation critically depends on required accuracy. Generally, metallic systems require considerably more \( k \) points than insulators to reach the same precision. For metals, the number of \( k \) point also depends on parameters of the Gaussian smearing [132] used in riper. Please refer to Ref. [132] for more details.

### 7.2.4 Metals and Semiconductors: Gaussian Smearing

Achieving reasonable accuracy of DFT calculations for metals requires a higher number of \( k \) points than for semiconductors and insulators. The convergence with respect to the number of \( k \) points can be improved applying partial occupancies [132]. To achieve this, riper uses the Gaussian smearing method in which occupation numbers \( f_{nk} \) are calculated as

\[
  f_{nk} \left( \frac{\epsilon_{nk} - \mu}{\sigma} \right) = \frac{1}{2} \left( 1 - \text{erf} \left[ \frac{\epsilon_{nk} - \mu}{\sigma} \right] \right),
\]

where \( \epsilon_{nk} \) are band (orbital) energies, \( \mu \) is the Fermi energy and \( \sigma \) is the width of the smearing.

When smearing is applied the total energy \( E \) has to be replaced a generalized free energy

\[
  F = E - \sum_{nk} \sigma S(f_{nk})
\]

in order to obtain variational functional. riper output file reports the values of \( F \) as “FREE ENERGY” and the term \( - \sum_{nk} \sigma S(f_{nk}) \) as “T*S”. In addition, the value of \( E \) for \( \sigma \to 0 \) is given as “ENERGY (sigma->0)”.

Gaussian smearing can be switched on for riper calculations by simply providing the value of \( \sigma > 0 \) within the \$riper data group using the keyword \texttt{sigma}, e.g., \texttt{sigma 0.01}. The value of \( \sigma \) should be as large as possible, but small enough to yield negligible value of the “T*S” term. Note, that the value of \texttt{sigma} has to be provided in atomic units. Please refer to Ref. [132] for a more detailed discussion.

The use of Gaussian smearing often requires much higher damping and orbital shifting. Please adjust the values for \$scfdamp and \$scforbitalshift if you encounter SCF convergence problems.

The optional keyword \texttt{desnue} can be used within the \$riper data group to constrain the number of unpaired electrons. This can be used to force a certain multiplicity in case of an unrestricted calculation, e.g., \texttt{desnue 0} for singlet and \texttt{desnue 1} for dublet.

### 7.2.5 Low-Memory Iterative Density Fitting Method

For calculations on very large molecular systems a low-memory modification of the RI approximation has been implemented within the riper module [130]. In the RI approximation minimization of the Coulomb repulsion of the residual density, Eq. (7.8), yields a system of linear equations

\[
  Vc = \gamma,
\]

(7.19)
where $V$ is the Coulomb metric matrix with elements $V_{\alpha\beta} = (\alpha | \beta)$ representing Coulomb interaction between auxiliary basis functions and vector $\gamma$ is defined as

$$\gamma_\alpha = \sum_{\mu\nu} (\alpha | \mu\nu) D_{\mu\nu}. \quad (7.20)$$

In the LMIDF approach a conjugate gradient (CG) iterative method is used for solution of Eq. (7.19). In order to decrease the number of CG iterations a preconditioning is employed, i.e., Eq. (7.19) is transformed using a preconditioner $P$ to an equivalent problem

$$(P^{-1}V)c = P^{-1}\gamma \quad (7.21)$$

with an improved condition number resulting in faster convergence of the CG method. The iterative CG solver in riper employs one of the following preconditioners that are formed from blocks of the $V$ matrix corresponding to the strongest and most important interactions between the auxiliary basis functions such that $P^{-1}V \approx I$:

- atomic block preconditioner

$$P_{\alpha\beta}^{at} = \begin{cases} (\alpha^I | \beta^I), & I \in A_I, A_I \text{ are all atoms in molecule} \\ 0, & \text{otherwise} \end{cases}$$

- ss block preconditioner: $P_{\alpha\beta}^{ss} \cup P_{\alpha\beta}^{sp}$

$$P_{\alpha\beta}^{ss} = \begin{cases} (\alpha | \beta), & \alpha, \beta \in \{S\}, S \text{ are all s auxiliary basis functions} \\ 0, & \text{otherwise} \end{cases}$$

- sp block preconditioner: $P_{\alpha\beta}^{at} \cup P_{\alpha\beta}^{sp}$

$$P_{\alpha\beta}^{sp} = \begin{cases} (\alpha | \beta), & \alpha, \beta \in \{S,P\}, P \text{ are all p auxiliary basis functions} \\ 0, & \text{otherwise} \end{cases}$$

The costly matrix-vector products of the $Vc$ type that need to be evaluated in each CG iteration are not calculated directly. Instead, the linear scaling CFMM implementation presented above is applied to carry out this multiplication since the elements of the $Vc$ vector represent Coulomb interaction between auxiliary basis functions $\alpha$ and an auxiliary density $\tilde{\rho}$

$$(Vc)_{\alpha} = \sum_{\beta} (\alpha | \beta) c_{\beta} = (\alpha | \sum_{\beta} c_{\beta\beta}) = (\alpha | \tilde{\rho}). \quad (7.22)$$

Hence, in contrast to conventional RI neither the $V$ matrix nor its Cholesky factors need to be stored and thus significant memory savings are achieved.

### 7.3 How to Perform a Calculation

#### 7.3.1 Basis Sets for Periodic Calculations

In periodic systems too diffuse basis functions result in near-singularity of the overlap matrix. Therefore, it is recommended that the exponents of the Gaussian basis sets used for periodic
calculations are not smaller than 0.01. Optimally, the exponents should be larger than 0.1. The easiest way to achieve this is to remove the small exponent basis functions from the basis sets. Optionally, basis sets optimized for periodic calculations can be used, such as the ones in Ref. [133]. They are available in the TURBOMOLE basis sets library as pob-TZVP.

7.3.2 Prerequisites

Calculations using riper require the control file and starting orbitals generated using define. DFT method needs to be specified in the $dft data group. All LDA, GGA and meta-GGA exchange-correlation functionals including interface to the XCFun library (see Sec. 6.2) are supported. Moreover, auxiliary basis sets defined in the data group $jbas are required. For periodic calculations additional keywords specifying the system periodicity and number of k points (if used) have to be added manually to the control file. Optionally, the $riper group containing control options specific to riper (including the LMIDF keywords) can be added. The input preparation steps are summarized below. More detailed information about riper keywords are provided in Sec. 22.2.12.

7.3.3 Creating the Input File

- Run define: in the geometry menu choose $C_1$ symmetry. Create data groups $dft$ and $jbas$ using dft and ri, respectively, in the general menu.

- riper performs molecular (0D) calculation by default if no other options are specified. For periodic calculations (1D, 2D and 3D periodicity) specify system dimensionality using the keyword $periodic n (n = 1, 2, 3)$ and unit cell parameters or lattice vectors using the keyword $cell$ or $lattice$, respectively. By default, the parameters have to be provided in atomic units and degrees. Alternatively, Å can be employed using the keyword $cell angs$ or $lattice angs$.

Specification of cell parameters using the $cell$ keyword depends on the periodicity of a system:

- For 3D periodic systems six unit cell parameters $|a|$, $|b|$, $|c|$, $\alpha$, $\beta$ and $\gamma$ need to be defined. Here, $|a|$, $|b|$ and $|c|$ are lengths of the appropriate cell vectors, $\alpha$ is the angle between vectors $b$ and $c$, $\beta$ is the angle between vectors $a$ and $c$, and $\gamma$ is the angle between vectors $a$ and $b$. riper assumes that the cell vectors $a$ and $b$ are aligned along the $x$ axis and on the $xy$ plane, respectively.

- For 2D periodic systems three surface cell parameters $|a|$, $|b|$ and $\gamma$ have to be provided. Here, $|a|$ and $|b|$ are lengths of the appropriate cell vectors and $\gamma$ is the angle between $a$ and $b$. riper assumes that the cell vectors $a$ and $b$ are aligned along the $x$ axis and on the $xy$ plane, respectively.

- For 1D periodic systems only one parameter specifying the length of the unit cell has to be provided. riper assumes that periodic direction is along the $x$ axis.
Alternatively, lattice vectors can be provided using the $\text{lattice}$ keyword:

- For 3D periodic systems three (three-dimensional) lattice vectors have to be specified.
- For 2D periodic systems two (two-dimensional) lattice vectors have to be provided. riper assumes that the lattice vectors are aligned on the $xy$ plane.
- For 1D periodic systems only one parameter specifying the length of the lattice vector has to be provided. riper assumes that periodic direction is along the $x$ axis.

**Example 1:** 1D periodic system with a unit cell $|a| = 5$ bohr:

```
$periodic 1
$cell
 5.0
```

The same input using the $\text{lattice}$ keyword:

```
$periodic 1
$lattice
 5.000000000000000
```

**Example 2:** 2D periodic system with a unit cell $|a| = 5$ and $|b| = 8$ bohr, the angle between $a$ and $b$ of $60^\circ$:

```
$periodic 2
$cell
 5.0 8.0 60.0
```

Similar input using the $\text{lattice}$ keyword:

```
$periodic 2
$lattice
 5.000000000000000 0.000000000000000
 6.928203230275509 4.000000000000000
```

**Example 3:** 3D periodic system with a triclinic unit cell $|a| = 5$, $|b| = 8$ and $|c| = 6$ bohr, the angle between $b$ and $c$ of $70^\circ$, between $a$ and $c$ of $60^\circ$, and between $a$ and $b$ of $90^\circ$:

```
$periodic 3
$cell
 5.0 8.0 6.0 70.0 60.0 90.0
```

Similar input using the $\text{lattice}$ keyword:
When \( k \) points are used specify their number using the keyword $kpoints. You have to specify the number of \( k \) points components along each periodic direction. Alternatively, a custom set of \( k \) points can also be provided.

- Optionally, create the $riper data group and add relevant keywords provided in Sec. 22.2.12.

The following examples illustrate the additions to the control file required for calculations using the riper module.

**Example 1:** In this example a 3D periodic system is defined ($periodic 3). The unit cell is specified using the $cell keyword, with lengths and angles given in atomic units and degrees, respectively. A uniform grid of 27 (3 \( \cdot \) 3 \( \cdot \) 3) \( k \) points for numerical integration over the BZ is specified using the keyword $kpoints. The section $riper (see Sec. 22.2.12) is added with the keyword lenonly set to on. It forces riper to skip the calculation of energy gradients (by default both energy and gradients are calculated in one run). In addition, Gaussian smearing is switched on by providing sigma 0.01 (see Sec. 7.2.4).

```
$periodic 3
$cell
 18.5911 16.5747 16.5747 90. 90. 90.
$kpoints
 nkpoints 3 3 3
$riper
 lenonly on
 sigma 0.01
```

The same input using the $lattice keyword:

```
$periodic 3
$lattice
 18.5911 0.0000 0.0000
 0.0000 16.5747 0.0000
 0.0000 0.0000 16.5747
$kpoints
 nkpoints 3 3 3
$riper
 lenonly on
 sigma 0.01
```
Example 2: In this example a 2D periodic system is defined ($\texttt{periodic 2}$). The unit cell is specified using the $\texttt{cell}$ keyword, with lengths and angles given in Å and degrees, respectively. A uniform grid of 9 (3 $\cdot$ 3) k-points for numerical integration over the BZ is defined using the keyword $\texttt{kpoints}$. The section $\texttt{riper}$ (see Sec. 22.2.12) is added with the keyword $\texttt{lmaxmom}$ 30. This changes the maximum order of multipole expansions used in CFMM to 30 (default value is 20).

\begin{verbatim}
$\texttt{periodic 2}$
$\texttt{cell}$ \texttt{angs}
  18.5911 16.5747 90.0
$\texttt{kpoints}$
  \texttt{nkpoints} 3 3
$\texttt{riper}$
  \texttt{lmaxmom} 30
\end{verbatim}

The same input using the $\texttt{lattice}$ keyword:

\begin{verbatim}
$\texttt{periodic 2}$
$\texttt{lattice}$ \texttt{angs}
  18.5911 0.0000
  0.0000 16.5747
$\texttt{kpoints}$
  \texttt{nkpoints} 3 3
$\texttt{riper}$
  \texttt{lmaxmom} 30
\end{verbatim}

Example 3: In this example a 1D periodic system is defined ($\texttt{periodic 1}$). The dimension of the periodic direction in atomic units is specified using the $\texttt{cell}$ keyword. A one dimensional grid of 3 k-points for numerical integration over the BZ is defined using the keyword $\texttt{kpoints}$.

\begin{verbatim}
$\texttt{periodic 1}$
$\texttt{cell}$
  18.5911
$\texttt{kpoints}$
  \texttt{nkpoints} 3
\end{verbatim}

The same input using the $\texttt{lattice}$ keyword:

\begin{verbatim}
$\texttt{periodic 1}$
$\texttt{lattice}$
  18.5911
$\texttt{kpoints}$
  \texttt{nkpoints} 3
\end{verbatim}
Example 4: In this example a molecular system is defined (default if no \texttt{periodic} is specified). The section \texttt{riper} (see Sec. 22.2.12) is added with the keyword \texttt{lpcg on}, which activates the low-memory modification of the RI approximation for calculations on very large molecular systems.

\texttt{riper}
\texttt{lpcg on}

Example 5: In this example a cubic 3D periodic system is defined (\texttt{periodic 3}). The unit cell is specified using the \texttt{cell} keyword, with lengths and angles given in atomic units and degrees, respectively. A set of 5 custom \textbf{k} points \((k_x(i), k_y(i), k_z(i))\) along with their weights \((w(i))\) for numerical integration over the BZ are supplied using the keyword \texttt{kpoints} followed by the option \texttt{custom nks}. One can refer to the literature for a list of special \textbf{k} points and the corresponding weights for a particular Bravais lattice. Weights are integers that are renormalized internally such that the sum of all weights is 1. Therefore, only the relative ratios of the weights matter in a calculation.

\texttt{periodic 3}
\texttt{cell}
\texttt{16.5747 16.5747 16.5747 90. 90. 90.}
\texttt{kpoints}
\texttt{custom 5}
\texttt{0.00 0.00 0.00 1 #Gamma point}
\texttt{0.25 0.25 0.25 1 #Arbitrary point}
\texttt{0.50 0.50 0.50 1 #R point}
\texttt{0.00 0.50 0.00 1 #X point}

7.3.4 Single Point Energy and Gradient

By default \texttt{riper} calculates single point energy and gradient in one run. For this, simply invoke \texttt{riper} as

\texttt{nohup riper > riper.out \\}

For energy calculation only add \texttt{lenonly on} to the \texttt{riper} section in the \texttt{control} file, \textit{i.e.},

\texttt{riper}
\texttt{lenonly on}

The parallel OpenMP version of \texttt{riper} can be invoked as described in Sec. 3.2.2.
7.3 HOW TO PERFORM A CALCULATION

7.3.5 Structure Optimization

jobex will automatically use riper when the keyword $periodic is present in the control file. Alternatively, the use of riper can be forced by specifying -riper argument of jobex, i.e., invoking

nohup jobex -riper > jobex.out &

Note, that at present only structure optimization using Cartesian coordinates is possible when using periodic boundary conditions. Using internal coordinates for periodic systems will lead to convergence problems in structure optimizations.

7.3.6 Optimization of Cell Parameters

Simultaneous optimization of atomic positions and cell parameters or lattice vectors can be performed by specifying the keyword $optcell in the control file and then invoking the jobex script as described in 7.3.5.

The calculation of energy first derivatives with respect to lattice vectors usually requires higher accuracy than nuclear gradients. Therefore, in case of convergence issues it is recommended to decrease the SCF convergence threshold to at least $1 \times 10^{-7}$ by specifying $scfconv 7$. In addition, convergence can often be improved by including weight derivatives by adding the option weight derivatives in the $dft$ data group.

7.3.7 Band Structure Plots

Band structure plots show the values of band (orbital) energies for values of $k$ along lines connecting symmetry points. In riper these lines can be specified by providing their start and end points as well as the number of $k$ points along the line within the $kpoints section. They will be calculated at the end of SCF procedure and written to the file bands.xyz.

In the following example band energies are calculated along four lines, as specified by the keyword kptlines 4. Each line definition starts in a new line with the keyword recipr, followed by three real numbers defining the start point of the line and three real numbers defining its end point. Finally, the number of $k$ points along the line is given as an integer number. Thus, the first line starts at the point (0.500 0.500 0.500), ends at (0.000 0.000 0.000) and contains 40 $k$ points.

$kpoints
kptlines 4
recipr 0.500 0.500 0.500 0.000 0.000 0.000 40
recipr 0.000 0.000 0.000 0.500 0.500 0.000 40
recipr 0.500 0.500 0.000 0.746 0.373 0.373 40
recipr 0.746 0.373 0.373 0.000 0.000 0.000 40
Each line of the resulting bands.xyz file contains five real numbers: the coordinates $k_1$, $k_2$ and $k_3$ of the $k$ point, its length $|k|$ and the corresponding band energy $\epsilon_{nk}$.

### 7.3.8 Calculation of Densities and MOs on Grids

**How to Perform**

Calculation of data on grids for molecular and periodic systems using riper requires the keyword $\$pointvalper$ in the control file. The values are calculated on a 3D grid and written to appropriate output files. These files can be generated either running a single point energy riper calculation or invoking

```
nohup riper -proper > riper.out &
```

provided that converged orbitals and occupation numbers from previous calculation are present in the files RIPER.BANDS and RIPER.BANDS.OCCUPATIONS, respectively.

The format of the output files can be specified using the keyword fmt= following $\$pointvalper$ in the same line. Supported formats are:

- **plt** (default) The generated data is written to binary files that can be read by gOpenMol and other external visualization programs. This format uses orthogonal grids. Therefore, for non-orthogonal unit cells grid data is generated for a rectangular box that contains the supercell (unit cell and its periodic images). By default, the values at grid points outside of the supercell are set to zero. For strongly non-orthogonal systems this may lead to large files. The option full switches off the zeroing of values on grid points outside the supercell.

- **cub** Gaussian cube format. Can be imported by several external visualization programs.

- **xyz** Coordinates of grid points and calculated values are stored in a text file. Each line contains Cartesian grid point coordinates and the corresponding value.

- **upt** Values and grid data is output to binary files. First 8 (integer) records are: 1-2) rank value and descriptor, 3-8) number of grid points and number of periodic unit cell images in each periodic direction, 9...) Cartesian coordinates and the corresponding value repeated for all grid points.

Output files in cub format contain information about atomic coordinates. For other formats additional coord.xyz file containing atomic coordinates is generated.

The following options can be used along with the keyword $\$pointvalper$:

- **nimg n1 n2 n3**

  Number of unit cell images $n_1$, $n_2$ and $n_3$ in the periodic directions $a$, $b$ and $c$, respectively, for which plot data is generated.
7.3. HOW TO PERFORM A CALCULATION

\[ \text{npts } n_1 \ n_2 \ n_3 \]
Number of grid points \( n_1, n_2 \) and \( n_3 \) along each periodic direction. If not specified, value 100 is used for each \( n \).

\[ \text{eps real} \]
Specifies the distance \( \text{real} \) in bohr around the system for which plot grid is generated in aperiodic directions. Default value is 5 bohr.

\[ \text{ngrdpx } n \]
Number of grid points stored in one octree box during density calculations. Default value is 50. For very large systems or high resolution it may be necessary to increase this parameter to avoid memory allocation problems.

\[ \text{full} \]
Only valid for \text{plt} output format. Switches off zeroing of values on grid points outside the supercell.

**Electron Density**

Plots of electron density require option \text{dens} in the \$\text{pointvalper} data group

\$\text{pointvalper} \\
\text{dens} \\

The values of the total density and, in case of UHF calculations also the spin density are written to files \text{td.fmt} and \text{sd.fmt}, respectively, where \text{fmt} is the selected format.

**Molecular Orbitals**

Plot files for visualization of molecular orbitals can be generated by setting \text{orbs } n\text{ in the \$\text{pointvalper} data group, where \( n \) is the number of orbitals to plot. The way to specify the orbitals is best explained by some examples:}

**example 1:** An open shell system is considered. Number of \( k \) points along the reciprocal lattice vectors \( b_1, b_2 \) and \( b_3 \) is 3, 5, and 7, respectively. Possible \( k \) point components \( k_j \) calculated from equation 7.16 are therefore \( k_1 \in \left( -\frac{3}{7}, 0, \frac{1}{7} \right) \), \( k_2 \in \left( -\frac{2}{7}, -\frac{1}{7}, 0, \frac{1}{7}, \frac{2}{7} \right) \), and \( k_2 \in \left( -\frac{3}{7}, \ldots, \frac{3}{7} \right) \). The \text{kpoints} and \$\text{pointvalper} groups are:

\$\text{kpoints} \\
\text{nkpoints } 3 \ 5 \ 7 \\
\$\text{pointvalper} \\
\text{orbs } 2 \\
k \ 1 \ 4 \ 6 \ a \ 1 \\
k \ 2 \ 3 \ 4 \ b \ 3
Here, two orbitals will be plotted. They are defined in two lines following the \texttt{orb 2} option. Each line starts with \texttt{k} followed by three numbers that specify which of possible components \(k_j\) are used. In this example \texttt{k} point components for the first orbital are \((\frac{-1}{3}, \frac{1}{3}, \frac{2}{3})\). For the second one \texttt{k} = (0, 0, 0), \textit{i.e.}, this orbital is at the \(\Gamma\)-point. Subsequently, type and number of the orbitals are defined (orbitals at each \texttt{k}-point are ordered by increasing energy). Here the first one is \texttt{a 1} - the lowest \(\alpha\) orbital. Similarly, \texttt{b 3} denotes the third lowest energy \(\beta\) orbital.

For a non-\(\Gamma\) \texttt{k} point, the calculation will generate three plottable files corresponding to the:
(i) real component of \(\Psi\), (ii) imaginary component of \(\Psi\), and (iii)\(\Psi^2\), for a given orbital.

Note: Only the real components are plotted for the \(\Gamma\)-point.

\textbf{example 2}: In this example a closed shell system with 3, 2 and 4 \texttt{k} points in each direction is given:

\begin{verbatim}
$kp0ints
 nkpoints 3 2 4
$pointvalper
 orbs 3
  k 1 2 1 a 1
  k 0 0 0 a 2
\end{verbatim}

Possible \texttt{k} point components from equation 7.16 are \(k_1 \in (\frac{-1}{3}, 0, \frac{1}{3})\), \(k_2 \in (\frac{-1}{4}, \frac{1}{4})\) and \(k_2 \in (\frac{-3}{8}, \frac{1}{8}, \frac{3}{8})\). In analogy to the previous example, three data files for the real component, imaginary component, and square of the wavefunction (MO) will be generated for the lowest energy orbital at \texttt{k} point \((\frac{-1}{3}, \frac{1}{4}, \frac{-3}{8})\). For the second molecular orbital only the real component will be generated at the \(\Gamma\)-point. Orbitals at the \(\Gamma\)-point are defined by using ‘special’ 0 0 0 component indices, as it is not included in the grid for even number of \texttt{k} points.

\textbf{example 3}: In this example an input for a \(\Gamma\)-point calculation is shown:

\begin{verbatim}
$pointvalper fmt=plt
 orbs 2
  k 1 1 1 a 5
  k 1 1 1 b 5
\end{verbatim}

Here \texttt{k 1 1 1} is the only valid option. For \(\Gamma\)-point calculation, orbitals are real, thus it is the only component that is plotted. In this case the fifth lowest energy orbitals with spin components \(\alpha\) and \(\beta\) are plotted. The output format is set to \texttt{plt} using the \texttt{fmt=} keyword.

\textbf{example 4}: In this example an input for a \texttt{custom} \texttt{k} point calculation is shown:

\begin{verbatim}
$kp0ints
 custom 2
  0.00 0.00 0.00 1
  0.50 0.50 0.25 1
$pointvalper fmt=cub
\end{verbatim}
7.3. HOW TO PERFORM A CALCULATION

orbs 2
k 1 a 5
k 2 a 6

Instead of three indices after \( k \) (like in the previous examples), only a single index is required, specifying the index of the custom \( k \) point in the list given by the user. The above example will plot the fifth lowest energy molecular orbital at the first \( k \) point (\( \Gamma \)) and the sixth MO at the second, \((0.50 \ 0.50 \ 0.25)\) \( k \) point. Note: If the list of custom \( k \) points doesn’t include a \( \Gamma \)-point, one can still plot the MOs at this point, as a \( \Gamma \)-point with 0 weight is prepended to the supplied list with an index 0. In such a case, to plot the fifth lowest energy orbital with spin \( \alpha \) at the \( \Gamma \)-point, the input would be \( k \ 0 \ a \ 5 \).

7.3.9 Density of States

A simulated density of states (DOS) is calculated by broadening the discrete energy levels with Gaussians and superimposing them. The output files (\( \text{dos} \) for RKS calculations, and \( \text{dos}_a+b, \text{dos}_a-b, \text{dos}_\text{alpha}, \text{dos}_\text{beta} \) in case of UKS) contain energies (first column) and corresponding total DOS (second column) as well as s-, p-, ... contributions (following columns). The calculation is controlled by the keyword \$\text{dosper}:

\$
\text{dosper width=real emin=real emax=real scal=real npt=integer}
\$

The parameters in example above have the following meaning:

- \( \text{width} \) the width of each Gaussian, default value is 0.01 a.u.
- \( \text{emin,emax} \) lower/upper bounds for energy in DOS calculation
- \( \text{scal} \) scaling factor for DOS (total and s-, p-, ... contributions)
- \( \text{npt} \) resolution (number of points)

All parameters are optional, default values are usually sufficient to generate a satisfactory plot. DOS files can be generated either running a single point energy \text{riper} calculation or using \text{-proper} option

```
nohup riper -proper > riper.out &
```

provided that converged orbitals and occupation numbers from previous calculation are present in the files \text{RIPER.BANDS} and \text{RIPER.BANDS.OCCUPATIONS}, respectively.
Chapter 8

Hartree–Fock and DFT Response Calculations: Stability, Dynamic Response Properties, and Excited States

8.1 Functionalities of ESCF and EGRAD

escf and egrad are designed as efficient tools for response and excited state calculations on large molecules. escf serves to compute the following properties for HF and KS reference states:

- Eigenvalues of the electronic Hessian (stability analysis)
- Frequency-dependent polarizabilities and optical rotations
- Frequency-dependent electronic hyperpolarizabilities
- Vertical electronic excitation energies
- Transition moments, oscillator and rotatory strengths of electronic excitations
  \Rightarrow UV-VIS and CD spectra
- Two-photon transition moments
  \Rightarrow 2PA spectra
- Nuclear spin-spin coupling constants (SSCCs)
Spin-restricted closed-shell and spin-unrestricted ground states (except for stability analysis) are supported. The RI-J approximation in conjunction with LDA, GGA, and meta-GGA (MGGA) functionals is implemented for all properties. Excitation energies and transition moments can be computed either within the full time-dependent HF (TDHF) or time-dependent DFT (TDDFT) formalisms or within the Tamm-Dancoff approximation (TDA).

Furthermore, two-component relativistic Kramers-restricted closed-shell ground states are supported (vertical electronic excitation energies as well as transition moments, oscillator and rotatory strengths). LDA and GGA functionals are implemented in combination with the RI-J approximation at the TDDFT level. HF exchange is accessible within the TDA.

Excited state first order properties can be evaluated analytically using egrad. They include:

- Gradients of the excited state energy with respect to nuclear positions ⇒ Excited state equilibrium structures (jobex), adiabatic excitation energies, emission spectra
- Exited state densities ⇒ Charge moments, population analysis
- Excited state force constants by numerical differentiation of gradients (using the script NumForce)

Moreover, analytical gradients of static and frequency-dependent polarizabilities are available from egrad. Together with vibrational normal modes from the aoforce or NumForce they are used to calculate vibrational Raman intensities. Excited state gradients for MGGA functionals are presently unavailable.

Again, ground states may be spin-restricted closed-shell or spin-unrestricted, RI-J is available, and either full TDDFT/TDHF or the TDA can be used. For further details we refer to a recent review [134].

### 8.2 Theoretical Background

We briefly state the basic working equations in the following, as far as required to understand the program output. For a more detailed treatment of the theory see refs. [24,134–138] and refs. therein. The following discussion is restriced to the one-component (nonrelativistic) treatment, for the sake of convenience.

The first-order frequency dependent response of the density matrix can be expanded as

$$\gamma(x,x') = \sum_{ai} \{X_{ai}\phi_i(x)\phi_a^*(x') + Y_{ai}\phi_a(x)\phi_i^*(x')\}. \quad (8.1)$$

The (real) expansion coefficients $X_{ai}$ and $Y_{ai}$ are conveniently gathered in a “super-vector"

$$|X,Y\rangle = \begin{pmatrix} X \\ Y \end{pmatrix} \quad (8.2)$$

on $L$, the linear space of products of occupied and virtual ground state MOs $\phi_i(x)\phi_a^*(x')$ plus their complex conjugates. $X$ and $Y$ describe the first-order change of
the ground state MOs due to an external perturbation which is represented by $|P,Q\rangle$ on $L$. For example, if an oscillating electric dipole perturbation along the $z$ axis is applied, $|P,Q\rangle = |\mu_z\rangle$, where $\mu$ is the electric dipole operator.

Next we define the $2 \times 2$ “super-matrices”

$$
\Lambda = \begin{pmatrix} A & B \\ B & A \end{pmatrix}, \quad \Delta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},
$$

(8.3)

where the four-index quantities $A$ and $B$ are the so-called “orbital rotation Hessians”. Explicit expressions for the standard $A$ and $B$ can be found, e.g., in ref. [24]. For MGGA functionals, the linear response of the paramagnetic current density leads to additional XC kernel matrix elements, and subsequently to modified definitions of $A$ and $B$ [139]. The vector $|X,Y\rangle$ is determined as the solution of the TDHF/TDDFT response problem,

$$
(\Lambda - \omega \Delta)|X,Y\rangle = -|P,Q\rangle.
$$

(8.4)

If $|X_\alpha,Y_\alpha\rangle$ arises from an electric dipole perturbation $|\mu_\alpha\rangle$, the electronic dipole polarizability at frequency $\omega$ is

$$
\alpha_{\alpha\beta}(\omega) = -\langle X_\alpha,Y_\alpha|\mu_\beta\rangle,
$$

(8.5)

$\alpha,\beta \in \{x,y,z\}$. Similarly, if $|m_\alpha\rangle$ is a component of the magnetic dipole moment operator, the optical rotation is [140]

$$
\delta_{\alpha\beta}(\omega) = -\frac{c}{\omega} \text{Im}\langle X_\alpha,Y_\alpha|m_\beta\rangle,
$$

(8.6)

where $c$ is the light velocity.

Excitation energies $\Omega_n$ are the poles of the frequency-dependent density matrix response. They are thus the zeros of the operator on the left-hand side of Eq. (8.4),

$$
(\Lambda - \Omega_n \Delta)|X_n,Y_n\rangle = 0.
$$

(8.7)

The corresponding eigenvectors $|X_n,Y_n\rangle$ are the transition density matrices for a given excitation (also called “excitation vectors” in the following). They are required to be normalized according to

$$
\langle X_n,Y_n|\Delta|X_n,Y_n\rangle = 1.
$$

(8.8)

Transition moments are evaluated by taking the trace with one-particle operators, e.g.,

$$
\mu_{0n} = \langle X_n,Y_n|\mu\rangle
$$

(8.9)

for the electric and

$$
m_{0n} = \langle X_n,Y_n|m\rangle
$$

(8.10)

for the magnetic transition dipole moments.

The full TDHF/TDDFT formalism is gauge-invariant, i.e., the dipole-length and dipole-velocity gauges lead to the same transition dipole moments in the basis set limit. This can be used as a check for basis set quality in excited state calculations. The TDA can formally be derived as an approximation to full TDHF/TDDFT by constraining the Y vectors to
For TDHF, the TDA is equivalent to configuration interaction including all single excitations from the HF reference (CIS). The TDA is not gauge invariant and does not satisfy the usual sum rules [135], but it is somewhat less affected by stability problems (see below). For MGGA functionals, the response of the paramagnetic current density is required to ensure gauge invariance and is included by default.

**Stability analysis** of closed-shell electronic wavefunctions amounts to computing the lowest eigenvalues of the electric orbital rotation Hessian $A + B$, which decomposes into a singlet and a triplet part, and of the magnetic orbital rotation Hessian $A - B$. Note that $A - B$ is diagonal for non-hybrid and non-MGGA DFT, while $A + B$ generally is not. See refs. [23,139,141] for further details.

The two-component relativistic TDDFT eigenvalue problem for excitations of (Kramers-restricted) closed-shell systems taking (approximately) into account the effect of spin-orbit coupling is

$$M (X + Y)_n = \Omega_n^2 (X + Y)_n.$$  

(8.11)

$M$ is a Hermitian (complex) matrix containing spinor energy differences, Coulomb matrix elements as well as matrix elements of the two-component noncollinear exchange-correlation kernel. An explicit expression for $M$ can be found in ref. [142]. $(X + Y)_n$ are complex two-component excitation vectors. In the case of HF exchange, one has to resort to the TDA

$$AX_n = \Omega_n X_n ,$$  

(8.12)

see ref. [143].

**Properties of excited states** are defined as derivatives of the excited state energy with respect to an external perturbation. It is advantageous to consider a fully variational Lagrangian of the excited state energy [24],

$$L[X,Y,\Omega,C,Z,W] = E_{GS} + \langle X,Y|\Lambda|X,Y \rangle - \Omega(\langle X,Y|\Delta|X,Y \rangle - 1) + \sum_{ia} Z_{ia} F_{ia} - \sum_{pq} W_{pq}(S_{pq} - \delta_{pq}).$$  

(8.13)

Here $E_{GS}$ denotes the ground state energy, $F$ and $S$ are the Fock and overlap matrices, respectively, and indices $p, q$ run over all, occupied and virtual MOs.

First, $L$ is made stationary with respect to all its parameters. The additional Lagrange multipliers $Z$ and $W$ enforce that the MOs satisfy the ground state HF/KS equations and are orthonormal. $Z$ is the so-called $Z$-vector, while $W$ turns out to be the excited state energy-weighted density matrix. Computation of $Z$ and $W$ requires the solution of a single static TDHF/TKS response equation (8.4), also called coupled and perturbed HF/KS equation. Once the relaxed densities have been computed, excited state properties are obtained by simple contraction with derivative integrals in the atomic orbital (AO) basis. Thus, computation of excited state gradients is more expensive than that of ground state gradients only by a constant factor which is usually in the range of 1...4.

TDHF/TDDFT expressions for components of the frequency-dependent polarizability $\alpha_{\alpha\beta}(\omega)$
can also be reformulated as variational polarizability Lagrangians \[144\]

\[
L_{\alpha\beta} [X_{\alpha}, Y_{\alpha}, X_{\beta}, Y_{\beta}, C, Z_{\alpha\beta}, W_{\alpha\beta}] (\omega) = \langle X_{\alpha}, Y_{\alpha} | (\Lambda - \omega \Delta) | X_{\beta}, Y_{\beta} \rangle + \langle X_{\alpha}, Y_{\alpha} | \mu_{\beta} \rangle + \langle \mu_{\alpha} | X_{\beta}, Y_{\beta} \rangle + \sum_{ia\sigma} Z_{ia\sigma} F_{ia\sigma} - \sum_{pq\sigma, p \leq q} W_{\alpha\beta pq\sigma} (S_{pq\sigma} - \delta_{pq}). \tag{8.14}
\]

The stationary point of \(L_{\alpha\beta}(\omega)\) equals to \(-\alpha_{\alpha\beta}(\omega)\). The requirement that \(L_{\alpha\beta}(\omega)\) be stationary with respect to all variational parameters determines the Lagrange multipliers \(Z_{\alpha\beta}\) and \(W_{\alpha\beta}\). All polarizability components \(\alpha\beta\) are processed simultaneously which allows for computation of polarizability derivatives at the computational cost which is only 2–3 higher than for the electronic polarizability itself.

Within TDDFT and TDHF, the \(X\) and \(Y\) coefficients are normalized as follows:

\[
\sum_{ia} (|X_{ia}|^2 - |Y_{ia}|^2) = 1, \tag{8.15}
\]

where \(i\) and \(a\) label occupied and virtual MOs, respectively. Thus, the squared "coefficient" of a single electron excitation from orbital \(i\) to orbital \(a\) can be defined as

\[
|c_{ia}|^2 = |X_{ia}|^2 - |Y_{ia}|^2. \tag{8.16}
\]

escf prints out \(|c_{ia}|^2 \times 100\) starting with the largest coefficient, until the sum of the coefficients is 0.9 or greater. TDA is contained as special case with \(Y_{ia} = 0\).

The first hyperpolarizability is computed from

\[
\beta_{\alpha\beta\gamma}(\omega_{\alpha}, \omega_{\beta}) = \text{tr} \left( K^{(\alpha\beta)} v^{(\gamma)} \right) - \langle X^{(\alpha)}, Y^{(\alpha)} | P^{(\alpha\beta)} | Q^{(\alpha\beta)} \rangle, \tag{8.17}
\]

where \(K^{(\alpha\beta)}\) is the unrelaxed density,

\[
K^{(\alpha\beta)}_{ij} = - \sum_{a} \left[ X_{ja}^{(\alpha)} Y_{ia}^{(\beta)} + X_{ja}^{(\alpha)} Y_{ia}^{(\beta)} \right], \tag{8.18}
\]

\[
K^{(\alpha\beta)}_{ab} = \sum_{i} \left[ X_{ia}^{(\alpha)} Y_{ib}^{(\beta)} + X_{ia}^{(\alpha)} Y_{ib}^{(\beta)} \right], \tag{8.19}
\]

and \(P^{(\alpha\beta)}\) and \(Q^{(\alpha\beta)}\) are second-order right-hand-sides defined in Ref. \[138\].

Two-photon absorption (2PA) amplitudes are

\[
\mu_{0n}^{(\alpha\beta)}(\omega) = \langle X^{n}, Y^{n} | P^{(\alpha\beta)} | Q^{(\alpha\beta)} \rangle \tag{8.20}
\]

where the frequencies in the right-hand side are \(\omega_{\alpha} = \omega\) and \(\omega_{\beta} = \Omega_n - \omega_{\alpha}\).

### 8.3 Implementation

Without giving details, we discuss features of the implementation in \texttt{escf} and \texttt{egrad} that matter for applications. The interested reader is referred to the refs. given in the program headers as well as ref. \[145\].
Simultaneous vector iteration. The solutions of Eqs. (8.4) and (8.7) (Eq. (8.11)) are expanded in a subspace of $L$ which is iteratively expanded (Davidson method [146]). The iteration is stopped when the Euclidean norm of the residual vector is smaller than $10^{-k}$. The default for $k$ is 5, which usually gives excitation energies accurate to $8 - 10$ digits and properties accurate to $4 - 5$ digits ($k$ can be changed by specifying $\texttt{rpaconv}$). Several roots, i.e., several excited states or frequencies can be treated simultaneously, which is very effective and permits the calculation of whole excitation spectra and dispersion curves. During the iteration, the vectors are kept on scratch files $\texttt{vfile_<IR>}$, $\texttt{wfile_<IR>}$, and/or $\texttt{rhs_<IR>}$, where IR denotes an IRREP of the point group (see below). Before the programs terminate, the converged vectors are written onto formatted files $\langle\text{type}\rangle\langle\text{IR}\rangle$, where type is an abbreviation for the type of response calculation performed (cf. $\texttt{scfinstab}$). Given these files in the working directory, $\texttt{escf}$ and $\texttt{egrad}$ calculations can be restarted or continued, e.g., with a larger number of roots.

Integral direct algorithm. In the iterative method outlined above, the super-matrices $A$ and $B$ never need to be set up explicitly; only the products of $A$ and $B$ with some suitable basis vectors are required. These matrix-vector-products are evaluated very efficiently in the AO basis, because the required four-index integrals can be computed “on the fly” and need not be transformed or stored on disk. In addition, prescreening techniques based on rigorous bounds are straightforward to apply. This leads to a low-order scaling $O(N^2) - O(N)$ for the time-determining steps. Due to the similarity to ground state fock matrix construction, the same keywords are used to control these steps as in semi-direct SCF, namely $\texttt{thime}$, $\texttt{thize}$, $\texttt{scfintunit}$, see Chapter 6. The same is true for DFT and RI keywords such as $\texttt{dft}$, $\texttt{ridft}$, $\texttt{ricore}$.

Point group symmetry. $\texttt{escf}$ and $\texttt{egrad}$ can exploit point group symmetry for all finite point groups (with up to 99-fold symmetry axes, $\rightarrow \texttt{symmetry}$). The calculation of SSCCs is only possible for Abelian point groups. The response and eigenvalue problems (eqs. (8.4) and (8.7)) decompose into separate problems for each IRREP that are solved independently. For excited state and instability calculations, it is thus necessary to specify the IRREPs to be treated ($\texttt{soes}$, see below). For response calculations, the perturbation is automatically subduced into irreducible components. The overall speedup compared to $C_1$ symmetry is approximately $1/g$, where $g$ denotes the point group order. For spin-restricted closed-shell ground states, spin symmetry is used to further reduce the dimension of the response and eigenvalue problems by a factor of 2. Point group symmetry cannot be exploited in two-component calculations.

Other features. $\texttt{escf}$ and $\texttt{egrad}$ fully support external fields (using the keyword $\texttt{electrostatic field}$; specify $\texttt{geofield}$ on in $\texttt{fldopt}$), point charges (using the keyword $\texttt{point_charges}$), and effective core potentials (using $\texttt{ecp}$). In $\texttt{escf}$ calculations, occupied and virtual MOs can be frozen (using $\texttt{freeze}$).
8.4 How to Perform

The most convenient way to set up an escf or egrad calculation is to use the ex option of the last (“general”) define menu, see Chapter 4. define will automatically provide most of the keywords discussed below.

A large number of (not necessarily realistic) sample inputs is contained in the escf and egrad subdirectories of the test suite (TURBOTEST directory).

8.4.1 Preliminaries

All response calculations require a complete set of converged (occupied and virtual) SCF MOs. It is strongly recommended to use well converged MOs, since the error in the ground-state wavefunction enters linearly in all response properties. Thus, before starting escf or egrad, specify the keywords

\[
\texttt{$scfconv 7$
\texttt{$denconv 1d-7$
}
\]

in control, perform a dscf statistics run if semi-direct integral processing is to be used (see Chapter 3.1), and (re-)run dscf or ridft,

\[
dscf > dscf.out & \quad \text{or}
\]

\[
\text{ridft > ridft.out & \quad in case of RI-J.}
\]

The above tight convergence criteria are also recommended for excited state geometry optimizations. It is also recommended to avoid multiple grids as they negatively influence the numerical stability (use 3 instead of m3). To perform a two-component TDDFT calculation, the two-component version of ridft has to be run before (see Chapter 6.4) using the keywords $soghf$ and $kramers$.

8.4.2 Polarizabilities and Optical Rotations

The calculation of dynamic polarizabilities is controlled by the keyword

\[
\texttt{\$scfinstab dynpol unit}
\]

\[
\texttt{list of frequencies}
\]

unit specifies the unit of the following frequencies and may be ev, nm, 1/cm, or a.u. (default). The frequencies may be either purely real or purely imaginary. For example, to calculate dynamic polarizabilities at 590 nm and 400i nm (i is the imaginary unit), specify

\[
\texttt{\$scfinstab dynpol nm
}
\]

\[
590
\]

\[
400 \ i
\]
and run \texttt{escf},

\texttt{escf > escf.out \\
and run \texttt{escf},

\texttt{escf > escf.out \\
}

The resulting polarizabilities and rotatory dispersions are given in a.u. in the program output (\texttt{escf.out} in the above example).

The conversion of the optical rotation in a.u. to the specific rotation \( [\alpha]_\omega \) in \text{deg} \cdot \text{dm} \cdot \text{(g/cc)}^{-1} is given in Eq. (15) of ref. [140].

\[
[\alpha]_\omega = C \cdot \delta(\omega)
\] (8.21)

where \( C = 1.343 \cdot 10^{-4} \omega^2/M \) with \( M \) being the the molar mass in g/mol, \( \omega \) the frequency in \text{cm}^{-1}, and \( \delta(\omega) \) is 1/3 trace of the electronic rotatory dispersion tensor given in atomic units.

Please note that \( \delta(\omega) \) has the wrong sign in older TURBOMOLE versions. It has been corrected in version 6.2.

Note that convergence problems may occur if a frequency is close to an electronic excitation energy. This is a consequence of the (physical) fact that the response diverges at the excitation energies, and not a problem of the algorithm.

Static polarizabilities are calculated most efficiently by specifying

\texttt{$scfinstab polly$
}

before starting \texttt{escf}.

### 8.4.3 Dynamic First Hyperpolarizability

Hyperpolarizability calculations are run through \texttt{escf} and can be requested by including

\texttt{$scfinstab hyperpol <unit>$
<freq1>
<freq2>
<pair1_a> <pair2_b>
...}

in the control file. A hyperpolarizability calculation will be performed using the pairs given on each line AND using all combinations of the single frequencies given alone on each line. Specifying no frequencies initiates a static calculation. The same unit specifications are accepted as for dynamic polarizability calculations. For example,

\texttt{$scfinstab hyperpol nm$
800 
1000 
1064 1064}
will compute hyperpolarizability tensors with frequency pairs

- 1000 nm, 1000 nm
- 1000 nm, 800 nm
- 800 nm, 800 nm
- 1064 nm, 1064 nm

8.4.4 Stability Analysis

Stability analysis of spin-restricted closed-shell ground states is enabled by

\$scfinstab singlet
  for singlet instabilities,

\$scfinstab triplet
  for triplet instabilities (most common), and

\$scfinstab non-real
  for non-real instabilities.

After that, it is necessary to specify the IRREPs of the electronic Hessian eigenvectors (“orbital rotations”) to be considered. Without additional knowledge of the system one usually needs to calculate the lowest eigenvalue within every IRREP:

\$soes all 1

Positivity of the lowest eigenvalues in all IRREPs is sufficient for stability of the ground state solution. If one is interested in, say, the lowest eigenvalues in IRREPs $e_g$ and $t_{2g}$ only, one may specify:

\$soes
  eg 1
  t2g 1

Triplet instabilities in the totally symmetric IRREP indicate open shell diradical states (singlet or triplet). In this case, start MOs for spin-symmetry broken UHF or UKS ground state calculation can be generated by specifying

\$start vector generation

\$escf will provide the start MOs (\$uhfmo_alpha, $uhfmo_beta) as well as occupation numbers (\$alpha shells, $beta shells) for a spin-unrestricted calculation with equal numbers of $\alpha$ and $\beta$ electrons (pseudo-singlet occupation).
8.4.5 Vertical Excitation and CD Spectra

The calculation of excited states within the TDHF(RPA)/TDDFT approach is enabled by

\[ \texttt{scfinstab rpas} \]
for closed-shell singlet excitations,

\[ \texttt{scfinstab rpat} \]
for closed-shell triplet excitations, and

\[ \texttt{scfinstab urpa} \]
for excitations out of spin-unrestricted reference states.

If it is intended to use the TDA instead, specify

\[ \texttt{scfinstab ciss} \]
for closed-shell singlet excitations,

\[ \texttt{scfinstab cist} \]
for closed-shell triplet excitations,

\[ \texttt{scfinstab ucis} \]
for excitations out of spin-unrestricted reference states, and

\[ \texttt{scfinstab spinflip} \]
for spin-flip (z-component of the total spin changes by \( \pm 1 \)) excitations out of spin-unrestricted reference states. For details concerning the theory see ref. [147]. In practice, this functionality can be used for the calculation of triplet-singlet, quartet-doublet, … excitations (see ref. [148] also for further information about the implementation). It is only available within the TDA in combination with LDA functionals and the HF exchange. It is strongly recommended to increase \texttt{escfiterlimit}.

In the two-component case, specify

\[ \texttt{scfinstab soghf} \]
for two-component excitation energy calculations on closed-shell systems. [142] This implementation is only available in combination with LDA and GGA functionals; since version 7.4 also hybrid functionals are supported [149].

\[ \texttt{scfinstab tdasoghf} \]
for two-component excitation energy calculations on closed-shell systems using the TDA, where in addition HF exchange is accessible. [143]

open-shell systems can be accessed using TD-HF or the Bethe-Salpeter equation \texttt{bse}

The keywords \texttt{soghf} and \texttt{kramers} in case of closed-shell systems also have to be set.

The Bethe-Salpeter equation (BSE) for excited states can be invoked by adding the keyword \texttt{bse}. The correlation-augmented Bethe-Salpeter equation (cBSE) for excited states can be
invoked by adding the keyword $cbse$ [150]. In BSE calculation RI-K is mandatory and automatically set.

Next, the IRREPs of the excitations need to be defined, which is again accomplished using $soes$. For example, to calculate the 17 lowest excitations in IRREP $b_{1g}$, the 23 lowest excitations in IRREP $e_u$, and all excitations in IRREP $t_{2g}$, use

$$\texttt{soes } b_{1g} \ 17 \ \texttt{eu } \ 23 \ \texttt{t}_{2g} \ \texttt{all}$$

and run $\texttt{escf}$. Since point group symmetry cannot be exploited in two-component calculations, there is only the totally symmetric IRREP $a$.

Note that $\texttt{soes}$ specifies the IRREP of the excitation vector which is not necessarily identical to the IRREP of the excited state(s) involved. In general, the IRREP(s) of the excitation(s) from the ground to an excited state is given by the direct product of the IRREPs of the two states. For example, to calculate the first $A_2$ state in a $C_{2v}$-symmetric molecule with a $B_2$ (open-shell) ground state, it is necessary to specify

$$\texttt{soes } b_{1} \ 1$$

The number of excitations that have to be calculated in order to cover a certain spectral range is often difficult to determine in advance. The total number of excitations within each IRREP as provided by the $\texttt{define ex}$ menu may give some hint. A good strategy is to start with a smaller number of excitations and, if necessary, perform a second $\texttt{escf}$ run on a larger number of states using the already converged excitation vectors as input.

To compute absorption and CD spectra, it is often sufficient to include optically allowed transitions only. This leads to substantial reduction of computational effort for molecules with higher symmetry. For example, in the UV-VIS spectrum of an $O_h$ symmetric molecule, only $t_{1u}$ excitations are optically allowed. The IRREPs of the electric and magnetic dipole moments as well as of the electric quadrupole moment are displayed automatically in the $\texttt{define ex}$ menu.

If a large number of states is to be calculated, it is highly recommended to provide extra memory by specifying

$$\texttt{rpacor } m$$

the integer $m$ being the core memory size in megabytes (default is 20). The larger $m$, the more vectors can be processed simultaneously without re-calculation of integrals. As a rule of thumb, $m$ should be ca. 90% of the available main memory. If RI-J is used ($\texttt{ridft}$), it is recommended to set $\texttt{ricore}$ to a small value and $\texttt{rpacor}$ to a large value if the number of states is large, and vice versa if it is small. Since two-component calculations are more
demanding concerning computation time and required memory it is strongly recommended to increase \$rpacor.

By specifying

\$spectrum \text{ unit} \quad \text{and/or} \quad \$cdspectrum \text{ unit}

a list of excitation energies and oscillator and/or rotatory strengths of the optically allowed transitions is written onto file \text{spectrum} and/or \text{cdspectrum}. As above, unit specifies the energy unit and may be \text{ev}, \text{nm}, \text{1/cm}, or \text{a.u.} (default). The files \text{spectrum} and \text{cdspectrum} may conveniently be used for further processing, e.g., using a plotting program such as Gnu-plot.

Additionally, a spectrum broadened by gaussian functions can be generated by the Peak ANAlyzing MAchine (panama). \cite{151} It reads in excitation energies and their corresponding oscillator strengths from the escf output file and prints the resulting spectrum to \text{data.plot} (on an eV axis) or to \text{data.nm.plot} (on a nanometer axis) which can be plotted by programs such as Gnuplot.

Both differential densities and non-relaxed difference densities can be visualized to get an impression of the character and localization of the excitation(s). Differential densities (\text{ed.plt}) are generated by \text{egrad} after setting the keyword \$pointval in combination with the -\text{proper} option (see Sec. 19.2). A computational less demanding alternative are non-relaxed difference densities which are directly obtained from the escf output file by first running \text{panama} and subsequently \text{dscf} -\text{proper} or \text{ridft} -\text{proper}. \cite{151}

Exact TDDFT transition density can also be plotted by the \text{escf} program, see section 19.2.

By specifying

\$curswitchdisengage

inclusion of the current-density response for MGGA calculations is disabled. \textit{Note that the results of calculations using this flag will no longer be gauge-invariant and will differ from results obtained with the standard gauge-invariant implementation.}

\subsection*{8.4.6 Two-photon absorption}

2PA calculations are run through \text{escf} and can be requested with

\$scfinstab twophoton <excited state method>
<freq1>
...
\$soes
... $exopt ... 

where <excited state method> should be a description of the excited state method (rpas, ciss, urpa, ucis). A 2PA tensor will be computed for each excited state specified by the $soes block using the frequencies $freq1 and $freq1. Also, half may be provided as a frequency, which then uses half the excitation energy for each frequency (this is the default). 2PA amplitudes for specific states can be computed by specifying the states in $exopt. $exopt for different irreps can be specified just as for $soes or also as a comma separated list of indices (e.g., “3”) and ranges (e.g. “5-7”). For example

$scfinstab twophoton rpas
$soes
a1 6
a2 8
$exopt
a1 1-3, 5
a2 all

will compute

- 6 excited states in the $a_1$ IRREP and 8 excited states in $a_2$ and
- 2PA amplitudes with frequencies equal to $\Omega_n/2$ for states 1, 2, 3, and 5 in irrep $a_1$, and all 8 computed states in $a_2$.

2PA amplitudes require the calculation of dynamic polarization vectors $|X^{(\alpha)},Y^{(\alpha)}\rangle$ at the frequencies specified (e.g., $\Omega_n/2$). If 2PA amplitudes are requested for many states, these frequencies can become (nearly) resonant with lower-lying excitation energies, which can cause severe convergence problems. If such problems are encountered, try limiting the number of 2PA amplitudes computed in a single pass using $exopt$.

8.4.7 Excited State Geometry Optimizations

The input for computing excited state gradients and properties using $egrad$ is exactly the same as for an excited state calculation using $escf$, see the previous section. Gradients and properties are calculated only for one state at a time. By default, this is the highest excitation specified by $soes$ (only one IRREP is allowed). Sometimes, e.g. close to excited state intersections, it may be necessary to include higher excited states in the initial excitation vector calculation to prevent root flipping. This is accomplished using

$exopt n

which explicitly enforces treatment of the $n$-th state; $n$ must be less or equal the number of states specified in $soes$. 
After the input for the ground and excited state calculations has been set up, an excited state geometry optimization can be started by issuing the command

```bash
nohup jobex -ex &
```

The option `-ex` forces `jobex` to call `egrad` instead of `grad` (or `rdgrad` if `-ri` is also specified). In each geometry step, the excitation energy is written on the fourth column in `$energy`, and the data group `$last excitation energy change` is updated. Otherwise, the excited state optimization proceeds in exactly the same way as a ground state optimization (see Chapter 3.1).

### 8.4.8 Excited State Force Constant Calculations

Excited state vibrational frequencies can be calculated by numerical differentiation of analytic gradients using `NumForce` (see Chapter 15). A `NumForce` calculation for an excited state may be started by the command

```bash
nohup NumForce -ex n > force.out &
```

where `n` is the number of the excited state in $C_1$ symmetry. In order to determine `n`, it is recommended to perform an `escf` calculation in $C_1$ symmetry. Note that numerical calculation of excited state force constants is likely to fail if there are other states nearby (in $C_1$), because the roots may flip when the molecule is distorted. Note also that it may be necessary to include higher excited states (using `$exopt`, see above) in $C_1$ calculations of molecules with higher symmetry in order to enforce convergence to the correct state. In any case, it should be checked that the energy change due to the displacements (available in the `numforce/KraftWerk/*.log` files) is reasonably small.

For a `NumForce` run, the convergence criteria should be tightened. It is recommended to use at least

```bash
$scfconv 8
```

in all `NumForce` calculations. Other `NumForce` options such as `-central`, `-d`, `-np` work in exactly the same way as they do for ground states.

### 8.4.9 Polarizability Derivatives and Raman Spectra

Calculations of polarizability derivatives by the `egrad` program use the same specifications in the `$scfinstab` data group as polarizability calculations by `escf`.

```bash
$scfinstab polly
```

specifies derivatives of the static polarizability, while
requests derivatives of the dynamical polarizability at the given frequency. Note that, unlike polarizability calculations, multiple frequencies are not allowed. Polarizability derivatives have to be projected onto vibrational normal modes to obtain Raman intensities, see Chapter 15 for further details.

### 8.4.10 Approximations for Exchange integrals

In hybrid functional TD-DFT (gradient) calculations most of the time is spent in evaluating the exchange-integrals. Therefore two ways to speed these up have been implemented:

- **$rick**
  - use the RI-K approximation (recommended if enough RAM available)

- **$senex**
  - use seminumerical exchange. Use small gridsizes for this option to be efficient, see advice below.

Usage of RI-K is highly recommended if enough RAM and a fast disk can be provided. RI-K is available for all types of calculations in the modules `escf` and `egrad` up to D2h symmetry. The keyword `$rick` is exclusive to `escf` and `egrad`, so that other programs will not use RI-K even if those parts will. The keyword `$rik` triggers RI-K in all modules where it is available, also (but not only) `escf` and `egrad`. RI-K is not available for range-separated hybrids. Seminumerical exchange is available for closed shell systems in `escf` starting from version 7.4. Later versions support seminumerical exchange in `escf` also for open-shell or two-component calculations. For the seminumerical exchange part of excited states usually very small gridsizes (-2 to 0) are sufficiently accurate:

- **$senex**
  - `gridsize -2`

These small grids also yield reliable harmonic frequencies using `aoforce`, however cannot be recommended for the SCF or geometry optimization procedures. Seminumerical exchange can be used with all point groups. Seminumerical exchange is currently not available for range-separated hybrids, but will be made available for those at a later point.

### 8.4.11 Nuclear spin-spin coupling constants

Currently, only the Fermi contact term of Ramsey's theory [152] can be calculated. This is triggered by the keyword `$ncoupling` in the control file (no `$scfinstab` is needed). To get reliable results, a basis set with steep s functions (e.g. the pcJ-n basis sets, $n = 0..4$) is needed. The gyromagnetic ratios can easily be changed with the `define` module.
TURBOMOLE offers three programs for MP2 energy and gradient calculations. A "conventional" implementation \cite{153}, \texttt{mpgrad}, based on the calculation of four-center integrals, an implementation which uses the resolution-of-the-identity (RI) approximation \cite{154} as part the RI-CC2 program \cite{8}, \texttt{ricc2}, and an implementation which is meant for very large (> 100 atoms and > 3000 basis functions) single point MP2 energy calculations. The latter program uses in addition to a local RI also a hybrid OSV-PNO approximation to reduce the scaling of the computational costs with the system size to $\approx O(N^2)$ but has for small and medium-sized systems a larger prefactor than \texttt{ricc2}.

### 9.1 Functionalities of MPGRAD, and RICC2, and PNOCCSD

**Functionalities of \texttt{mpgrad}:**

- Calculation of MP2 energies and/or MP2 gradients for RHF and UHF wave functions.
- The frozen core approximation (possibility to exclude low-lying orbitals from the MP2 treatment) is implemented only for MP2 energies.
- Exploitation of symmetry of all point groups.
- Can be used sequentially or MPI-parallel.
- Can be combined with the COSMO solvation model (see section 9.7 and chapter 18.2 for details). (Presently restricted to sequential calculations.)

**Functionalities of \texttt{ricc2} at the MP2 level:**
• Calculation of MP2 energies and/or gradients for RHF and UHF wave functions within the RI approximation (RI-MP2). In geometry optimizations and vibrational frequency calculations (with NumForce) it can be combined with RI-JK-SCF for the Hartree-Fock reference calculation.

• The frozen core approximation is implemented for both energies and gradients.

• RI-MP2 needs optimised auxiliary basis sets, which are available for most standard basis sets as e.g. SVP, TZVP, TZVPP, QZVPP as well as for the (aug-)cc-p(wC)VXZ \((X = D, T, Q, 5)\) basis set series (for Al–Ar also for the (aug-)cc-p(wC)V(X+d)Z series and for \(p\)-block elements Ga–Rn also the respective ECP basis set series (-pp)).

• Exploitation of symmetry for all point groups for MP2 energies and gradients.

• Can be combined with the COSMO solvation model (see chapter 18.2 for details).

• Runs sequentially and parallel (with MPI, OpenMP and hybrid MPI/OpenMP)

• Contains an implementation of explicitly correlated MP2-F12 methods (presently restricted to energies and the \(C_1\) point group).

• Can for open-shell calculations be used with UHF and single-determinant high-spin ROHF reference wavefunctions. (ROHF-MP2 presently limited to energies.)

• Energies and gradients for the spin-component scaled SCS- and SOS-MP2 approaches, including a Laplace-transformed implementation of SOS-MP2 with \(O(N^4)\) scaling computational costs.

• Static polarizabilities (currently restricted to closed-shell reference wavefunctions and the sequential and SMP versions; cannot yet be combined with spin-component scaling), see Chapter 10.5 for a description of the input

• See Chapter 10 for further details.

### Functionalities of \texttt{pnoccsd}:

• Currently restricted to CCSD, CCSD(T), CCSD(T0), MP2 and DFT double hybrid (e.g. B2PLYP) single point energy calculations with a closed shell reference determinant and the \(C_1\) point group.

• Runs sequentially and parallel (MP2 with MPI, OpenMP and hybrid MPI/OpenMP, CCSD and beyond with OpenMP).

• Contains an implementation of explicitly correlated PNO-MP2-F12 methods.

• See Section 12 for further details.

#### 9.1.1 How to quote

• For calculations with \texttt{mpgrad}:

• For calculations with \texttt{ricc2}:
  CC2 excitation energy calculations on large molecules using the resolution of the identity approximation. C. Hättig and F. Weigend;

• for MPI parallel calculations with \texttt{ricc2} in addition:

• for MP2-F12 calculations in addition:

• for $O(N^4)$-scaling LT-SOS-MP2 calculations:

• for SCS-MP2 calculations:

• for RI-MP2 polarizabilities:


9.2 Some Theory

Second-order Möller–Plesset Perturbation Theory (MP2) corrects errors introduced by the mean-field ansatz of the Hartree–Fock (HF) theory. The perturbation operator is the difference the full electronic Hamiltonian and the Fock operator for occupied/occupied and
virtual/virtual block. The MP2 energy is (in spin orbitals) given by:

\[ E_{\text{MP2}} = \frac{1}{4} \sum_{iajb} t_{ij}^{ab} \langle ij||ab \rangle, \tag{9.1} \]

with the doubles amplitudes

\[ t_{ij}^{ab} = \frac{\langle ij||ab \rangle}{\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b}, \tag{9.2} \]

\( i \) and \( j \) denote occupied, \( a \) and \( b \) virtual orbitals, \( \epsilon_p \) are the corresponding orbital energies, and \( \langle ij||ab \rangle = \langle ij|ab \rangle - \langle ij|ba \rangle \) are four-center two-electron repulsion integrals.

MP2 gradients (necessary for optimisation of structure parameters) are calculated as analytical derivatives of the MP2 energy with respect to nuclear coordinates. Calculation of these derivatives also yields the first order perturbed wave function, expressed as “MP2 density matrix”, in analogy to the HF density matrix. MP2 corrections to first-order properties like electric moments or atomic populations are obtained from the density matrix in the same way as for Hartree-Fock.

The “resolution of the identity (RI) approximation” means expansion of products of virtual and occupied orbitals in a basis of auxiliary functions. The calculation and transformation of the four-center two-electron integrals (see above) is replaced by that of three-center integrals, which leads to computational savings of RI-MP2 compared to a conventional MP2 calculations by a factor of ca. 5 (small basis sets like SVP) to ca. 10 (large basis sets like TZVPP) and more (for quadruple-\( \zeta \) and larger basis sets). The RI errors—i.e. the errors due to the RI approximation—are with optimised auxiliary basis sets small and well documented [155,156]. The use of the \texttt{mpgrad} program is therefore only recommended for reference calculations or if suitable auxiliary basis sets are not available.

The OSV-PNO-MP2 implementation in the \texttt{pnoocsad} program is meant for large systems with \( \gtrapprox 100 \) atoms where the costs for RI-MP2 calculations become unreasonable large. The OSV-PNO-MP2 implementation uses four additional approximations to reduce the scaling of the computational costs with the system size to about \( \mathcal{O}(N^3) \):

- The truncation of the pair natural orbital (PNO) basis, \( \phi_{a,ij} = \sum_{a} \phi_{a} d_{a}^{ij} \) for each pair \( ij \) of occupied orbitals to PNOs with occupation numbers \( n_{ij}^{T_{\text{PNO}}} \geq T_{\text{PNO}} \):
  \[ \sum_{b} D_{ab}^{ij} d_{bb} = n_{ij}^{T_{\text{PNO}}} d_{ab}^{ij} \tag{9.3} \]

- The truncation of the orbital specific virtual (OSV) basis, \( \phi_{a,i} = \sum_{a} \phi_{a} d_{a}^{i} \) for each occupied orbital \( i \) to OSVs with occupation numbers \( n_{i}^{T_{\text{OSV}}} \geq T_{\text{OSV}} \):
  \[ \sum_{b} D_{ab}^{ii} d_{bb} = n_{i}^{T_{\text{OSV}}} d_{ab}^{i}. \tag{9.4} \]

The OSV basis is used to expand the PNOs. For a pair \( ij \) the PNOs are expanded in the union of the OSVs for the occupied orbitals \( i \) and \( j \).

- The distant pair approximation: only such pairs \( ij \) are included in the correlation treatment for which the contribution to the correlation energy is expected (based on initially computed estimates) to be \( \geq T_{\text{pair}} \).
9.3. HOW TO PREPARE AND PERFORM MP2 CALCULATIONS

- The local RI approximation: two-electron integrals for a pair \( ij \) are expanded in a pair-specific subset of the full auxiliary basis which is determined based on an overlap criterium and the selection threshold \( T_{RI} \).

9.3 How to Prepare and Perform MP2 Calculations

Prerequisites

Calculations with \texttt{mpgrad}, \texttt{ricc2} or \texttt{pnoccsd} require

- a converged SCF calculation with the one-electron density convergence threshold set to \$\text{denconv} 1.d-7 or less
- the maximum core memory the program is allowed to allocate should be defined in the data group \$\text{maxcor} \) (in MB); the recommended value is ca. \( 3/4 \) of the available (physical) core memory at most.
- orbitals to be excluded from the correlation treatment have to be specified in the data group \$\text{freeze}
- for \texttt{mpgrad} the calculation of gradients is omitted by adding the flag \$\text{mp2energy} to the \texttt{control} file; in this case only the MP2 energy is calculated.

Calculations with \texttt{ricc2} and \texttt{pnoccsd} moreover use

- an auxiliary basis defined in the data groups \$\text{atoms} and \$\text{cbas}. If not specified before the start of \texttt{ricc2} or \texttt{pnoccsd} the programs will assign the default auxiliary basis sets which have the same names as the one-electron basis sets and will try to extract them from the TURBOMOLE basis set library. If this succeeds the assignment and auxiliary basis sets are stored in the \texttt{control} file else the programs will stop.

This is not needed for \texttt{mpgrad}, but here one needs

- a specification for scratch files and their size in data group \$\text{mointunit} (see Section 22.2.19)
- and the number of passes for integral evaluations and transformations in data group \$\text{traloop}

For explicitly-correlated MP2-F12 calculations one needs—depending the details of the applied approximations—additionally a so-called complementary auxiliary basis set (CABS, defined in \$\text{cabs}) and a RI-SCF auxiliary basis set defined in \$\text{jkbas}.

Calculations with \texttt{ricc2} and \texttt{pnoccsd}

1. RI-MP2 calculations require the specification of auxiliary basis sets \$\text{cbas} and a converged SCF calculation with the one-electron density convergence threshold set to
2. The ricc2 program requires the data group:

```
$ricc2
 mp2
 geoopt model=mp2
```
(Where the last line should only be included if the calculation of gradients is needed, e.g. in geometry optimizations.) This can be prepared with `define` in the menu `cc`.

3. The $pnoccsd program does not require any special input for a MP2 calculation with default thresholds but it is recommended to specify the PNO truncation threshold explicitly in the data group:

```
$pnoccsd
 mp2
tolpno= 1.0E-7
```
This can be prepared with `define` in the menu `pnocc`.

4. For explicitly-correlated MP2-F12 calculations with ricc2 or pnoccsd also the data groups $rir12 and $lcg are needed.

5. Start a single ricc2 and pnoccsd calculations respectively with the commands `ricc2` and `pnoccsd`.

6. For optimisation of structure parameters at the RI-MP2 level with ricc2 use the command `jobex -level cc2`. For geometry optimizations with RI-JK-SCF as reference for RI-MP2 with the `ridft` and `ricc2` binaries the additional option `-rijk` has to be given.

7. The combination of RI-MP2 with RI-JK-SCF can lead to significant computational savings in particular for geometry optimizations for small and medium sized molecules with large basis sets (quadruple-ζ and beyond) or basis sets with diffuse functions (e.g. the aug-cc-pVXZ basis set families). For large molecules with TZVPP or similar basis sets, conventional direct SCF calculations are usually more efficient.

8. With ricc2 and pnoccsd spin-component scaled SCS- or SOS-RI-MP2 calculations can be carried out by adding in the `$ricc2` (for ricc2) or `$pnoccsd` (for pnoccsd) data group the line

```
scs cos=1.2d0 css=0.3333d0
```
where the two parameters are the scaling factors for, respectively, the opposite- and same-spin contribution. The specification of the scaling factors is optional; the default values are cos=6/5 and css=1/3 as recommended by S. Grimme in J. Chem. Phys. 118 (2003) 9095. The abbreviation sos can be used for SOS-MP2 calculations with cos=1.3 and css=0.0 (Y., Jung, R.C. Lochan, A.D. Dutoi, and M. Head-Gordon, J.
9.3. HOW TO PREPARE AND PERFORM MP2 CALCULATIONS

Chem. Phys. 121 (2004) 9793.). SOS-MP2 is in ricc2 implemented with $O(N^4)$ scaling costs. For such calculations the data group $\text{laplace}$ has to be added.

9. For technical recommendations and additional options for parallel RI-MP2 and PNO-MP2 calculations with the ricc2 and pnoccsd programs see Secs. 3.2 and 10.6 and 12.

**MP2 calculations with a ROHF reference state**

With the program ricc2 it is possible to compute MP2 (and spin-component scaled) MP2 energies with single-determinant restricted open-shell reference wavefunctions. No additional input is required apart from the usual ROHF input for the dscf and ridft programs and a standard MP2 input for ricc2.

TURBOMOLEs Hartree-Fock codes can handle within the ROHF framework many cases, which include beside common high- and low-spin configuration state functions also weighted averages of high-spin CSFs (see Sec. 6.3 for further details). The Møller-Plesset perturbation theory and coupled cluster functionalities implemented in ricc2 require a single-determinant reference state and can thus only deal with high-spin open-shell cases (not averaged):

- The spins of all $n_{\text{open}}$ unpaired electrons are parallel ($\alpha$ spin will be assumed) so that the ROHF reference state has the spin multiplicity $n_{\text{open}} + 1$.
- There must be only one type of open shells and all orbitals in this shell must have the occupation number 1.
- For the single electron case (i.e. doublets) the Roothaan parameters are $a = b = 0$, for high-spin cases with more than one unpaired electron the Roothaan parameters must be set to $a = 1$ and $b = 2$.

For non-abelian points groups this implies that shells with degenerate orbitals (as e.g. $t_1$ in point group $I$) must be half-filled. An average over the different (symmetry-equivalent or inequivalent) high-spin determinants that are obtained when a shell of degenerate orbitals is less than or more than half-filled is not possible with single-point ricc2 calculations.

For states with less than or more than half-filled shells of degenerate orbitals the calculations half to be done in a point group that lifts the degeneracy such that it becomes possible to assign integer occupation numbers. A symmetry-breaking of the orbitals can be avoided by doing the Hartree-Fock calculation in the full point group. The input (and MO coefficients) can then be transformed to a lower point group using define only for the ricc2 calculation.

**Calculations with mpgrad**

1. Add $\text{denconv 1.d-7}$ to the control file and perform a dscf run.

2. If any orbitals are decided to be excluded from MP2 treatment, add data group $\text{freeze}$ manually to the control file, see also Section 22.2.19.
3. For preparation of an \texttt{mpgrad} run use the script \texttt{Mp2prep}:
\begin{verbatim}
mp2prep -e/g -m memory -p discspace [scratch file directory]
\end{verbatim}
As an example, with the command
\begin{verbatim}
mp2prep -e -m 100 -p 1000 /work
\end{verbatim}
an MP2-energy calculation is prepared, the amount of available core memory is restricted to 100 MB, the MOs are blocked, so that integral scratch files—located in the directory /work—do not need more than 1000 Mb. The number of blocks, i.e. the number of passes with repeated integral evaluations, is written to the control file (\texttt{$straloop$}) as well as the specification of scratch files (\texttt{$mointunit$}, see Section 22.2.19). Note: less disc space means more passes and thus lower efficiency of \texttt{mpgrad}, but due to the technical limitations \texttt{discspace} should be limited to values \(<16Gb\) to avoid integer overflow errors. Settings obtained by \texttt{mp2prep} may be changed manually. You may change the number of passes in \texttt{$straloop$} by editing the control file (e.g. if the originally intended disc space is not available). To adapt the size of scratch files add \texttt{$statistics mpgrad} to control file and start an \texttt{mpgrad} statistics run with the command \texttt{mpgrad}.

4. Start a single \texttt{mpgrad} calculation with the command \texttt{mpgrad}.

5. For optimisation of structure parameters at the (non-RI-) MP2 level use the command \texttt{jobex -level mp2}. Note, that the frozen core approximation is ignored in this case.

\section*{9.4 General Comments on MP2 Calculations, Practical Hints}

\textbf{Recommendations}

- It is well-known, that perturbation theory yields reliable results only, if the perturbation is small. This is also valid for MP2, which means, that MP2 improves HF results only, if HF already provides a fairly good solution to the problem. If HF fails, e.g. in case of partially filled $d$-shells, MP2 usually will also fail and should not be used in this case.

- MP2 results are known to converge very slowly with increasing basis sets, in particular slowly with increasing $l$-quantum number of the basis set expansion. Thus for reliable results the use of TZVPP basis sets (or higher) is recommended. When using SVP basis sets at most a qualitative trend can be expected. Basis sets much larger than TZVPP usually do not significantly improve geometries of bonded systems, but still can improve the energetic description. For non–bonded systems larger basis sets (especially, with more diffuse functions) are needed.

- It is recommended to exclude all non-valence orbitals from MP2 calculations, as neither the TURBOMOLE standard basis sets SVP, TZVPP, and QZVPP nor the cc-pVXZ basis set families (with X=D,T,Q,5,6) are designed for correlation treatment of inner
9.4. GENERAL COMMENTS

shells (for this purpose polarisation functions for the inner shells are needed). The
default selection for frozen core orbitals in define (orbitals below -3 a.u. are frozen)
provides a reasonable guess. If core orbitals are included in the correlation treatment,
it is recommended to use basis sets with additional tight correlation functions as e.g.
the cc-pwCVXZ and cc-pCVXZ basis set families.

- RI-MP2: We strongly recommend the use of auxiliary basis sets optimized for the
corresponding orbital basis sets.

**RI-MP2 calculations with the ricc2 program:** All what is needed for a RI-
MP2 gradient calculation with the ricc2 program is a $ricc2$ data group with the entry
geoopt model=mp2. If you want only the RI-MP2 energy for a single point use as option just
mp2. To activate in MP2 energy calculations the evaluation of the $D_1$ diagnostic (for details
see Sec. 10.1), use instead mp2 d1diag. (Note that the calculation of the $D_1$
diagnostic increases the costs compared to a MP2 energy evaluation by about a factor of three.)

**Comments on the Output**

- Most important output for ricc2, pnoccsd, and mpgrad are of course the MP2(+HF)
energies (written to standard output and additionally to the file energy) and MP2(+HF)
gradients (written to the file gradient).

- In case of MP2 gradient calculations the modules also calculate the MP2 dipole mo-
moment from the MP2 density matrix (note, that in case of mpgrad a frozen core orbital
specification is ignored for gradient calculations and thus for MP2 dipole moments).

Further output contains indications of the suitability of the (HF+MP2) treatment.

- As discussed above, MP2 results are only reliable if the MP2 corrections to the
Hartree-Fock results are small. One measure for size of MP2 corrections to the wave-
function are the doubles amplitudes, $t_{ab}^{ij}$, as is evident from the above equations.
mpgrad by default prints the five largest amplitudes as well as the five largest norms
of amplitude matrices $t_{ij}^{ab}$ for fixed $i$ and $j$. The number of printed amplitudes can be
changed by setting the data group $tplot n$ where $n$ denotes the number of largest
amplitudes to be plotted. It is up to the user to decide from these quantities, whether
the HF+MP2 treatment is suited for the present problem or not. Unfortunately,
it is not possible to define a threshold, which distinguishes a "good" and a "bad"
MP2-case, since the value of individual amplitudes or amplitudes matrices $t_{ij}^{ab}$ are not
orbital-invariant, but depend on the orbital basis and thereby under certain circum-
stances on the orientation, the point group, or the start guess for the MOs. Example:
the largest norm of t-amplitudes for the Cu-atom ($d_{10}^{10} s_{1}^{1}$, "good" MP2-case) amounts
to ca. 0.06, that of the Ni-atom ($d^{8} s^{2}$, "bad" MP2 case) is ca. 0.14.

- A more reliable criterion is obtained from the MP2 density matrix. Its eigenvalues
reflect the changes in occupation numbers resulting from the MP2 treatment, com-
pared to the Hartree-Fock level, where occupation numbers are either one (two for
RHF) or zero. Small changes mean small corrections to HF and thus suitability of the MP2 method for the given problem. In case of gradient calculations ricc2 displays by default the largest eigenvalue of the MP2 density matrix, i.e. the largest change in occupation numbers (in %). If $cc2\_natocc$ is set the full set of natural occupation numbers and orbitals will be save to the control file. For main group compounds largest changes in occupation numbers of ca. 5% or less are typical, for $d^{10}$ metal compounds somewhat higher values are tolerable.

- A similar idea is pursued by the $D_2$ and $D_1$ diagnostics [157,158] which is implemented in ricc2. $D_2$ is a diagnostic for strong interactions of the HF reference state with doubly excited determinants, while $D_1$ is a diagnostic for strong interactions with singly excited determinants.

### 9.5 RI-MP2-F12 Calculations

To obtain the F12 correction to the MP2 energy, the data group $rir12$ must be added to the control file. A typical run will include the input:

```
$ricc2
 mp2 energy only
$rir12
```

The MP2-F12 ground-state energy is

\[ E_{\text{MP2-F12}} = E_{\text{MP2}} + E_{F12}, \tag{9.5} \]

where $E_{\text{MP2}}$ is the conventional MP2 energy and $E_{F12}$ the correction from explicitly-correlated theory. The second term contains contributions from explicitly-correlated geminal basis functions of the form

\[ \hat{Q}_{12}f_{12}|ij\rangle, \tag{9.6} \]

where $|ij\rangle$ is a two-electron determinant of occupied (semi-)canonical Hartree–Fock spin orbitals, $f_{12}$ is a correlation factor, which can be either linear $r_{12}$ (in this case, the approach is denoted MP2-R12 instead of MP2-F12) or a function of $r_{12}$, and $\hat{Q}_{12}$ defines the doubles excitation space covered by the geminals (it also ensures strong orthogonality to the occupied orbitals). Usually $\hat{Q}_{12}$ is chosen to be $\hat{Q}_{12} = (1 - \hat{O}_1)(1 - \hat{O}_2) - \hat{V}_1\hat{V}_2$, where $\hat{O}_\mu = \sum_k |\varphi_k(\mu)\rangle\langle \varphi_k(\mu)|$ is the projection operator onto the space spanned by the occupied spin orbitals $\varphi_k$ and $\hat{V}_\mu = \sum_a |\varphi_\mu(\mu)\rangle\langle \varphi_\mu(\mu)|$ is the projector onto the virtual spin orbitals.

The F12 correction is obtained by minimizing the functional

\[ F_{F12} = \sum_{i<j} \{c_{ij}^T B_{ij} c_{ij} + 2c_{ij}^T v_{ij}\} \tag{9.7} \]
with respect to the amplitudes collected in the vector $c_{ij}$. The vectors $v_{ij}$ and the matrices $B_{ij}$ are defined as

$$v_{ij}(kl) = \langle kl | f_{12} \hat{Q}_{12}^{-1} | ij \rangle,$$

$$B_{ij}(kl, mn) = \langle kl | f_{12} \hat{Q}_{12} (\hat{f}_1 + \hat{f}_2 - \varepsilon_i - \varepsilon_j) \hat{Q}_{12} f_{12} | mn \rangle,$$

in the spin-orbital formalism ($m, n$ denote spin orbitals and $|mn\rangle$ is a two-electron determinant). $\hat{f}_\mu$ is the Fock operator for electron $\mu$ and $\varepsilon_k$ is a (semi-)canonical Hartree–Fock orbital energy.

A MP2-F12 calculation is defined through a number of choices concerning the nature of the geminals ($f_{12}$ and $\hat{Q}_{12}$), the geminal excitation space (ijkl or ijij) and approximations in computing the $B$ matrix (GBC, EBC, $[\hat{T}, f_{12}]$). These choices correspond to keywords in the $\$rir12$ data group, explained below.

To run a MP2-F12 calculation, one has to select the auxiliary basis sets $\text{cbas}$, $\text{cabs}$ and optionally $\text{jkbas}$. The rICC program uses the robust fitting techniques of Ref. [159] for the F12 integrals and the $\text{cbas}$ basis is used for both the F12 and the usual MP2 Coulomb integrals. For the density fitting of the Coulomb and exchange matrices of the Fock matrix, the $\text{jkbas}$ will be used instead of the $\text{cbas}$ basis if it is included in the control file (this is recommended and is achieved using the $\text{rijk}$ menu in $\text{define}$). For the RI approximation of the 3- and 4-electron integrals as sums of products of 2-electron integrals, intrinsic to the F12 method, the complementary auxiliary basis (CABS) approach is used [160]. If $\text{define}$ is used to set up the $\text{cabs}$ basis, the library $\text{cabasen}$ is searched. This library contains the optimised $\text{cabs}$ basis sets [161] for the cc-pVXZ-F12 basis sets of Peterson et al. [162]. For other basis sets, the auxiliary basis in the library $\text{cabasen}$ is identical with the auxiliary basis in the library $\text{cbas}$.

The $\$rir12$ data group may be set by choosing the $\text{f12}$ option in the cc menu when running $\text{define}$. This command activates the $\text{f12}$ menu, where the default options may be changed if desired:

**Orbital basis** : cc-pVTZ-F12
**Cardinal number** : T
**Recommended exponent** : 1.0000
**Actual exponent** : 1.0000

**INPUT MENU FOR MP2-F12 CALCULATIONS**

ansatz : CHOOSE ANSATZ 2 [1,2*,2]
r12model : CHOOSE MODEL B [A,B]
comaprox : COMMUTATOR APPROXIMATION F+K [F+K,T+V]
cabs : CABS ORTHOGONALIZATION svd 1.0D-08 [cho,svd]
examp : CHOOSE FORMULATION fixed noflip [inv, fixed, noinv, flip, noflip]
r12orb : CHOOSE GEMINAL ORBITALS hf [hf, rohf, boys, pipek]
corrfac : CHOOSE CORRELATION FACTOR LCG [R12, LCG]
ansatz corresponds to the choice of $\hat{Q}_{12}$. Almost all modern MP2-F12 calculations use ansatz 2 (default), which gives much improved energies over ansatz 1 (see Ref. [163] for details). The principal additional cost of using ansatz 2 over ansatz 1 is concerned with the coupling between the F12 and conventional amplitudes. This is avoided by choosing $2^*$, which corresponds to neglecting EBC (Extended Brillouin Condition) terms in the Fock matrix elements.

r12model is the method of computing the matrices $B_{ij}$ (see Ref. [163] for details). The cost and accuracy increases from A to B. It is recommended to use B (default). The energies computed using A are then also printed out in the output.

comaprox is the method for approximately computing the integrals for the operator $[\hat{T}, f_{12}]$, where the matrix representations of $F+K$ or $T+V$ are used. $F+K$ (the core Hamiltonian plus Coulomb term) is recommended and is the default.

cabs refers to the method of orthogonalising the orbitals in the complementary auxiliary basis. Singular-value decomposition (svd) or Cholesky decomposition (cho) are available. svd is recommended and is the default, with a threshold of $1.0d-08$. The basis set used for CABS is set from the cc menu.

examp refers to the choice of excitation space. inv is the orbital-invariant method of Ref. [164], with amplitudes $c_{ij}(kl)$. noinv is the original orbital-dependent diagonal "ijij" method of Ref. [164], with amplitudes $c_{ij}(ij)$ (not recommended, unless in combination with localised orbitals). fixed is the (diagonal and orbital-invariant) rational generator approach of Ref. [165], where the F12 amplitudes are not optimised but predetermined using the coalescence conditions (default). An additional keyword noflip suppresses the use of spin-flipped geminals in open-shell calculations; by default spin-flipped geminals are used as described in Ref. [19].

r12orb controls which orbitals are used in the F12 energy contribution. hf means that (semi-)canonical Hartree–Fock orbitals are used (default). rohf means that ROHF orbitals are used (any frozen orbitals will then also implicitly be ROHF). For calculations on closed-shell systems, lo-
calised orbitals may be used. Both the Boys [166] and Pipek–Mezey [167] methods are available for localisation of the orbitals.

corrfac corresponds to the choice of correlation factor \( f_{12} \) in the geminal basis functions. R12 results in a calculation using linear-\( r_{12} \) and LCG results in a calculation using the Slater-type correlation factor with exponent 1.4 \( a_0^{-1} \), represented as a linear combination of six Gaussians (see Ref. [168]). Note that the exponents 0.9, 1.0 and 1.1 \( a_0^{-1} \) are recommended for use with the cc-pVXZ-F12 basis sets [162].

cabsingles switches on/off the calculation of a second-order correction to the Hartree–Fock energy by accounting for single excitations into the complementary auxiliary basis set (CABS). The single excitations into the CABS basis can be computed without extra costs if the CABS Fock matrix elements are required anyway for the F12 calculation \( (i.e., \) for ansatz 2, approximation B or comaprox F+K). The computation of CABS singles cannot be switched off if it is free of costs.

pairenergy controls whether or not the F12 contribution to the MP2 pair energies appear in the output (default off).

Further options:

corrfac LCG refers to a further data group for the definition of the correlation factor. When define is used, the default is

\[
\begin{aligned}
&$1cg \\
nlcg & 6 \\
slater & 1.4000
\end{aligned}
\]

The nature of the LCG correlation factor may be changed by editing this data group in the control file. For example, to use a Slater-type correlation factor with exponent 1.0 \( a_0^{-1} \), represented as a linear combination of three Gaussians, use

\[
\begin{aligned}
&$1cg \\
nlcg & 3 \\
slater & 1.0000
\end{aligned}
\]

Alternatively, the exponents and coefficients of the fit may be given explicitly:

\[
\begin{aligned}
&$1cg \\
nlcg & 3 \\
expo1 & coef1 \\
expo2 & coef2 \\
expo3 & coef3
\end{aligned}
\]

MP2-F12 calculations may be combined with Grimme’s SCS approach (S. Grimme, J. Chem. Phys. 118 (2003) 9095) by inserting scs in $ricc2,
In this case, the SCS parameters cos=6/5 and css=1/3 are used. Also individual scaling factors for the same-spin and opposite-spin contributions may be defined, see Section 10.7.

For open-shell calculations, two choices of the example fixed method are available. These are controlled by a keyword in the \$rir12 data group

\[ \text{ump2fixed full [diag,full]} \]

These differ in the treatment of the $\alpha$/$\beta$ block, where either only the diagonal excitations enter (with amplitude 0.5) diag, or the equivalent of the spin-adapted singlet and triplet pair excitations enter (as far as possible) full. Note that the diag method with UMP2-F12 yields a result different to that of fixed MP2-F12, even for identical RHF and UHF determinants. However, the diag method is somewhat less expensive than the full method.

Recommendations for orbital and auxiliary basis sets:

The best orbital basis sets to use for MP2-F12 calculations are probably the cc-pVXZ-F12 basis sets, specially optimised for MP2-F12 calculations [162] for the atoms H, He, B–Ne and Al–Ar. In conjunction with these cc-pVXZ-F12 basis sets, we recommend to use the optimised cc-pVXZ-F12 sets of Yousaf and Peterson [161] as cabs. Furthermore, cbas and jkbas basis sets can be selected from the cbasen and jkbasen libraries, respectively, using the alias cc-pVXZ-F12 (a jkbas is currently not available for He, Ne and Ar). This alias points to the corresponding aug-cc-pwCV(X+1)Z cbas and aug-cc-pV(X+1)Z jkbas. These recommendations are on the side of caution and are likely to be refined as more experience is gained [169–171].

For atoms other than H, He, B–Ne and Al–Ar, optimised F12 basis sets are not yet available. In this case, basis sets must be selected and/or optimised carefully. It is advised to contact the Theoretical Chemistry Group in Karlsruhe for support (e-mail to: klopper@kit.edu).

### 9.6 Laplace-transformed SOS-RI-MP2 with $O(N^4)$ scaling costs

The ricc2 module contains an implementation of SOS-MP2 which exploits the RI approximation and a Laplace transformation of the orbital energy denominators

\[
\frac{1}{\epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j} = \int_0^\infty e^{-(\epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j)t} dt \approx \sum_{\alpha=1}^{nL} w_{\alpha} e^{-(\epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j)t_\alpha},
\]

(9.10)

to achieve an implementation with $O(N^4)$ scaling costs, opposed to the conventional $O(N^5)$ scaling implementation. In particular for large molecules the Laplace-transformed implementation can reduce a lot the computational costs of SOS-MP2 calculations without loss in accuracy.
9.6. LT-SOS-RI-MP2 WITH $O(N^4)$ SCALING COSTS

The Laplace-transformed implementation for SOS-MP2 calculations is activated with the input

\[
\texttt{$laplace$
\hspace{0.5em}conv=5}
\]

where the parameter \(\text{conv}\) is a convergence threshold for the numerical integration in Eq. (9.10). A value of \(\text{conv}=5\) means that the numerical integration will be converged to a root mean squared error of \(\approx 10^{-5}\) a.u.

Whether the conventional or the Laplace-transformed implementation will be more efficient depends firstly on the system size (the number of occupied orbitals) and secondly on the required accuracy (the number of grid points for the numerical integration in Eq. (9.10)) and can be understood and estimated from the following considerations:

- The computational costs for the most expensive step in (canonical) RI-MP2 energy calculations for large molecules requires \(\frac{1}{2}O^2V^2N_x\) floating point multiplications, where \(O\) and \(V\) are, respectively, the number occupied and virtual orbitals and \(N_x\) is the number of auxiliary functions for the RI approximation. For the LT-SOS-RI-MP2 implementation the most expensive step involves \(n_LOVN_x^2\) floating point multiplications, where \(n_L\) is the number of grid points for the numerical integration. Thus, the ratio of the computational costs is approximately

  \[
  \text{conv} : \text{LT} \approx \frac{1}{2}O^2V^2N_x \approx \frac{OV}{2n_LN_x} \approx O : 6n_L,
  \]

  where for the last step \(N_x \approx 3V\) (typical for valence TZ basis sets) has been assumed. Thus, the Laplace-transformed implementation will be faster than the conventional implementation if \(O > 6n_L\).

The number of grid points \(n_L\) depends on the requested accuracy and the spread of the orbital energy denominators in Eq. (9.10). The efficiency of Laplace-transformed SOS-RI-MP2 calculations can therefore (in difference to conventional RI-MP2 calculations) be enhanced significantly by a careful choice of the thresholds, the basis set, and the orbitals included in the correlation treatment:

- The threshold \(\text{conv}\) for the numerical integration is by default set to the value of \(\text{conv}\) specified for the ground state energy in the data group \$ricc2\ (see Sec. 22.2.20), which is initialized using the threshold \$denconv\, which by default is set conservatively to the tight value of \(10^{-7}\).
  - For single point energy calculations \(\text{conv}\) in \$laplace\ can safely be set to 4, which gives SOS-MP2 energies converged within \(\approx 10^{-4}\) a.u. with computational costs reduced by one third or more compared to calculations with the default settings for these thresholds.
  - For geometry optimizations with SOS-MP2 we recommend to set \(\text{conv}\) in \$laplace\ to 5.
The spread of the orbital energy denominators depends on the basis sets and the orbitals included in the correlation treatment. Most segmented contracted basis sets of triple-$\zeta$ or higher accuracy (as e.g. the TZVPP and QZVPP basis sets) lead to rather high lying “anti core” orbitals with orbital energies of 10 a.u. and more.

- For the calculation of SOS-MP2 valence correlation energies it is recommended to exclude such orbitals from the correlation treatment (see input for $\$freeze$ in Sec. 22).
- Alternatively one can use general contracted basis sets, as e.g. the correlation consistent cc-pVXZ basis sets. But note that general contracted basis sets increase the computational costs for the integral evaluation in the Hartree-Fock and, for gradient calculations, also the CPHF equations and related 4-index integral derivatives.
- Also for the calculation of all-electron correlation energies with core-valence basis sets which include uncontracted steep functions it is recommended to check if extremely high-lying anti core orbitals can be excluded.

Note that for large molecules it is recommended to disable for geometry optimizations (or for gradient or property calculations in general) the preoptimization for the Z vector equations with the nozpreopt option in the $\$response$ data group (see Sec. 22.2.20).

Restrictions:

- It is presently not compatible with the calculation of the $D_1$ and $D_2$ diagnostics. The respective options will be ignored by program if the Laplace-transformed implementation is used.

9.7 COSMO-MP2

In TURBOMOLE MP2 can be combined in two ways with COSMO solvation model, which are known in the literature as “Perturbation Theory on Energy” (PTE) and “Perturbation Theory on Energy and Density” (PTED) approaches. The PTE approach is obtained by truncating the free energy of the solute strictly at second-order in the difference between the Hartree-Fock mean field and the actual electron-electron interaction, where the solvent-mediated electron-electron interaction at the same footing direct electron-electron interaction. In the PTED approach the polarizable environment is self-consistently equilibrated with the correlated MP2 density. Thereby some higher-order contributions are included. These higher-order terms should be small since supposition underlying MP2 is that the difference between the Hartree-Fock and the MP2 wavefunction should be small — if this is not fulfilled, MP2 is not adequate.

The PTE-COSMO-MP2 energy is obtained by adding to the COSMO-HF free energy the MP2 correlation energy evaluated with the MOs and the Fock matrix from a COSMO-HF calculation. The PTE-COSMO-MP2 approach is implemented in mpgrad for energies
and in ricc2 for energies, first-order properties and gradients with closed-shell RHF or UHF reference wavefunctions. In ricc2 PTE-COSMO-MP2 calculations can be combined with spin-component scaling (SCS or SOS) and for SOS with the $O(N^4)$-scaling LT-based implementation.

Current restrictions for PTE-COSMO-MP2 are:

- Not available for ROHF reference wavefunctions
- Not available for second-order properties (polarizabilities)
- Not available for vibrational frequencies (see Sec. 18.2 for the complications that arise for the calculation of vibrational frequencies in solution)

The PTED approach is implemented in both mpgrad and ricc2 only for energies. No gradients and no other properties are available in the two programs.

### 9.8 Low-scaling MP2 and MP2-F12 calculations with a hybrid OSV-PNO approximation

For a PNO-MP2 calculation with default thresholds and standard basis sets the pnoccsd program does not require any special input apart from $\$freeze$ and $\$maxcor$ and the input needed for the Hartree-Fock calculation. It is, however, recommended to specify the PNO truncation threshold in the data group $\$pnoccsd$. For further details see Secs. 12 and 22.2.22.

**Running pnoccsd parallel** The MP2 part of the pnoccsd program is parallelized with OMP for shared-memory and with MPI for distributed memory architectures. Important for the performance of the parallel pnoccsd calculations are the settings for the core memory usage and for the directories where large integral and scratch files are stored.

The keyword $\$maxcor$ defines for pnoccsd (as for ricc2 and ccsdf12) the core memory usage. Note, however, that $\$maxcor$ defines only the memory controlled by the electronic structure code. Additional memory can be allocated by the math and MPI libraries linked into the program and by the operating and I/O systems. It is therefore recommended to set $\$maxcor$ not higher than to 75% of the physical core memory that is available for the calculation.

For MPI parallel pnoccsd calculations it is very important to set with the $\$tmpdir$ keyword the path to directories in fast local file systems to avoid that large integral and scratch files are stored in the NFS file system where the calculation is started.
Chapter 10

Second-Order Approximate Coupled-Cluster (CC2) Calculations

ricc2 is a module for the calculation of excitation energies and response properties at a correlated second-order ab initio level, in particular the second-order approximate coupled-cluster model CC2 [172], but also the MP2, CIS(D), CIS(D∞), and ADC(2) levels. All calculations employ the resolution-of-the-identity (RI) approximation for the electron repulsion integrals used in the correlation treatment and the description of excitation processes. At present the following functionalities are implemented:

**ground state energies** for MP2 and CC2 and spin-component scaled variants thereof; the MP2 results are identical with those obtained with rimp2 (but usually the calculations are somewhat faster).

**excitation energies** for the models CIS/CCS, CIS(D), CIS(D∞), ADC(2), and CC2 including spin-component scaled SCS and SOS version of of the latter four methods

**transition moments** for ground state—excited and excited—excited state transitions for the models CCS and CC2; for ADC(2) only moments for ground state—excited state transitions are available

**two-photon transition moments** for ground state—excited state transitions for the models CCS and CC2

**induced transition moments** for ground state—excited state transitions for the models CCS and CC2 for the computation of spin-orbit induced oscillator strengths for transitions from the ground state to excited triplet states and phosphorescence lifetimes with SOC-PT

**first-order properties** for the ground state with SCF (CCS), MP2, and CC2 and for excited states with CCS, CC2, ADC(2) and CIS(D∞)
geometric gradients for the electronic ground state at the MP2 and the CC2 level; for electronically excited states at the CIS(D∞), ADC(2), and CC2 level

second-order properties for the ground state with MP2 and CC2 and a closed-shell RHF reference wavefunction (currently restricted to the sequentical and SMP parallel versions)

gradients for auxiliary basis sets for RI-MP2, -CC2, etc. calculations based on the RI-MP2 error functional

F12 corrections to RI-MP2; MP2 ground-state energies can be computed (in C1 symmetry) using explicitly-correlated two-electron basis functions in the framework of the MP2-F12 model [169,173].

solvent effects for the methods and states for which (orbital–relaxed) densities are available equilibrium solvent effects can be included in the framework of the cosmo mode (for details see Chapter 18.2).

All functionalities at the MP2 and CC2 level are implemented for closed-shell RHF and open-shell UHF reference wavefunctions (with the exception of induced transition moments using SOC-PT, which are only available for a closed-shell RHF reference). Ground state energies for MP2, MP2-F12 and CC2 and excited state energies for CC2 are also implemented for single determinant restricted open-shell Hartree-Fock (ROHF) reference wavefunctions (cmp. Sec. 9.3). (Note, that no gradients are available for MP2 and CC2 with ROHF reference wavefunctions.) For a two-component GHF reference wavefunction energies for the CCS, MP2/ADC(2), CIS(D∞) and CC2 methods as well as ground state—excited state transition moments for ADC(2) and CC2 are available.

The second-order models MP2, CIS(D), CIS(D∞), ADC(2) and CC2 can be combined with a spin-component scaling (SCS or SOS). (Not yet available for second-order properties, two-photon and induced transition moments.) For the SOS variants one can switch to an implementation with O(N^4)-scaling costs by setting the keyword for the numerical Laplace transformation (LT) ($laplace$).

As listed above, some functionalities are, as a side-produce, in ricc2 also implemented at the uncorrelated HF-SCF, CIS, and CCS levels. There are only made available in ricc2 for easier test calculations and comparisons, without that the code in ricc2 has optimized for them.

For calculations with CCSD, CCSD(T) and other higher-order models beyond CC2 see Chapter 11.

Prerequisites

Calculations with the ricc2 module require (almost) the same prerequisites as RI-MP2 calculations:
1. a converged SCF calculation with the one-electron density convergence threshold set to $\text{denconv } 1.0 \times 10^{-5}$ or less

2. if non-standard basis sets used: an auxiliary basis defined in the data group $\text{cbas}$
   (for standard basis sets, where a corresponding auxiliary basis set is found in the basis set library, the program will automatically use this if $\text{cbas}$ is not set)

3. if orbitals should be excluded from the correlation treatment (and excitation processes)
   the data group $\text{freeze}$ has to be set

4. the maximum core memory which the program is allowed to allocate should be defined in the data group $\text{maxcor}$; the recommended value is 66-75% of the available (physical) core memory.

5. depending on the type of calculations that should be carried out, additionally the
data groups $\text{ricc2}$, $\text{excitations}$, $\text{response}$, $\text{laplace}$, $\text{rir12}$ and $\text{l cg}$ have to be set (see below and Section 22.2.20).

For calculations with the ricc2 program it is recommended to use the cc2 submenu of the
define program to set the data groups $\text{denconv}$, $\text{freeze}$, $\text{cbas}$, $\text{maxcor}$. MP2-F12
calculations require in addition the data groups $\text{rir12}$, $\text{cabs}$, $\text{jkbas}$ and $\text{l cg}$. The exponent of the Slater function in the interelectronic distance $r_{12}$, which appears in the
geminals used MP2-F12 is defined in the data group $\text{l cg}$ and should be adapted to the
one-electron basis set which is used.

Note, that the implementation of non-Abelian point groups in ricc2 is limited to the elec-
tronic ground state (but comprises most of the RI-MP2 functionality included in ricc2).
In the present version ricc2 can for excited states only deal with real Abelian point groups
($C_1$, $C_s$, $C_2$, $C_i$, $C_{2h}$, $C_{2v}$, $D_2$, $D_{2h}$). The F12 correction can only be calculated in the $C_1$
point group.

How To Perform a Calculation

Single point calculations:
   Call the ricc2 program after a converged SCF calculation, which can be carried
either with the dscf or the ridft program.

Geometry optimizations and molecular dynamics:
   Invoke jobex with the -level cc2 option; see Section 5.1 for additional options
   and parameters of the jobex script that might be needed or useful for geometry
   optimizations and ab initio molecular dynamics calculations.

Force constants and vibrational frequencies:
   Force constants can be calculated by numerical differentiation of the gradients.
   Invoke for this NumForce with the -level cc2 option; see Chapter 15 for details
   about NumForce. The usage of the NumForce interface for excited states is
   restricted to $C_1$ symmetry.
**Note:** using ricc2 in connection with jobex or NumForce requires that the method and the electronic state, for which the gradient should be calculated and written to the interface files, is specified in the option geoopt (see Section 10.3.1) in datagroup $\texttt{ricc2}$ (see Section 22.2.20). For calculations on excited states this state has in addition to be included in the input for excitation energies in datagroup $\texttt{excitations}$.

**RI-SCF reference wavefunctions:** The ricc2 program can be used in combination with conventional SCF or with the RI-J and RI-JK approximations for SCF, with the exception that the calculation of gradients for reference wavefunctions which employ only the RI-J approximation for the Coulomb matrix but 4-index integrals for the exchange matrix is presently not supported. The implementation of gradients in ricc2 assumes that the reference wavefunction has either been calculated without RI-J approximation (using dscf) or with the RI-JK approximation (using ridft).

See Chapter 6 for a discussion of the RI approximations in SCF calculations and 22.2.8 for the required input. In geometry optimizations with jobex and for the calculation of force constants and vibrational spectra with NumForce, the ricc2 program is used in combination with the RI-JK approximation for the Hatree-Fock calculation (using ridft) if jobex and NumForce are invoked with the -rijk option.

**How to quote**

If results obtained with the ricc2 program are used in publications, the following citations should be included if you have used the methods, program parts, auxiliary basis sets, or results reported in therein:

**Methods:**

- for the approximate coupled-cluster singles-and-doubles model CC2:
- for CI singles with a perturb. correct. for connected double excitations, CIS(D):
  and for the iterative CIS(D\(\infty\)) variant:
- for the algebraic diagrammatic construction through second order ADC(2):
- for MP2-F12:
- for the SCS and SOS variants of MP2:
• for the SCS and SOS variants of CC2 and ADC(2):

• for the two-component CCS, ADC(2), CIS(D_{\infty}) and CC2 methods:

Implementation:

• please, include always a reference to the publication reporting the implementation of the core part of the ricc2 program:

• for transition moments and excited state first order properties:

• for triplet excited states include:

• for ground state geometry optimizations include:

• for geometry optimizations for excited states include:

• for calculations with RI-ADC(2), RI-CIS(D), RI-CIS(D_{\infty}) include:

• if the parallel version of ricc2 is used include a reference to:

• for transition moments between excited states:

• for RI-MP2-F12 calculations:

• for $\mathcal{O}(N^4)$-scaling calculations using the Laplace transformation:
  – ground-state and excitation energies:
  – transition moments, first-order properties and gradients:

• for second-order properties (relaxed or unrelaxed):

• for two-photon transition moments:
10.1 CC2 GROUND-STATE ENERGY CALCULATIONS

- for phosphorescence lifetimes with SOC-PT-CC2:

Auxiliary basis sets:

- the appropriate reference for the auxiliary SVP, TZVP and TZVPP basis sets
  (for calculations with RI-MP2, RI-CC2 and related methods) is:
- for the auxiliary cc-pVXZ (cc-pV(X+d)Z), aug-cc-pVXZ (aug-cc-pV(X+d)Z)
  basis sets with X = D, T, or Q cite:
- for the auxiliary cc-pV5Z (cc-pV(5+d)Z), aug-cc-pV5Z (aug-cc-pV(5+d)Z), cc-pwCVXZ
  with X = D, T, Q, 5 and QZVPP basis sets the reference is:
  This reference should also be included if you employ the analytic basis set gradients
  implemented in the ricc2 program for the optimization of your own auxiliary basis set(s).
- for the auxiliary def2-basis sets from Rb to Rn the reference is:

- for the auxiliary cc-pVXZ-PP, aug-cc-pVXZ-PP, cc-pwCVXZ-PP, and aug-cc-
  pwCVXZ-PP basis sets for Ga–Kr, In–Xe, and Tl–Rn:

(For more details on the references for the basis sets included in the basis set libraries
of the TURBOMOLE distribution see Sec. 1.3 and the library files.)

10.1 CC2 Ground-State Energy Calculations

The CC2 ground-state energy is—similarly to other coupled-cluster energies—obtained from
the expression

\[ E_{CC} = \langle HF|H|CC \rangle = \langle HF|H \exp(T)|HF \rangle, \]  

\[ = E_{SCF} + \sum_{iajb} \left[ t_{ia}^{i} t_{ja}^{j} + t_{ia}^{j} t_{ja}^{i} \right] \left[ 2(ia|jb) - (ja|ib) \right], \]  

where the cluster operator \( T \) is expanded as \( T = T_1 + T_2 \) with

\[ T_1 = \sum_{ai} t_{ia}^{i} \tau_{ai} \]  

\[ T_2 = \frac{1}{2} \sum_{aibj} t_{ab}^{ij} \tau_{aibj} \]
CHAPTER 10. RI-CC2

(for a closed-shell case; in an open-shell case an additional spin summation has to be included). The cluster amplitudes $t_{ia}^i$ and $t_{ab}^{ij}$ are obtained as solution of the CC2 cluster equations [172]:

$$
\Omega_{\mu_1} = \langle \mu_1 | \hat{H} + [\hat{H}, T_2] | \text{HF} \rangle = 0,
$$

(10.5)

$$
\Omega_{\mu_2} = \langle \mu_2 | \hat{H} + [F, T_2] | \text{HF} \rangle = 0,
$$

(10.6)

with

$$
\hat{H} = \exp(-T_1)H \exp(T_1),
$$

where $\mu_1$ and $\mu_2$ denote, respectively, the sets of all singly and doubly excited determinants. The residual of the cluster equations $\Omega(t_{ai}, t_{aibj})$ is the so-called vector function. The recommended reference for the CC2 model is ref. [172], the implementation with the resolution-of-the-identity approximation, RI-CC2, was first described in ref. [8].

**Advantages of the RI approximation:** For RI-CC2 calculations, the operation count and thereby the CPU and the wall time increases—as for RI-MP2 calculations—approximately with $O(O^2V^2N_x)$, where $O$ is the number of occupied and $V$ the number of virtual orbitals and $N_x$ the dimension of the auxiliary basis set for the resolution of the identity. Since RI-CC2 calculations require the (iterative) solution of the cluster equations (10.5) and (10.6), they are about 10–20 times more expensive than MP2 calculations. The disk space requirements are approximately $O(2V + N_x + N_x^2)$ double precision words. The details of the algorithms are described in ref. [8], for the error introduced by the RI approximation see refs. [156,174].

**Required input data:** In addition to the above mentioned prerequisites ground-state energy calculations with the ricc2 module require only the data group $\$ricc2$ (see Section 22.2.20), which defines the methods, convergence thresholds and limits for the number of iterations etc. If this data group is not set, the program will carry out a CC2 calculation. With the input

```
$ricc2
 mp2
 cc2
 conv=6
```

the ricc2 program will calculate the MP2 and CC2 ground-state energies, the latter converged to approximately $10^{-6}$ a.u. The solution for the single-substitution cluster amplitudes is saved in the file CCR0--1--1---0, which can be kept for a later restart.

**Ground-State calculations for other methods than CC2:** The MP2 equations and the energy are obtained by restricting in the CC2 equations the single-substitution
10.2 Calculation of Excitation Energies

With the ricc2 program excitation energies can presently be calculated with the RI variants of the methods CCS/CIS, CIS(D), CIS(D∞), ADC(2) and CC2. The CC2 excitation energies are obtained by standard coupled-cluster linear response theory as eigenvalues of the amplitudes \( t_{ai} \) to zero. In this sense MP2 can be derived as a simplification of CC2. But it should be noted that CC2 energies and geometries are usually not more accurate than MP2.

For CCS and CIS the double-substitution amplitudes are excluded from the cluster expansion and the single-substitution amplitudes for the ground state wavefunction are zero for closed-shell RHF and open–shell UHF reference wavefunctions and thus energy is identical to the SCF energy.

For the Methods CIS(D), CIS(D∞) and ADC(2) the ground state is identified with the MP2 ground state to define is total energy of the excited state, which is needed for the definition of gradients and (relaxed) first-order properties which are obtained as (analytic) derivatives the total energy.

**Diagnostics:** Together with the MP2 and/or CC2 ground state energy the program evaluates the \( D_1 \) diagnostic proposed by Janssen and Nielsen [157], which is defined as:

\[
D_1 = \sqrt{\max\left(\lambda_{\text{max}}\left[\sum_i t_{ai} t_{bi}\right], \lambda_{\text{max}}\left[\sum_a t_{ai} t_{aj}\right]\right)}
\]  

(10.7)

where \( \lambda_{\text{max}}[M] \) is the largest eigenvalue of a positive definite matrix \( M \). (For CC2 the \( D_1 \) diagnostic will be computed automatically. For MP2 is must explictly be requested with the \$d1diag \) option in the \$ricc2 data group, since for RI-MP2 the calculation of \( D_1 \) will contribute significantly to the computational costs.) Large values of \( D_1 \) indicate a multireference character of the ground-state introduced by strong orbital relaxation effects.

In difference to the \( T_1 \) and \( S_2 \) diagnostics proposed earlier by Lee and coworkers, the \( D_1 \) diagnostic is strictly size-intensive and can thus be used also for large systems and to compare results for molecules of different size. MP2 and CC2 results for geometries and vibrational frequencies are, in general, in excellent agreement with those of higher-order correlation methods if, respectively, \( D_1(\text{MP2}) \leq 0.015 \) and \( D_1(\text{CC2}) \leq 0.030 \) [11, 157]. For \( D_1(\text{MP2}) \leq 0.040 \) and \( D_1(\text{CC2}) \leq 0.050 \) MP2 and/or CC2 usually still perform well, but results should be carefully checked. Larger values of \( D_1 \) indicate that MP2 and CC2 are inadequate to describe the ground state of the system correctly!

The \( D_2 \) diagnostic proposed by Nielsen and Janssen [158] can also be evaluated. This analysis can be triggered, whenever a response property is calculated, e.g. dipole moment, with the keyword \$D2-diagnostic. Note that the calculation of \( D_2 \) requires an additional \( O(N^5) \) step! \( D_2(\text{MP2}/\text{CC2}) \leq 0.15 \) are in excellent agreement with those of higher-order correlation methods, for \( D_2(\text{MP2}/\text{CC2}) \geq 0.18 \) the results should be carefully checked.

10.2 Calculation of Excitation Energies

With the ricc2 program excitation energies can presently be calculated with the RI variants of the methods CCS/CIS, CIS(D), CIS(D∞), ADC(2) and CC2. The CC2 excitation energies are obtained by standard coupled-cluster linear response theory as eigenvalues of the
Jacobian, defined as derivative of the vector function with respect to the cluster amplitudes.

\[ A_{\mu \nu}^{CC2} = \frac{d\Omega}{dt} = \begin{pmatrix} \langle \mu_1 | [\hat{H} + [\hat{H}, T_2], \tau_{\nu_1}] | HF \rangle & \langle \mu_1 | [\hat{H}, \tau_{\nu_2}] | HF \rangle \\ \langle \mu_2 | [\hat{H}, \tau_{\nu_1}] | HF \rangle & \langle \mu_2 | [F, \tau_{\nu_2}] | HF \rangle \end{pmatrix} \] (10.8)

Since the CC2 Jacobian is a non-symmetric matrix, left and right eigenvectors are different and the right (left) eigenvectors \( E^i_{\nu} (\bar{E}^i_{\mu}) \) are not orthogonal among themselves, but form a biorthonormal basis (if properly normalized):

\[ E^i E^j = \bar{E}^i \bar{E}^j + E^i \bar{E}^j = \delta_{ij} \] (10.9)

To obtain excitation energies only the right or the left eigenvalue problem needs to be solved, but for the calculation of transition strengths and first-order properties both, left and right, eigenvectors are needed (see below). A second complication that arises from the non-symmetric eigenvalue problem is that in the case of close degeneracies within the same irreducible representation (symmetry) it can happen that instead of two close lying real roots a degenerate complex conjugated pair of excitation energies and eigenvectors is obtained. CC2 (and also other standard coupled-cluster response methods) are thus not suited for the description of conical intersections etc. For the general theory behind coupled cluster response calculations see e.g. ref. [175,176] or other reviews.

The \texttt{ricc2} program exploits that the doubles/doubles block of the CC2 Jacobian is diagonal and the (linear) eigenvalue problem in the singles and doubles space can be reformulated as a (non-linear) eigenvalue problem in single-substitution space only:

\[ A_{\mu \nu}^{\text{eff}}(t, \omega) = A_{\mu \nu}^{CC2}(t) - A_{\mu \gamma}^{CC2}(t) (A_{\gamma \gamma}^{CC2} - \omega) A_{\gamma \nu}^{CC2}(t) \]

\[ A_{\mu \nu}^{\text{eff}}(t^{CC2}, \omega^{CC2}) E_{\nu} = \omega^{CC2} E_{\nu} \]

This allows to avoid the storage of the double-substitution part of the eigen- or excitation vectors \( E_{\nu_2}, \bar{E}_{\nu_2} \). The algorithms are described in refs. [8,9], about the RI error see ref. [174].

The solution of the CC2 eigenvalue problem can be started from the solutions of the CCS eigenvalue problem (see below) or the trial vectors or solutions of a previous CC2 excitation energy calculation. The operation count per transformed trial vector for one iteration for the CC2 eigenvalue problem is about 1.3–1.7 times the operation count for one iteration for the cluster equations in the ground-state calculation—depending on the number of vectors transformed simultaneously. The disk space requirements are about \( O(V + N)N_x \) double precision words per vector in addition to the disk space required for the ground state calculation.

CCS excitation energies are obtained by the same approach, but here double-substitutions are excluded from the expansion of the excitation or eigenvectors and the ground-state amplitudes are zero. Therefore the CCS Jacobian,

\[ A_{\mu \nu}^{CCS} = \frac{d\Omega}{dt_{\nu}} = \langle \mu_1 | [H, \tau_{\nu_1}] | HF \rangle , \] (10.10)

is a symmetric matrix and left and right eigenvectors are identical and form an orthonormal basis. The configuration interaction singles (CIS) excitation energies are identical to the
10.2. CALCULATION OF EXCITATION ENERGIES

CCS excitation energies. The operation count for a RI-CIS calculation is $O(ON^2N_x)$ per iteration and transformed trial vector.

The second-order perturbative correction CIS(D) to the CIS excitation energies is calculated from the expression

$$\omega_{\text{CIS}(D)} = \omega_{\text{CIS}} + \omega^{(D)} = E_{\text{CIS}} A_{\text{eff}} \left( t_{\text{MP1}}, \omega_{\text{CIS}} \right) E_{\text{CIS}}$$

(10.11)

(Note that $t_{\text{MP1}}$ are the first-order double-substitution amplitudes from which also the MP2 ground-state energy is calculated; the first-order single-substitution amplitudes vanish for a Hartree–Fock reference due to the Brillouin theorem.) The operation count for a RI-CIS(D) calculation is similar to that of a single iteration for the CC2 eigenvalue problem. Also disk space requirements are similar.

**Running excitation energy calculations:** The calculation of excitation energies is initiated by the data group `$excitations` in which at least the symmetries (irreducible representations) and the number of the excited states must be given (for other options see Section 22.2.20). With the following input the `ricc2` program will calculate the lowest two roots (states) for the symmetries $A_1$ and $B_1$ of singlet multiplicity * at the CIS, CIS(D) and CC2 level with default convergence thresholds. Ground-state calculations will be carried out for MP2 (needed for the CIS(D) model and used as start guess for CC2) and CC2.

```
$ricc2
cis
cis(d)
cc2
$excitations
 irrep=a1 nexc=2
 irrep=b1 nexc=2
```

The single-substitution parts of the right eigenvectors are stored in files named `CCRE0--s--m--xxx`, where $s$ is the number of the symmetry class (irreducible representation), $m$ is the multiplicity, and $xxx$ the number of the excitation within the symmetry class. For the left eigenvectors the single-substitution parts are stored in files named `CCLE0--s--m--xxx`. These files can be kept for later restarts.

**Trouble shooting:** For the iterative second-order methods CIS(D$_\infty$), ADC(2), and CC2 the solution of the nonlinear partitioned eigenvalue problem proceeds usually in three steps:

1. solution of the CCS/CIS eigenvalue problem to generate reasonable start vectors; the eigenvectors are converged in this step only to a remaining residual norm $< \text{preopt}$

*Provided that it is not an unrestricted open shell run. In this case the wavefunctions will not be spin eigenfunctions and multiplicities are not well defined.*
2. pre-optimization of the eigenvectors by a robust modified Davidson algorithm (see ref. [8]) using the LINEAR CC RESPONSE SOLVER until the norm of all residuals are below \texttt{preopt}, combined with a DIIS extrapolation for roots assumed to be converged below the threshold \texttt{thrdiis}.

3. solution of the nonlinear eigenvalue problem with a DIIS algorithm using the DIIS CC RESPONSE SOLVER until the norm of the residuals are below the required threshold \texttt{conv}

This procedure is usually fairly stable and efficient with the default values for the thresholds. But for difficult cases it can be necessary to select tighter thresholds. In case of convergence problems the first thing do is to verify that the ground state is not a multireference case by checking the D1 diagnostic. If this is not the case the following situations can cause problems in the calculation of excitation energies:

- almost degenerate roots in the same symmetry class
- complex roots (break down of the CC approximation close to conical intersections)
- large contributions from double excitations

The first two reasons can be identified by running the program with a print level \( \leq 3 \). It will then print in each iteration the actual estimates for the eigenvalues. If some of these are very close or if complex roots appear, you should make sure that the DIIS procedure is not switched on before the residuals of the eigenvectors are small compared to the differences in the eigenvalues. For this, \texttt{thrdiis} (controlling the DIIS extrapolation in the linear solver) should be set about one order of magnitude smaller than the smallest difference between two eigenvalues and \texttt{preopt} (controlling the switch to the DIIS solver) again about one order of magnitude smaller than \texttt{thrdiis}.

Tighter thresholds or difficult situations can make it necessary to increase the limit for the number of iterations \texttt{maxiter}.

In rare cases complex roots might persist even with tight convergence thresholds. This can happen for CC2 and CIS(D\(_\infty\)) close to conical intersections between two states of the same symmetry, where CC response can fail due to its non-symmetric Jacobian. In this case one can try to use instead the ADC(2) model. But the nonlinear partitioned form of the eigenvalue problem used in the \texttt{ricc2} program is not well suited to deal with such situations.

**Diagnostics for double excitations:** As pointed out in ref. [10], the \( \%T_1 \) diagnostic (or \( \%T_2 = 100 - \%T_1 \)) which is evaluated directly from the squared norm of the single and double excitation part of the eigenvectors \( \%T_1 = 100 \cdot T_1/(T_1 + T_2) \) with \( T_i = \sum_{\mu} E_{\mu i}^2 \), where the excitation amplitudes are for spin-free calculations in a corresponding spin-adapted basis (which is not necessarily normalized) has the disadvantage that the results depend on the parameterization of the (spin-adapted) excitation operators. This prevents in particular a simple comparison of the results for singlet and triplet excited states if the calculations are carried out in a spin-free basis. With the biorthogonal representation for singlet spin-coupled double excitations [175] results for \( \%T_1 \) also differ largely between the left and right
10.2. CALCULATION OF EXCITATION ENERGIES

eigenvectors and are not invariant with respect to unitary transformations of the occupied
or the virtual orbitals.

The ricc2 module therefore uses since release 6.5 an alternative double excitation diagnostic,
which is defined by \[ \%T_1 = 100 \times \frac{T_1}{T_1 + T_2} \] with \[ T_1 = \sum_{a} E_{a}^2 \] and \[ T_2 = \sum_{i>j} \sum_{a>b} E_{abij}^2 \]
with \( E_{a} \) and \( E_{abij} \) in the spin-orbital basis. They are printed in the summaries for excitation
energies under the headings \( %t1 \) and \( %t2 \). For spin-adapted excitation amplitudes \( T_1 \) and \( T_2 \)
have to be computed from respective linear combinations for the amplitudes which reproduce
the values in the spin-orbital basis. For ADC(2), which has a symmetric secular matrix with
identical left and right normalized eigenvectors \( T_1 \) and \( T_2 \) are identical with the contributions
from the singles and doubles parts for the eigenvectors to the trace of the occupied or virtual
block of the (orbital unrelaxed) difference density between the ground and the excited state,
i.e. the criterium proposed in ref. [10]. Compared to the suggestion from ref. [10] \( T_1 \) and \( T_2 \)
have the additional advantage of that they are for all methods guaranteed to be positive and
can be evaluated with the same insignificantly low costs as \( T_1 \) and \( T_2 \). They are invariant
with respect to unitary transformations of the occupied or the virtual orbitals and give
by construction identical results in spin-orbital and spin-free calculations. For CC2 and
CIS(D)\( \infty \) the diagnostics \( T_1 \) and \( T_2 \) agree for left and right eigenvectors usually with a few
0.01\%, for CIS(D) and ADC(2) they are exactly identical. For singlet excitations in spin-
free calculations, \( %T_2 \) is typically by a factors of 1.5–2 larger than \( %T_2 \). The second-order
methods CC2, ADC(2), CIS(D)\( \infty \) and CIS(D) can usually be trusted for \( %T_2 \leq 15\% \).

For compatibility, the program can be switched to use of the old \( %T_1 \) and \( %T_2 \) diagnostics
(printed with the headers ||T1|| and ||T2||) by setting the flag oldnorm in the data group
$excitations. Note that the choice of the norm effects the individual results left and right
one- and two-photon transition moments, while transition strengths and all other observable
properties independent of the individual normalization of the right and left eigenvectors.

The \( %T_2 \) and \( %T_2 \) diagnostics can not be monitored in the output of the (quasi-) linear
solver. But it is possible to do in advance a CIS(D) calculation. The CIS(D) results for
the \( %T_2 \) and \( %T_2 \) correlate usually well with the results for this diagnostic from the iterativ
second-order models, as long as there is clear correspondence between the singles parts of the
eigenvectors. Else the DIIS solver will print the doubles diagnostics in each iteration if the
print level is set > 3. States with large double excitation contributions converge notoriously
slow (a consequence of the partitioned formulation used in the ricc2 program). However,
the results obtained with second-order methods for doubly excited states will anyway be
poor. It is strongly recommended to use in such situations a higher-level method.

Visualization of excitations: An easy way to visualize single excitations is to plot
the natural transition orbitals that can be obtained from a singular value decomposition of
the excitation amplitudes. See Sec. 19.1.6 for further details.

Another, but computational more involved possibility is plot the difference density between
the ground and the respective excited state. This requires, however, a first-order property
or gradient calculation for the excited state to obtain the difference density. For further
details see Sec. 10.3.3.
10.3 First-Order Properties and Gradients

For the ground state first-order properties (expectation values) are implemented at the SCF, MP2 and CC2 level. Note that for the ground state CCS and CIS are equivalent to SCF. For excited states first-order properties are implemented only at the CCS and CC2 level. Gradients are presently only available for the ground state at the MP2 and the CC2 and for excited states only at the CC2 level.

10.3.1 Ground State Properties, Gradients and Geometries

For CC2, one distinguishes between orbital-relaxed and unrelaxed properties. Both are calculated as first derivatives of the respective energy with respect to an external field corresponding to the calculated property. They differ in the treatment of the SCF orbitals. In the orbital-relaxed case the external field is (formally) already included at the SCF stage and the orbitals are allowed to relax in the external field; in the orbital-unrelaxed case the external field is first applied after the SCF calculation and the orbitals do not respond to the external field. *Orbital-unrelaxed* CC2 properties are calculated as first derivatives of the real part of the unrelaxed Lagrangian \([172]\)

\[
L^{ur\text{CC2}}(t, \bar{t}, \beta) = \langle HF|\hat{H}^{\text{CC}}|HF\rangle + \sum_{\mu_1} \bar{t}_{\mu_1} \langle \mu_1|\hat{\mathcal{H}} + [\hat{\mathcal{H}}, T_2]|HF\rangle + \sum_{\mu_2} \bar{t}_{\mu_2} \langle \mu_2|\hat{\mathcal{H}} + [F_0 + \beta \hat{V}, T_2]|HF\rangle
\]

with \(H = H_0 + \beta V\) —where \(V\) is the (one-electron) operator describing the external field, \(\beta\) the field strength, and \(H_0\) and \(F_0\) are the Hamiltonian and Fock operators of the unperturbed system —by the expression:

\[
\langle V \rangle^{ur\text{CC2}} = \Re \left( \frac{\partial L^{ur\text{CC2}}(t, \bar{t}, \beta)}{\partial \beta} \right)_{\beta = 0} = \sum_{pq} D_{pq}^{ur} V_{pq} ,
\]

where \(\Re\) indicates that the real part is taken. *Relaxed* CC2 properties (and gradients) are calculated from the full variational density including the contributions from the orbital response to the external perturbation, which are derived from the Lagrangian \([11, 176]\)

\[
L^{rel\text{CC2}}(t, \bar{t}) = \langle HF|\hat{H}^{\text{CC}}|HF\rangle + \sum_{\mu_1} \bar{t}_{\mu_1} \langle \mu_1|\hat{\mathcal{H}} + [\hat{\mathcal{H}}, T_2]|HF\rangle + \sum_{\mu_2} \bar{t}_{\mu_2} \langle \mu_2|\hat{\mathcal{H}} + [F, T_2]|HF\rangle + \sum_{\mu_0} \bar{\kappa}_{\mu_0} F_{\mu_0} ,
\]
where $F$ is the Fock operator corresponding to the Hamiltonian of the perturbed system $H = H_0 + \beta V$. One-electron properties are then obtained as:

$$\langle V \rangle_{\text{rel CC2}} = \Re \left( \langle HF|V|HF \rangle + \sum_{\mu_1} \bar{t}_{\mu_1} \langle \mu_1 |V + [V,T_2]|HF \rangle 
$$

$$+ \sum_{\mu_2} \bar{t}_{\mu_2} \langle [V,T_2]|HF \rangle + \sum_{\mu_0} \bar{\kappa}_{\mu_0} V_{\mu_0} \right),$$

$$= \sum_{pq} D_{pq}^\text{rel} V_{pq}.$$  

(10.17)

The calculation of one-electron first-order properties requires that in addition to the cluster equations also the linear equations for the Lagrangian multipliers $\bar{t}_\mu$ are solved, which requires similar resources (CPU, disk space, and memory) as the calculation of a single excitation energy. For orbital-relaxed properties also a CPHF-like linear equation for the Lagrangian multipliers $\bar{\kappa}_{\mu_0}$ needs to be solved and the two-electron density has to be build, since it is needed to set up the inhomogeneity (right-hand side). The calculation of relaxed properties is therefore somewhat more expensive—the operation count for solving the so-called Z-vector equations is similar to what is needed for an SCF calculation—and requires also more disk space to keep intermediates for the two-electron density—about $O(2V + 2N)N_x + N_x^2$ in addition to what is needed for the solution of the cluster equations. For ground states, orbital-relaxed first-order properties are standard in the literature.

The calculation of the gradient implies the calculation of the same variational densities as needed for relaxed one-electron properties and the solution of the same equations. The construction of the gradient contributions from the densities and derivative integrals takes about the same CPU time as 3–4 SCF iterations and only minor extra disk space. For details of the implementation of CC2 relaxed first-order properties and gradients and a discussion of applicability and trends of CC2 ground-state equilibrium geometries see ref. [11]. The following is in example input for a MP2 and CC2 single point calculation of first-order properties and gradients:

```
$ricc2
 mp2
 cc2
$response
 static relaxed operators=diplen,qudlen
 gradient
```

A different input is required for geometry optimizations: in this case the model for which the geometry should be optimized must be specified in the data group $ricc2$ by the keyword `geoopt`:

```
$ricc2
 mp2
 cc2
 geoopt model=cc2
```
For CC2 calculations, the single-substitution part of the Lagrangian multipliers $\bar{t}_\mu$ are saved in the file CCL0--1--1---0 and can be kept for a restart (for MP2 and CCS, the single-substitution part $\bar{t}_\mu$ vanishes).

For MP2 only relaxed first-order properties and gradients are implemented (unrelaxed MP2 properties are defined differently than in CC response theory and are not implemented). For MP2, only the CPHF-like Z-vector equations for $\bar{\kappa}_0$ need to be solved, no equations have to be solved for the Lagrangian multipliers $\bar{t}_\mu$. CPU time and disk space requirements are thus somewhat smaller than for CC2 properties or gradients.

For SCF/CIS/CCS it is recommended to use the modules grad and rdgrad for the calculation of, ground state gradients and first-order properties.

### 10.3.2 Excited State Properties, Gradients and Geometries

Also for excited states presently unrelaxed and relaxed first-order properties are available in the ricc2 program. These are implemented for CCS and CC2. Note, that in the unrelaxed case CIS and CCS are not equivalent for excited-states first-order properties and no first-order properties are implemented for CIS in the ricc2 program.

#### Orbital-unrelaxed first-order properties

The unrelaxed first-order properties are calculated from the variational excited states Lagrangian [177], which for the calculation of unrelaxed properties is composed of the unrelaxed ground state Lagrangian, Eq. (10.12), and the expression for the excitation energy:

$$L^{ur \text{CC2, ex}}(E, \bar{E}, t, \bar{t}^{\text{ex}}, \beta) = \langle \text{HF}|H|\text{CC}\rangle + \sum_{\mu\nu} \bar{E}_\mu A_{\mu\nu}(t, \beta) E_\nu + \sum_{\mu_1} \bar{t}^{\text{ex}}_{\mu_1} \langle \mu_1|\hat{H} + [\hat{H}, T_2]|\text{HF}\rangle + \sum_{\mu_2} \bar{t}^{\text{ex}}_{\mu_2} \langle \mu_2|\hat{H} + [F_0 + \beta\hat{V}, T_2]|\text{HF}\rangle$$

(10.18)

where it is assumed that the left and right eigenvectors are normalized such that $\sum_{\mu\nu} \bar{E}_\mu \langle \mu|\tau_\nu\rangle E_\nu = 1$ and $H = H_0 + \beta V$. The first-order properties are calculated as first derivatives of $L^{ur \text{CC2, ex}}(E, \bar{E}, t, \bar{t}^{\text{ex}}, \beta)$ with respect to the field strength $\beta$ and are evaluated via a density formalism:

$$\langle V\rangle^{ur,\text{ex}} = \Re \left( \frac{\partial L^{ur,\text{ex}}(E, \bar{E}, t, \bar{t}^{\text{ex}}, \beta)}{\partial \beta} \right)_0 = \sum_{pq} D^{ur,\text{ex}}_{pq} V_{pq}$$

(10.19)

(Again $\Re$ indicates that the real part is taken.) The unrelaxed excited-state properties obtained thereby are related in the same way to the total energy of the excited states as the unrelaxed ground-state properties to the energy of the ground state and the differences between excited- and ground-state unrelaxed properties are identical to those identified from the second residues of the quadratic response function. For a detailed description of
10.3. FIRST-ORDER PROPERTIES AND GRADIENTS

the theory see refs. [176,177]; the algorithms for the RI-CC2 implementation are described in refs. [10,174]. ref. [174] also contains a discussion of the basis set effects and the errors introduced by the RI approximation.

The calculation of excited-state first-order properties thus requires the calculation of both the right \((E_\mu)\) and left \((\bar{E}_\mu)\) eigenvectors and of the excited state Lagrangian multipliers \(\bar{t}^{(ex)}_\mu\). The disk space and CPU requirements for solving the equations for \(\bar{E}_\mu\) and \(\bar{t}^{(ex)}_\mu\) are about the same as those for the calculation of the excitation energies. For the construction of the density matrices in addition some files with \(\mathcal{O}(n_{\text{root}}N^2)\) size are written, where \(n_{\text{root}}\) is the number of excited states.

The single-substitution parts of the excited-states Lagrangian multipliers \(\bar{t}^{(ex)}_\mu\) are saved in files named \(\text{CCNL0-}s-m-xxx\).

For the calculation of first-order properties for excited states, the keyword \texttt{exprop} must be added with appropriate options to the data group \$excitations; else the input is same as for the calculation of excitation energies:

```plaintext
$ricc2
 cc2
$response
 fop unrelaxed_only operators=diplen,qudlen
$excitations
 irrep=a1 nexc=2
 exprop states=all operators=diplen,qudlen
```

### Orbital-relaxed first-order properties and gradients

To obtain orbital-relaxed first-order properties or analytic derivatives (gradients) the Lagrange functional for the excited state in Eq. (10.18) is—alogologically to the treatment of ground states—augmented by the equations for the SCF orbitals and the perturbations is also included in the Fock operator:

\[
L^{\text{rel CC2}, \text{ex}}(E, \bar{E}, t, \bar{t}^{(ex)}_\mu, \beta) = \langle \text{HF}| H| \text{CC} \rangle + \sum_{\mu\nu} \bar{E}_\mu A_{\mu\nu}(t, \beta) E_\nu \\
+ \sum_{\mu_1} \bar{t}^{(ex)}_{\mu_1} \langle \mu_1| \hat{H} + [\hat{H}, T_2]| \text{HF} \rangle \\
+ \sum_{\mu_2} \bar{t}^{(ex)}_{\mu_2} \langle \mu_2| \hat{H} + [F, T_2]| \text{HF} \rangle + \sum_{\mu_0} \bar{\kappa}^{(ex)}_{\mu_0} F_{\mu_0}.
\]  

Compared to unrelaxed properties, the calculation of relaxed properties needs in addition for each excited state the solution of a CPHF equations for the Lagrangian multipliers \(\bar{\kappa}^{(ex)}_{\mu_0}\), for which the computational costs are similar to those of a Hartree-Fock calculation.

Orbital-relaxed properties are requested by adding the flag \texttt{relaxed} to the input line for the \texttt{exprop} option. The following is an example for a CC2 single point calculation for orbital-relaxed excited state properties:
Note that during the calculation of orbital-relaxed excited-state properties the corresponding unrelaxed properties are also automatically evaluated at essentially no additional costs. Therefore, the calculation of unrelaxed properties can not be switched off when relaxed properties have been requested.

Again the construction of gradients requires the same variational densities as needed for relaxed one-electron properties and the solution of the same equations. The construction of the gradient contributions from one- and two-electron densities and derivative integrals takes approximately the same time as for ground states gradients (approx. 3–4 SCF iterations) and only minor extra disk space. The implementation of the excited state gradients for the RI-CC2 approach is described in detail in Ref. [12]. There one can also find some information about the performance of CC2 for structures and vibrational frequencies of excited states.

For the calculation of an excited state gradient with CC2 at a single point (without geometry optimization and if it is not a calculation with NumForce) one can use the input:

```plaintext
$ricc2
 cc2
$excitations
 irrep=a1 nexc=2
 xgrad states=(a1 1-2)
```

For geometry optimizations or a numerical calculation of the Hessian with NumForce the wavefunction model and the excited state for which the geometry should be optimized have to be specified in the data group $ricc2 with the keyword geoopt:

```plaintext
$ricc2
 geoopt model=cc2 state=(a1 2)
$excitations
 irrep=a1 nexc=2
```

If the geometry optimization should carried out for the lowest excited state (of those for which an excitation energy is requested in $excitation), one can use alternatively state=(s1).

Since the calculation of unrelaxed and relaxed first-order properties can be combined gradient calculations without significant extra costs, a request for excited state gradients will automatically enforce the calculation of the relaxed and unrelaxed dipole moments. If the keyword geoopt is used, the relaxed dipole moment for the specified excited state and wavefunction model will be written to the control file and used in calculations with NumForce for the evaluation of the IR intensities.
10.3.3 Visualization of densities and Density analysis

As most other programs which allow for the calculation of wavefunctions and densities also the \texttt{ricc2} module is interfaced to wavefunction analysis and visualization toolbox described in chapter \texttt{19}. From \texttt{ricc2} module this interface can be used in two different ways:

1. If through the \texttt{geoopt} keyword in \texttt{$ricc2$} a unique method and state has been specified for which the density, gradient and properties are evaluated, the density analysis and visualization routines will be called by default with the (orbital-relaxed) density for this state and method similar as in \texttt{dscf, ridft, mpgrad, etc.}

2. The \texttt{ricc2} program can be called in a special analysis mode which allows to analyse densities and combination (e.g. differences) of densities evaluated in previous \texttt{ricc2} calculations.

**Default density analysis and visualization:**

As in a single calculation with the \texttt{ricc2} program one–electron densities can be calculated for more than one method and/or electronic state, the interface to the analysis and visualization routines require the specification of a unique level of calculation and a unique state. This is presently done through the \texttt{geoopt} flag which determines the method/state for which results are written to interface files (e.g. \texttt{control, gradient, or xxx.map}).

In ground state calculations \texttt{ricc2} will pass to the density analysis routines the correlated total (and for UHF based calculations also the spin) density and the canonical SCF orbitals from which the SCF (spin) density is constructed. All options described in chapter \texttt{19} are available from within the \texttt{ricc2} program apart from the evaluation of electrostatic moments, which would interfere with the calculation of expectation values requested through the \texttt{fop} option in \texttt{$response$}.

In excited state calculation \texttt{ricc2} will pass the excited state total (and for UHF based calculation in addition the spin) density. But no ground state densities and/or uncorrelated densities or orbitals. Thus, for excited states the \texttt{ricc2} program does, in difference to \texttt{egrad} not print out a comparison with the ground state SCF density. Also, all some options which require orbitals (as e.g. the generation and visualization of localized orbitals or some population analysis options) and not available for excited states in \texttt{ricc2}.

As other modules, also \texttt{ricc2} provides the \texttt{-proper} flag to bypass a re-calculation of the density and gradient to enter immediately the density analysis routines with a previously calculated density. The \texttt{ricc2} program will then pass the densities found on the interface file for the density analysis routines without further check on the method and state for which they have been evaluated. If both, ground and excited state densities are found on file, both will be passed to the density analysis, thereby providing a shortcut to the \texttt{-fanal} and the \texttt{$sanadens$} keyword for the analysis of differences between ground and excited state densities.

**The general density analysis option:**

In general \texttt{ricc2} saves by default all \textit{relaxed} densities generated during a calculation in
files named `<method>-<type>-<mult><irrep>-<number>-total.cao` `<method>` denotes the level of theory, like `mp2`, `cc2`, or `adcp2`. `<type>` is one of `gsdn` (ground state) or `xsdn` (excited state) the other entries specify multiplicity, irreducible representation and the number of the state. Having specified the calculation of relaxed densities—e.g. by requesting relaxed one-electron properties or as a by-product of a gradient calculation—you will end up with two files named like

```
cc2-gsdn-1a1-001-total.cao
cc2-xsdn-3a2-001-total.cao
```

In case of open shell molecules, additional files with names `...-spndn.cao` (for one-electron spin-densities) will be generated.

These files are (currently) in a binary format, similar as the files `dens`, `mdens` and `edens`. Therefore be aware that a transfer between different computer architectures may result in trouble.

The densities on these files can be analysed with the tools and interfaces provided by Moloch (see Section 19.2). This can be done by calling `ricc2` with the option `-fanal` which by-passes the usual wavefunction calculation and triggers the program into an analysis mode for densities. In this mode the program interpretes `$anadens` and the keywords described in Section 19.2. To plot, for example, the difference density of the two above mentioned total densities you have to add the following lines in your `control` file

```
$anadens
 calc my_favourite_diffden from
 1d0 cc1td-cc2-xs-3a2-001
 -1d0 cc1td-cc2-gs-1a1-001
$pointval
```

and invoke

```
ricc2 -fanal
```

This will generate the files `my_favourite_diffden` and `my_favourite_diffden.map`. The latter can be converted into gOpenMol format as described in Section 19.2.

### 10.3.4 Fast geometry optimizations with RI-SCF based gradients

If geometry optimizations on MP2 or CC2 level are performed with large basis set, especially with diffuse basis functions, the $N^4$–steps might become the dominant part of the overall timings. In these cases, the integral screening in the Hartree–Fock part often becomes inefficient. The resolution-of-the-identity can be applied here to speed up the calculation of the HF reference wavefunction, as well as the solution of the coupled–perturbed Hartree–Fock (CPHF) equations in the MP2 or CC2 gradient calculation.
An additional auxiliary basis (denoted \texttt{jkbas}) set has to be assigned via the General Options Menu in the \texttt{define} program. In the submenu \texttt{rijk} choose \texttt{on} and select your auxiliary basis set. Then, run the \texttt{jobex} script the additional \texttt{rijk}-flag:

\begin{verbatim}
> jobex -level cc2 -rijk
\end{verbatim}

## 10.4 Transition Moments

Transition moments (for one-photon transitions) are presently implemented for excitations out of the ground state and for excitations between excited states for the coupled cluster models CCS and CC2. Transition moments for excitations from the ground to an excited state are also available for ADC(2), but use an additional approximation (see below). Note, that for transition moments (as for excited-state first-order properties) CCS is not equivalent to CIS and CIS transition moments are not implemented in the \texttt{ricc2} program.

Two-photon transition moments are only available for CC2.

### 10.4.1 Ground to excited state transition moments

In response theory, transition strengths (and moments) for transitions from the ground to excited state are identified from the first residues of the response functions. Due to the non-variational structure of coupled cluster different expressions are obtained for the CCS and CC2 “left” and “right” transitions moments $M^V_{0\rightarrow f}$ and $M^V_{f\rightarrow 0}$. The transition strengths $S^0_{V_1V_2}$ are obtained as a symmetrized combinations of both \cite{178}:

\[
S^0_{V_1V_2} = \frac{1}{2} \left( M^V_{0\rightarrow f} M^V_{f\rightarrow 0} + \left( M^V_{0\rightarrow f} M^V_{f\rightarrow 0} \right)^* \right)
\]  

(10.21)

Note, that only the transition strengths $S^0_{V_1V_2}$ are a well-defined observables but not the transition moments $M^V_{0\rightarrow f}$ and $M^V_{f\rightarrow 0}$. For a review of the theory see refs. \cite{176,178}. The transition strengths calculated by coupled-cluster response theory according to Eq. (10.21) have the same symmetry with respect to an interchange of the operators $V_1$ and $V_2$ and with respect to complex conjugation as the exact transition moments. In difference to SCF (RPA), (TD)DFT, or FCI, transition strengths calculated by the coupled-cluster response models CCS, CC2, etc. do not become gauge-independent in the limit of a complete basis set, i.e., for example the dipole oscillator strength calculated in the length, velocity or acceleration gauge remain different until also the full coupled-cluster (equivalent to the full CI) limit is reached.

For a description of the implementation in the \texttt{ricc2} program see refs. \cite{11,174}. The calculation of transition moments for excitations out of the ground state resembles the calculation of first-order properties for excited states: In addition to the left and right eigenvectors, a set of transition Lagrangian multipliers $\tilde{M}_\mu$ has to be determined and some transition density matrices have to be constructed. Disk space, core memory and CPU time requirements are thus also similar.
The single-substitution parts of the transition Lagrangian multipliers $\tilde{N}_\mu$ are saved in files named CCMEO--[s-]--m--xxx.

To obtain the transition strengths for excitations out of the ground state the keyword spectrum must be added with appropriate options (see Section 22.2.20) to the data group $\$excitations$; else the input is same as for the calculation of excitation energies and first-order properties:

\[
\$ricc2
cc2
$excitations
\]

\[
\text{irrep}=a1 \text{ nexc}=2
\text{spectrum states}=\text{all operators}=\text{diplen,qudlen}
\]

For the ADC(2) model, which is derived by a perturbation expansion of the expressions for exact states, the calculation of transition moments for excitations from the ground to an excited state would require the second-order double excitation amplitudes for the ground state wavefunction, which would lead to operation counts scaling as $O(N^6)$, if no further approximations are introduced. On the other hand the second-order contributions to the transition moments are usually not expected to be important. Therefore, the implementation in the ricc2 program neglects in the calculation of the ground to excited state transition moments the contributions which are second order in ground state amplitudes (i.e. contain second-order amplitudes or products of first-order amplitudes). With this approximation the ADC(2) transition moments are only correct to first-order, i.e. to the same order to which also the CC2 transition moments are correct, and are typically similar to the CC2 results. The computational costs for the ADC(2) transition moments are (within this approximation) much lower than for CC2 since the left and right eigenvectors are identical and no lagrangian multipliers need to be determined. The extra costs (i.e. CPU and wall time) for the calculations of the transitions moments are similar to the those for two or three iterations of the eigenvalue problem, which reduces the total CPU and wall time for the calculation of a spectrum (i.e. excitation energies and transition moments) by almost a factor of three.

10.4.2 Transition moments between excited states

For the calculation of transition moments between excited states a set of Lagrangian multipliers $\tilde{N}_\mu$ has to be determined instead of the $M_\mu$ for the ground state transition moments. From these Lagrangian multipliers and the left and right eigenvectors one obtaines the “right” transition moment between two excited states $i$ and $f$ as

\[
M_{f\leftarrow i} = \sum_{pq} \left\{ D_{pq}^i(N^f) + D_{pq}^f(E^f, E^i) \right\} \hat{V}_{pq}, \tag{10.22}
\]

where $\hat{V}$ are the matrix elements of the perturbing operator. A similar expression is obtained for the “left” transition moments. The “left” and “right” transition moments are then
10.4. TRANSITION MOMENTS

combined to yield the transition strength

\[ S_{V_1V_2}^{if} = \frac{1}{2} \left\{ M_{V_1}^{V_2} M_{i}^{V_1} + \left( M_{i}^{V_2} M_{V_1}^{V_1} \right)^* \right\} \]  \hspace{1cm} (10.23)

As for the ground state transitions, only the transition strengths \( S_{V_1V_2}^{if} \) are a well-defined observables but not the transition moments \( M_{V_1}^{V_2} \) and \( M_{V_1}^{V_2} \).

The single-substitution parts of the transition Lagrangian multipliers \( \tilde{N}_\mu \) are saved in files named \texttt{CCNE0-s-m-xxx}.

To obtain the transition strengths for excitations between excited states the keyword \texttt{tmexc} must be added to the data group \$excitations. Additionally, the initial and final states must be given in the same line; else the input is same as for the calculation of excitation energies and first-order properties:

\begin{verbatim}
$ricc2
c2
$excitations
  irrep=a1 nexc=2
  irrep=a2 nexc=2
  tmexc istates=all fstates=(a1 1) operators=diplen
\end{verbatim}

10.4.3 Ground to excited state two-photon transition moments

For closed-shell restricted and high-spin open-shell unrestricted Hartree-Fock reference states two-photon transition moments for one-electron operators can be computed at the CCS and the CC2 level. The implementation is restricted to real abelian point groups (D\(_{2h}\) and its subgroups) and for CC2 without spin-component scaling. The response theory for the calculation of two-photon transition moments with coupled cluster methods has been described in [179,180], the RI-CC2 implementation in [181].

Similar as for one-photon transitions also for two-photon transitions the non-variational structure of coupled cluster theory leads to different expressions for “left” and “right” transition moments \( M_{0 \leftarrow f}^{V_1V_2} \) and \( M_{f \rightarrow 0}^{V_3V_4} \). Only the transition strengths \( S_{V_1V_2,V_3V_4}^{0f} \) which are obtained as symmetrized combination of both [178,180],

\[ S_{V_1V_2,V_3V_4}^{0f} (\omega) = \frac{1}{2} \left\{ M_{0 \leftarrow f}^{V_1V_2} (-\omega) M_{f \rightarrow 0}^{V_3V_4} (\omega) + \left( M_{0 \leftarrow f}^{V_3V_4} (-\omega) M_{f \rightarrow 0}^{V_1V_2} (\omega) \right)^* \right\} \]  \hspace{1cm} (10.24)

is an observable quantity.

The \texttt{ricc2} program prints in the output in addition to the transition moments in atomic units also the rotationally averaged transition strengths in atomic units and transition rates in Göppert-Maier (GM) units for linear, perpendicular and circular polarized beams.

In addition to the input for the excitation energies, the computation of two-photon transition moments requires the keyword \texttt{twophoton} in the data group \$excitations and the data group for the numerical Laplace transformation \$laplace.
The syntax for the input for states is the same as for one-photon transition moments (option spectrum). Frequencies $\omega_2$ for the photon associated in the “right” transition moment, $M_{f\to 0}^{V_1V_2}(\omega_2)$, with the second operator in each operator pair can be given in atomic units with the suboption freq. It corresponds to the frequency $\omega$ in Eq. 10.24. The frequency associated with the first operator is automatically determined from the sum rule $\omega_1 = \omega_{0f} - \omega_2$, where $\omega_{0f}$ is the frequency for the transition $f \leftarrow 0$. The “left” transition moments $M_{0\to f}^{V_1V_2}$ are computed for the frequencies with the opposite sign. If not specified, the two-photon transition moments are computed for the case that both photons have the same frequency, i.e. their energies are set for each state to 1/2 of the transition energy, which is the most common case.

10.4.4 Phosphorescence lifetimes using SOC-PT-CC2

For the calculation of oscillator strengths for triplet excited states and phosphorescence lifetimes for molecules without heavy atoms the ricc2 program provides as alternative to the relativistic two-component variant a perturbative SOC-PT-CC2 approach which works with one-component wavefunctions. In SOC-PT-CC2 the oscillator strengths for triplet excited states are calculated as first derivatives of the (spin-forbidden) oscillator strengths for one-component wavefunctions with respect to the strength of the spin-orbit coupling (SOC) in the limit of zero spin-orbit coupling. The spin-orbit coupling is treated within the effective spin-orbit mean field approximation, where the mean field two-electron contribution is computed from the Hartree-Fock density. The SOC-PT-CC2 approach is about an order of magnitude faster than the computation of oscillator strengths with the two-component RI-CC2 variant. Scalar relativistic effects from the spin-free X2C Hamiltonian can be included by using the spin-free X2C Hamiltonian for the Hartree-Fock reference wavefunction. The theory and the implementation are described in [182].

The implementation is restricted to closed-shell Hartree-Fock reference wavefunctions and CC2 without spin-component scaling. For carrying out such calculations one needs in addition to the input for the excitation energies for triplet states the keyword momdrv and the data group for the numerical Laplace transformation $\$laplace$. 

$\$ricc2
  cc2
$\$laplace
10.5. *GROUND STATE SECOND-ORDER PROPERTIES WITH MP2 AND CC2*

Second-order properties for one-electron perturbation can be computed at the MP2 and the CC2 level. For MP2, second-order properties are computed as derivatives of the SCF+MP2 total energy. This approach includes the relaxation of the SCF orbitals in the presence of the perturbation and is restricted to the static (i.e. frequency-independent) limit.

For coupled-cluster model CC2, second-order properties can, similar as the first-order properties, calculated in orbital-unrelaxed or orbital-relaxed approach as derivatives of of the of the Lagrange functions in Eqs. 10.12 and 10.15. As for MP2, the orbital-relaxed calculations are restricted to the static limit. Frequency-dependent second-order properties as e.g. dipole polarizabilities can be computed with the orbital-unrelaxed approach.

Since V7.2 second-order properties are also available in the MPI parallel version and also for unrestricted high-spin open-shell Hartree-Fock references. Note, that second-order properties not available for spin-component scaled variants of MP2 and CC2 or for restricted open-shell references. Furthermore, non-Abelian point groups and point groups with complex irreducible representations are not implemented for second-order properties.

In addition to the standard input, second-order properties require that the data group for the numerical Laplace transformation `$laplace` and that the `sops` option in the data group `$response` is set. Frequency-dependent dipole polarizabilities with the CC2 model are obtained with the input:

```
$ricc2
 cc2
$laplace
 conv=4
$response
 sop operators=(diplen,diplen) freq=0.077d0
```
The frequency has to be given in atomic units. Static orbital-relaxed polarizabilities are obtained with

\[
\text{response} \\
\text{sop operators=}(\text{diplen, diplen}) \text{ relaxed}
\]

### 10.6 Parallel RI-MP2 and RI-CC2 Calculations

All functionalities of the ricc2 program are available in the OpenMP-based parallel version for shared memory (SMP) architectures. Most functionalities of the ricc2 program are also parallelized for distributed memory architectures (e.g. clusters of Linux boxes) based on the message passing interface (MPI) standard.

While in general the parallel execution of ricc2 works similar to that of other parallelized TURBOMOLE modules as e.g. dscf and grad, there are some important difference concerning in particular the handling of the large scratch files needed for RI-CC2 (or RI-MP2). As the parallel version dscf also the parallel version of ricc2 assumes that the program is started in a directory which is readable (and writeable) on all compute nodes under the same path (e.g. a NFS directory). The directory must contain all input files and will at the end of a calculation contain all output files. Large scratch files (e.g. for integral intermediates) will be placed under the path specified in the control file with $\text{tmpdir}$ (see Section 22.2.20) which should point to a directory in a file system with a good performance. All large files will be placed on the nodes in these file systems. (The local file system must have the same name on all nodes.) Note that at the end of a ricc2 run the scratch directories specified with $\text{tmpdir}$ are not guaranteed to be empty. To avoid that they will fill your file system you should remove them after the ricc2 calculation is finished.

Another difference to the parallel HF and DFT (gradient) programs is that ricc2 will communicate much larger amounts of data between the compute nodes. With a fast network interconnection (Gigabit or better) this should not cause any problems, but with slow networks the communication might become the limiting factor for performance or overloading the system. If this happens the program can be put into an alternative mode where the communication of integral intermediates is replaced by a reevaluation of the intermediates (at the expense of a larger operation count) wherever this is feasible. Add for this in the control the following data group:

\[
\text{mpi\_param} \\
\text{min\_comm}
\]

### 10.7 Spin-component scaling approaches (SCS/SOS)

By introducing individual scaling factors for the same-spin and opposite-spin contributions to the correlation energy most second-order methods can be modified to achieve a (hopefully)
better performance. SCS-MP2 has first been proposed by S. Grimme and SOS-MP2 by Y. Jung et al. (see below). The generalization of SCS and SOS to CC2 and ADC(2) for ground and excited states is described in [14]. It uses the same scaling factors as proposed for the original SCS- and SOS-MP2 approaches (see below). In the ricc2 program we have also implemented SCS and SOS variants of CIS(D) for excitation energies and of CIS(D∞) for excitation energies and gradients, which are derived from SCS-CC2 and SOS-CC2 in exactly the same manner as the unmodified methods can be derived as approximations to CC2 (see Sec. 10.2 and Ref. [183]). Please note, that the SCS-CIS(D) and SOS-CIS(D) approximations obtained in this way and implemented in ricc2 differ from the spin-component scaled SCS- and SOS-CIS(D) methods proposed by, respectively, S. Grimme and E. I. Ugorodina in [184] and Y. M. Rhee and M. Head–Gordon in [185].

A line with scaling factors has to be added in the $ricc2$ data group:

\[
\begin{align*}
$ricc2 \\
\text{scs cos}=1.2d0 \text{ css}=0.3333d0
\end{align*}
\]

\(\text{cos}\) denotes the scaling factor for the opposite–spin component, \(\text{css}\) the same–spin component.

As an abbreviation \textit{scs} can be inserted in \$ricc2. In this case, the SCS parameters \(\text{cos}=6/5\) and \(\text{css}=1/3\) proposed S. Grimme (\textit{S. Grimme, J. Chem. Phys.} 118 (2003) 9095.) are used. These parameters are also recommended in [14] for the SCS variants of CC2, CIS(D), CIS(D∞), and ADC(2) for ground and excited states.

Also, just \textit{sos} can be used as a keyword, to switch to the SOS approach proposed by the Head-Gordon group for MP2 with scaling factors of \(\text{cos}=1.3\) and \(\text{css}=0.0\) (Y., Jung, R.C. Lochan, A.D. Dutoi, and M. Head-Gordon, \textit{J. Chem. Phys.} 121 (2004) 9793.), which are also recommended for the SOS variants of CC2, CIS(D), CIS(D∞), and ADC(2). The Laplace-transformed algorithm for the SOS variants are activated by the additional data group \$laplace:

\[
\begin{align*}
$laplace \\
\text{conv}=4
\end{align*}
\]

For further details on the Laplace-transformed implementation and how one can estimated whether the \(O(N^4)\)-scaling Laplace-transformed or \(O(N^5)\)-scaling conventional RI implementation is efficient see Sec. 9.6.

Since Version 6.6 the \(O(N^4)\)-scaling Laplace-transformed implementation is available for ground and excited state gradients with CC2 and ADC(2).

Restrictions:
• the spin ($S^2$) expectation value for open-shell calculation can not be evaluated in the SCS or SOS approaches

• for LT-SOS-CC2 (and the related CIS(D) and ADC(2) versions) the following further limitations apply:
  – incompatible with the calculation of the $D_1$ and $D_2$ diagnostics
  – second-order properties, two-photon transitions moments and induced transition moments are not implemented for the spin-component scaled variants.
Chapter 11

CCSD, CCSD(F12*) and CCSD(T) calculations

Since release V7.0 the coupled-cluster singles-and-doubles method CCSD and its explicitely-correlated variants CCSD(F12) and CCSD(F12*) are implemented in the ccsdf12 program. CCSD and the F12 variants can be combined with a perturbative correction for connected triple excitations, CCSD(T).∗ As perturbative approximations beyond MP2 also the approximations MP3, MP3(F12), MP4, and MP4(F12*) are available. Presently the implementation of the F12 variants and of connected triple excitations is restricted to ground state energies. The CCSD implementation without F12 is limited to ground–state and excitation energies. Closed-shell (RHF), unrestricted (UHF) or single determinant restricted (ROHF) open-shell reference wavefunctions can be used for CCSD and CCSD(T), but no gradients or properties are (yet) available for these wavefunction models. The MP3 and MP4 approximations can currently not be combined with ROHF reference wavefunctions.

Further limitations:

no MPI parallelization: calculations at these levels can presently only carried out on a single compute node, only the OpenMP (see Sec. 3.2.2) parallelization is available

use of symmetry restricted: only $D_{2h}$ and its subgroups can be used for conventional (i.e. not F12) calculations; no symmetry can be used for the F12 methods

Please note that calculations with MP3, MP4, CCSD and methods beyond CCSD require considerably more disc space and core memory than MP2 or CC2 calculations. (See section below for more details and recommendations.)

∗Note that for the explicitly correlated CCSD variants the explicitely-correlated double excitations are neglected for the calculation of the triples corrections as described in Ref. [186].
Prerequisites

MP3, MP4, CCSD and CCSD(T) calculations with the ccsdf12 module require the same prerequisites as RI-CC2 calculations:

1. a converged SCF calculation with the one-electron density threshold set to $\text{denconv} \leq 1.d-5$
2. an auxiliary basis defined in the data group $\text{cbas}$
3. if orbitals should be excluded from the correlation treatment the data group $\text{freeze}$ has to be set
4. the maximum core memory which the program is allowed to allocate should be defined in the data group $\text{maxcor}$; the recommended value is 66–75% of the available (physical) core memory. (see Sec. 22.2.2 for details)
5. the data group $\text{ricc2}$ with a specification of the coupled-cluster model

Calculations with the CCSD(F12*) and CCSD(F12) methods require in addition:

• the data group $\text{rir12}$ with the definition of the standard approximations for the explicitly-correlated contributions (see Sec. 9.5 for details)
• the data group $\text{lcg}$, which define the correlation function (here it is in particular important to choose for F12 calculations the exponent; recommended values are 0.9 for cc-pVDZ-F12, 1.0 for cc-pVTZ-F12 and 1.1 for cc-pVQZ-F12 basis sets)
• a complementary auxiliary (CABS) basis set

Furthermore it is recommended to select in addition an auxiliary JK basis set for the evaluation of the Fock matrix elements. (The rijk menu of define can be used for this.)

How To Perform a Calculation

As presently no gradients are available, only single–point calculations are possible:

1. Select in define within the menu cc
   the wavefunction model (submenu ricc2),
   frozen core options (submenu freeze),
   an auxiliary basis for $\text{cbas}$ (submenu cbas),
   the amount of main memory (option memory),
and for CCSD(F12) calculations in addition
   the F12 options (submenu f12), and
   a CABS basis (submenu cabs).
By default a CCSD(F12) with ansatz 2 and geminal amplitudes fixed by the cusp conditions is performed. To switch to the computationally more efficient recommended CCSD(F12*) approximation add to the input group $rir12$ the line†

\[
\text{ccsdapprox ccsd(f12*)}
\]

The auxiliary JK basis must be chosen in menu rijk and the exponent for the correlation function must be set by editing the $lcg$ data group of the control file.

2. Do an SCF calculation using either the dscf or the ridft module.

3. Invoke the ccsdf12 program on the command line or with a batch script.

How to quote:


11.1 Characteristics of the Implementation and Computational Demands

In CCSD the ground–state energy is (as for CC2) evaluated as

\[
E_{\text{CC}} = \langle \text{HF} | H | \text{CC} \rangle = \langle \text{HF} | H \exp(T) | \text{HF} \rangle ,
\]

where the cluster operator \( T = T_1 + T_2 \) consist of linear combination of single and double excitations:

\[
T_1 = \sum_{ai} t_{ai} \tau_{ai} ,
\]

\[
T_2 = \frac{1}{2} \sum_{abj} t_{abj} \tau_{abj} .
\]

†For other available approximation and the corresponding input options see Sec. 22.2.20.
In difference to CC2, the cluster amplitudes \( t_{ai} \) and \( t_{aibj} \) are determined from equations which contain no further approximations apart from the restriction of \( T \) to single and double excitations:

\[
\Omega_{\mu_1} = \langle \mu_1 | \hat{H} + [\hat{H}, T_2] | HF \rangle = 0, \tag{11.4}
\]

\[
\Omega_{\mu_2} = \langle \mu_2 | \hat{H} + [\hat{H}, T_2] + [[\hat{H}, T_2], T_2] | HF \rangle = 0, \tag{11.5}
\]

where again

\[
\hat{H} = \exp(-T_1) \hat{H} \exp(T_1),
\]

and \( \mu_1 \) and \( \mu_2 \) are, respectively, the sets of all singly and doubly excited determinants. For MP3 the energy is computed from the first-order amplitudes \( (t_{\mu}^{(1)}) \) as

\[
E_{\text{MP3, tot}} = E_{HF} + E_{\text{MP2}} + E_{\text{MP3}} \tag{11.6}
\]

\[
= \langle HF | \hat{H} + [\hat{H}, T_2^{(1)}] | HF \rangle + \sum_{\mu_2} t_{\mu_2}^{(1)} \langle \mu_2 | [\hat{W}, T_2^{(1)}] | HF \rangle \tag{11.7}
\]

with \( \hat{W} = \hat{H} - \hat{F} \). To evaluate the fourth-order energy one needs in addition to the first-order also the second-order amplitudes, which are obtained from the solution of the equations

\[
\langle \mu_1 | [\hat{F}, T_3^{(2)}] + [\hat{W}, T_2^{(1)}] | HF \rangle = 0 \tag{11.8}
\]

\[
\langle \mu_2 | [\hat{F}, T_2^{(2)}] + [\hat{W}, T_2^{(1)}] | HF \rangle = 0 \tag{11.9}
\]

\[
\langle \mu_3 | [\hat{F}, T_3^{(2)}] + [\hat{W}, T_2^{(1)}] | HF \rangle = 0 \tag{11.10}
\]

From these the fourth-order energy correction is computed as:

\[
E_{\text{MP4}} = \sum_{\mu_2} t_{\mu_2}^{(1)} \langle \mu_2 | [\hat{W}, T_1^{(2)} + T_2^{(2)} + T_3^{(2)}] + [[\hat{W}, T_2^{(1)}], T_2^{(1)}] | HF \rangle. \tag{11.11}
\]

Eqs. (11.5) and (11.7) – (11.11) are computational much more complex and demanding than the corresponding doubles equations for the CC2 model. If \( N \) is a measure for the system size (e.g. the number of atoms), the computational costs (in terms of floating point operations) for CCSD calculations scale as \( O(N^6) \). If for the same molecule the number of one-electron basis functions \( N \) is increased the costs scale with \( O(N^4) \). (For RI-MP2 and RI-CC2 the costs scale with the system size as \( O(N^5) \) and with the number of basis functions as \( O(N^3) \).) The computational costs for an MP3 calculations are about the same as for one CCSD iteration. For MP4 the computational costs are comparable to those for two CCSD iteration plus the costs for the perturbation triples correction (see below).

**Explicitly-correlated CCSD(F12) methods:** In explicitly-correlated CCSD calculations the double excitations into products of virtual orbitals, described by the operator

\[
T_2 = \frac{1}{2} \sum_{aibj} t_{aibj}^{(2)} t_{aibj}^{(2)},
\]

are augmented with double excitations into the explicitly-correlated pairfunctions (geminals) which are described in Sec. 9.5:

\[
T = T_1 + T_2 + T_2', \tag{11.12}
\]

\[
T_2' = \frac{1}{2} \sum_{ijkl} c_{ijkl}^{kl} t_{ijkl}.
\tag{11.13}
\]
11.1. COMPUTATIONAL DEMANDS

where $\tau_{kl}^{|ij\rangle} = \hat{Q}_{12} f_{12}^{|kl\rangle}$ (for the definition $\hat{Q}_{12}$ and $f_{12}$ see Sec. 9.5). This enhances dramatically the basis set convergence of CCSD calculations ([17]). Without any further approximations than those needed for evaluating the necessary matrix elements, this extension of the cluster operator $T$ leads to the CCSD-F12 method. CCSD(F12) is an approximation ([17, 18]) to CCSD-F12 which neglects certain computationally demanding higher-order contributions of $\hat{T}_{2'}$. This reduces the computational costs dramatically, while the accuracy of CCSD(F12) is essentially identical to that of CCSD-F12 [187, 188]. In the CCSD(F12) approximation the amplitudes are determined from the equations:

$$\Omega_{\mu_1} = \langle \mu_1 | \hat{H} + [\hat{H}, T_2 + T_2'] | HF \rangle = 0 ,$$

(11.14)

$$\Omega_{\mu_2} = \langle \mu_2 | \hat{H} + [\hat{H}, T_2 + T_2'] + [[\hat{H}, T_2 + 2T_2'], T_2] | HF \rangle = 0 ,$$

(11.15)

$$\Omega_{\mu_2'} = \langle \mu_2' | [\hat{F}, T_2'] + \hat{H} + [\hat{H}, T_2] | HF \rangle = 0 .$$

(11.16)

Similar as for MP2-F12, also for CCSD(F12) the coefficients for the doubles excitations into the geminals, $c_{kl}^{ij}$ can be determined from the electronic cusp conditions using the rational generator (also known as SP or fixed amplitude) approach. In this case Eq. (11.16) is not solved. To account for this, the energy is then computed from a Lagrange function as:

$$E_{\text{CCSD(F12)-SP}} = L_{\text{CCSD(F12)}} = \langle HF | H | CC \rangle + \sum_{\mu_2'} c_{\mu_2', \Omega_{\mu_2'}} (11.17)$$

This is the recommended approach which is used by default if no other approach has been chosen with the examp option in $\texttt{rir12}$ (see Sec. 9.5 for further details on the options for F12 calculations; note that the examp noinv option should not be combined with CCSD calculations). CCSD(F12)-SP calculations are computationally somewhat less expensive that CCSD(F12) calculations which solve Eq. (11.16), while both approaches are approximately similar accurate for energy differences.

The SP approach becomes in particular very efficient if combined with the neglect of certain higher-order explicitly-correlated contributions which have a negligible effect on the energies but increase the costs during the CC iterations. The most accurate and recommended variant is the CCSD(F12*) approximation [18], which gives essentially identical energies as CCSD(F12)-SP. Also available are the CCSD[F12] (Ref. [18]), CCSD-F12a (Ref. [189]) and CCSD-F12b (Ref. [190]) approximations as well as the perturbative corrections CCSD(2)F12 and CCSD(2*)F12 (see Refs. [18, 191, 192]). These approximations should only be used with ansatz 2 and the SP approach (i.e. fixed geminal amplitudes). Note that the CCSD-F12c method which is available in the molpro package is the same as CCSD(F12*). Since CCSD(F12*) is the original name that was introduced when the method was proposed for the first time in Ref. [18] users are asked to use in publications this abbreviation and cite the original reference [18].

For MP3 the approximations (F12*), and (F12) to a full F12 implementation become identical: they include all contributions linear in the coefficients $c_{kl}^{ij}$. The explicitly-correlated MP4 method MP4(F12*) is defined as fourth-order approximation to CCSD(F12*)(T). Note that MP4(F12*) has to be used with the SP or fixed amplitude approach for the geminal coefficients $c_{kl}^{ij}$. MP3(F12*) and MP4(F12*) are currently only available for closed-shell or unrestricted Hartree-Fock reference wavefunctions.
The CPU time for a CCSD(F12) calculation is approximately the sum of the CPU time for an
MP2-F12 calculation with the same basis sets plus that of a conventional CCSD calculation
multiplied by \((1 + \frac{N_{CABS}}{N})\), where \(N\) is the number of basis and \(N_{CABS}\) the number
of complementary auxiliary basis (CABS) functions (typically \(N_{CABS} \approx 2 - 3N\)). If the
geminal coefficients are determined by solving Eq. (11.16) instead of using fixed amplitudes,
the costs per CCSD(F12) iteration increase to \(\approx (1 + 2\frac{N_{CABS}}{N})\) times the costs for a
conventional CCSD iteration. Irrespective how the geminal coefficients are determined, the
disc space for CCSD(F12) calculations are approximately a factor of \(\approx (1+2\frac{N_{CABS}}{N})\)
larger than the disc space required for a conventional CCSD calculation. Note that this increase
in the computational costs is by far outweighed by the enhanced basis set convergence.

In combination with the CCSD(F12*) approximation (and also CCSD[F12], CCSD-F12a,
CCSD-F12b, CCSD(2)F12 and CCSD(2*)F12) the CPU time for the SP approach is only
about 20% or less longer than for a conventional CCSD calculation within the same basis
set.

**CC calculations with restricted open-shell (ROHF) references:** The MP2
and all CC calculations for ROHF reference wavefunctions are done by first transforming to
a semi-canonical orbital basis which are defined by the eigenvectors of the occupied/occupied
and virtual/virtual blocks of the Fock matrices of alpha and beta spin. No spin restrictions
are applied in the cluster equations. This approach is sometimes also denoted as ROHF-UCCSD.

Note that if a frozen-core approximation is used, the semicanonical orbitals depend on
whether the block-diagonalization of the Fock matrices is done in space of all orbitals or only
in the space of the correlated valence orbitals. The two approaches lead thus to slightly dif-
ferent energies, but none of two is more valid or more accurate than the other. The ccsdf12,
prnoccsd and rcc2 programs use the former scheme with the block-diagonalization done in
the space of all molecular orbitals. The same scheme is used e.g. in the CFOUR program
suite, but other codes as e.g. the implementation in MOLPRO use a block-diagonalization
restricted to the active valence space.

**Perturbative triples corrections:** To achieve ground state energies with a high ac-
curacy that systematically surpasses the accuracy MP2 and DFT calculations for reaction
and binding energies, the CCSD model has to be combined with a perturbative correction
for connected triples. The recommended approach for the correction is the CCSD(T) model

\[
E_{\text{CCSD(T)}} = E_{\text{CCSD}} + E_{DT}^{(4)} + E_{ST}^{(5)}
\]  
(11.18)

which includes the following two terms:

\[
E_{DT}^{(4)} = \sum_{\mu_2} t_{\mu_2}^{CCSD} \langle \mu_2 | [H, T_3^{(2)}] | \text{HF} \rangle
\]  
(11.19)

\[
E_{ST}^{(5)} = \sum_{\mu_1} t_{\mu_1}^{CCSD} \langle \mu_1 | [H, T_3^{(2)}] | \text{HF} \rangle
\]  
(11.20)
where the approximate triples amplitudes are evaluated as:

\[
\Omega_{aibjck}(2) = - \frac{\langle ijk | \hat{H}, T_2 | HF \rangle}{\epsilon_a - \epsilon_i + \epsilon_b - \epsilon_j + \epsilon_c - \epsilon_k}
\] (11.21)

In the literature one also finds sometimes the approximate triples model CCSD[T] (also denoted as CCSD+T(CCS)), which is obtained by adding only \( E^{(4)}_{\text{DT}} \) to the CCSD energy. Usually CCSD(T) is slightly more accurate than CCSD[T], although for closed-shell or spin-unrestricted open-shell reference wavefunctions the energies of both models, CCSD(T) and CCSD[T] model, are correct through 4.th order perturbation theory. For a ROHF reference, however, \( E^{(5)}_{\text{DT}} \) contributes already in 4.th order and only the CCSD(T) model is correct through 4.th order perturbation theory.

**Integral-direct implementation and resolution-of-the-identity approximation:** The computationally most demanding (in terms floating point operations) steps of a CCSD calculation are related to two kinds of terms. One of the most costly steps is the contraction

\[
\Omega_{aibj} = \sum_{cd} t^{ij}_{cd}(ac|bd)
\] (11.22)

where \( a, b, c, \) and \( d \) are virtual orbitals. For small molecules with large basis sets or basis sets with diffuse functions, where integral screening is not effective, it is the time-determining step and can most efficiently be evaluated with a minimal operation count of \( \frac{1}{4}O^2V^2 \) (where \( O \) and \( V \) are number of, respectively occupied and virtual orbitals), if the 4-index integrals \( (ac|bd) \) in the MO are precalculated and stored on file before the iterative solution of the coupled-cluster equation, 11.4 and 11.5, and the full permutational symmetries of \( t^{ij}_{cd}, (ac|bd), \) and \( \Omega_{aibj} \) are exploited. For larger systems, however, the storage and I/O of the integrals \( (ac|bd) \) leads to bottlenecks. Alternatively, this contribution can be evaluated in an integral-direct way as

\[
t^{ij}_{\kappa\lambda} = \sum_{cd} t^{ij}_{cd}C_{\kappa c}C_{\lambda d}, \quad \Omega_{\mu\nu\kappa\lambda} = \sum_{\kappa\lambda} t^{ij}_{\kappa\lambda}(\mu\kappa|\nu\lambda), \quad \Omega_{aibj} = \sum_{\mu\nu} \Omega_{\mu\nu\kappa\lambda}C_{\mu a}C_{\nu b}
\] (11.23)

which, depending on the implementation and system, has formally a 2–3 times larger operation count, but allows to avoid the storage and I/O bottlenecks by processing the 4-index integrals on-the-fly without storing them. Furthermore, integral screening techniques can be applied to reduce the operation count for large systems to an asymptotic scaling with \( O(N^4) \).

In TURBOMOLE only the latter algorithm is presently implemented. (For small systems other codes will therefore be faster.)

The other class of expensive contributions are so-called ring terms (in some publications denoted as C and D terms) which involve contractions of the doubles amplitudes \( t_{aibj} \) with several 4-index MO integrals with two occupied and two virtual indeces, partially evaluated with \( T_1 \)-dependent MO coefficients. For these terms the implementation in TURBOMOLE employs the resolution-of-the-identity (or density-fitting) approximation (with the cbas auxiliary basis set) to reduce the overhead from integral transformation steps. Due this approximation CCSD energies obtained with TURBOMOLE will deviate from those obtained with
other coupled-cluster programs by a small RI error. This error is usually in the same order or smaller than the RI error for a RI-MP2 calculation for the same system and basis sets. The RI approximation is also used to evaluate the 4-index integrals in the MO basis needed for the perturbative triples corrections.

**Disc space requirements:** In difference to CC2 and MP2, the CCSD model does no longer allow to avoid the storage of double excitation amplitudes \( t^{ij}_{ab} \) and intermediates of with a similar size. Thus, also the disc space requirements for CCSD calculations are larger than for RI-MP2 and RI-CC2 calculations for the same system. For a (closed-shell) CCSD ground state energy calculation the amount of disc space needed can be estimated roughly as

\[
N_{\text{disc}} \approx \frac{4N^3 + (4 + m_{\text{DIIS}})O^2N^2}{(128 \times 1000)} \text{ MBytes ,} \tag{11.24}
\]

where \( N \) is the number of basis functions, \( O \) the number of occupied orbitals and \( m_{\text{DIIS}} \) the number of vectors used in the DIIS procedure (by default 10, see Sec. 22.2.20 for details).

For (closed-shell) CCSD(T) calculations the required disc space is with

\[
N_{\text{disc}} \approx \frac{5N^3 + 5O^2N^2 + ON^3}{(128 \times 1000)} \text{ MBytes ,} \tag{11.25}
\]

somewhat larger.

For calculations with an open-shell (UHF or ROHF) reference wavefunction the above estimates should be multiplied by factor of 4.

**Memory requirements:** The CCSD and CCSD(T) implementation in TURBOMOLE uses multi-pass algorithms to avoid strictly the need to store arrays with a size of \( \mathcal{O}(N^3) \) or \( \mathcal{O}(O^2N^2) \) or larger as complete array in main memory. Therefore, the minimum memory requirements are relatively low—although it is difficult to give accurate estimates for them.

On should, however, be aware that, if the amount of memory provided to the program in the data group \$\text{maxcor} \$ becomes too small compared to \( O^2N^2/(128 \times 1000) \) MBytes, loops will be broken in many small batches at the cost of increased I/O and a decrease in performance. As mentioned above, it is recommended to set \$\text{maxcor} \$ to 66–75% of the physical core memory available for the calculation.

**Important options:** The options to define the orbital and the auxiliary basis sets, the maximum amount of allocatable core memory (\$\text{maxcor} \$), and the frozen-core approximation (\$\text{maxcor} \$) have been mentioned above and described in the chapters on MP2 and CC2 calculations. Apart from this, CCSD and CCSD(T) calculations require very little additional input.

Relevant are in particular some options in the \$\text{ricc2} \$ data group:

\$\text{ricc2}
\begin{align*}
csd
\end{align*}
The options ccsd and ccsd(t) request, respectively, CCSD and CCSD(T) calculations. Since CCSD(T) requires the cluster amplitudes from a converged CCSD calculation, the option ccsd(t) also implies ccsd.

The number given for mxdiis defines the maximum number of vectors included in the DIIS procedure for the solution of the cluster equations. As mentioned above, it has some impact on the amount of disc space used by a CCSD calculation. Unless disc space becomes a bottleneck, it is not recommended to change the default value.

With maxiter one defines the maximum number of iterations for the solution of the cluster equations. If convergence is not reached within this limit, the calculation is stopped. Usually 25 iterations should be sufficient for convergence. Only in difficult cases with strong correlation effects more iterations are needed. It is recommended to increase this limit only if the reason for the strong correlation effects is known. (Since one reason could also be an input error as e.g. unreasonable geometries or orbital occupations or a wrong basis set assignment. With diffuse basis functions it is sometimes neccessary to tighten the integral screening threshold in $scftol$.)

The two parameters conv and oconv define the convergence thresholds for the iterative solution of the cluster equations. Convergence is assumed if the change in the energy (with respect to the previous iteration) is smaller than $10^{-\text{conv}}$ and the euclidian norm of the residual (the so-called vector function) smaller than $10^{-\text{oconv}}$. If conv is not given in the data group $\texttt{ricc2}$ the threshold for changes in the energy is set to the value given in $\texttt{denconv}$ (by default $10^{-7}$). If oconv is not given in the data group $\texttt{ricc2}$ the threshold for the residual norm is by default set to $10 \times \text{conv}$. With the default settings for these thresholds, the energy will thus be converged until changes drop below $10^{-7}$ Hartree, which typically ensures an accuracy of about 1 $\mu$H. These setting are thus rather tight and conservative even for the calculation of highly accurate reaction energies. If for your application larger uncertainties for the energy are tolerable, it is recommended to use less tight thresholds, e.g. conv=6 or conv=5 for an accuracy of, respectively, at least 0.01 mH (0.03 kJ/mol) or 0.1 mH (0.3 kJ/mol). The settings for conv (and oconv) have not only an impact on the number of iterations for the solution of the cluster equations, but as they determine the thresholds for integral screening also on the costs for the individual iterations.

**CCSD(T) energy with a second-order correction from the interference-corrected MP2-F12:** The error introduced from a CCSD(T) calculation with a finite basis set can be corrected from second-order corrections of the interference-corrected MP2-F12 (INT-MP2-F12) (Ref. [193]). The approximate CCSD(T)-INT-F12 at the basis
set limit is given from

\[ E_{\text{CCSD(T)/CBS}} \approx E_{\text{CCSD(T)}} + \sum_{i<j} F^{ij}_{\text{MP2}} - F^{ij}_{12} - F^{ij}_{MP2}. \]  

(11.26)

From define, in the submenu \$ricc2 select the cc\text{sd}(t) method and add the keyword intcorr

\$ricc2
csd(t)
intcorr

Then, switch on the f12 method (approximation A or B, inv or fixed). The corrected CCSD(T)-INT-F12 energy will be printed in the end of the calculation. It is highly recommended to start the CCSD(T)-INT-F12 calculation from a converged SCF calculation with symmetry, which is transformed to \( C_1 \). It is furthermore recommended to use Boys localized orbitals in the \$rir12 submenu. A table with the corrected second-order pair-electron energies and the corresponding interference factors can also be printed in the output by using the keyword intcorr all instead of intcorr.

**Excitation energies with CCSD:** At the (conventional) CCSD level also electronic excitation energies can be computed. For this the data group \$excitations has to be added (the same keyword as for CC2 applies). The implementation is currently restricted to vertical excitation energies (no transition moments or properties available) and in the closed–shell case to singlet excited states.

Note that for single-excitation dominated transitions CCSD is as CC2 correct through second-order and is not necessarily more accurate than CC2. It is, however, for double excitations still correct through first-order, while CC2 describes double excitations only in a zero-order approximation. Therefore, CCSD results are more robust with respect to double excitation contributions to transitions and are thus useful to check if CC2 is suitable for a certain problem.
Chapter 12

PNO-based CCSD and CCSD(T) calculations

The pnoccsd program provides a PNO-based implementations of CCSD including the perturbative triples corrections (T0) and (T). Presently the implementation is restricted to ground state energies for a closed-shell reference.

Further limitations:

no MPI parallelization: calculations beyond PNO-MP2 can presently only carried out on a single compute node, only the OpenMP (see Sec. 3.2.2) parallelization is available.

no use of symmetry: no point group symmetry can be used; the calculations can only be done in $C_1$

F12: in the current release version only PNO-MP2 can be combined with explicit correlation and the use of PAOs has to be disabled for PNO-MP2-F12 calculations.

Please note that one of the main strategies in PNO-CCSD calculations is to precompute most of the required two-electron integrals in the local (LMO, PNO, OSV, etc.) basis sets prior to the CCSD iterations. Therefore PNO-CCSD calculations on small molecules or with very tight thresholds can require considerably more disc space and core memory than the canonical implementation in ccsdf12. In general, the performance of PNO-CCSD calculations depend crucially on the speed of the disc I/O. It is therefore recommended to machines with fast RAID systems.

Prerequisites

CCSD and CCSD(T) calculations with the pnoccsd module require the same prerequisites as calculations with ccsdf12:
1. a converged SCF calculation with the one-electron density threshold set to $\text{denconv}$ 1.d-5 or less
2. an auxiliary basis defined in the data group $\text{cbas}$
3. if orbitals should be excluded from the correlation treatment the data group $\text{freeze}$ has to be set
4. the maximum core memory which the program is allowed to allocate should be defined in the data group $\text{maxcor}$; the recommended value is 66–75% of the available (physical) core memory. (see Sec. 22.2.2 for details)
5. the data group $\text{pnocsd}$ with a specification of the method and the PNO threshold.

In principle the the data group $\text{pnoccsd}$ does not require more input than a specification of the wavefunction model (available are currently: \text{mp2}, \text{mp3}, \text{ccsd}, \text{ccsd(t0)}, and \text{ccsd(t)}). The program will then use by default a PNO threshold $\text{tolpno}$ of 10$^{-7}$. All other thresholds are, if not explicitly specified, coupled to $\text{tolpno}$ (see below).

For CCSD(T) calculations one should in addition include the Laplace data group and specify the threshold for the Laplace transformation used in the PNO-based implementation of the perturbative triples correction (T). By default the program will use a threshold of $\text{conv=2}$. In many cases the PNO-CCSD(T0) approximation provides an economic alternative to PNO-CCSD(T). It is typically a factor of 5 faster then the (T) correction with $\text{conv=2}$ but changes the results for reaction energies often only in the range of a few kJ/mol (cmp. Ref. [194,195]).

**How To Perform a Calculation**

As presently no gradients are available, only single–point calculations are possible:

1. Select in \text{define} within the menu \text{pnocc} the wavefunction model (submenu \text{pnoccsd}), frozen core options (submenu \text{freeze}), an auxiliary basis for $\text{cbas}$ (submenu \text{cbas}), the amount of main memory (option \text{memory}),
2. Do an SCF calculation using either the \text{dscf} or the \text{ridft} module.
3. Invoke the \text{pnoccsd} program on the command line or with a batch script.

The minimal input for the $\text{pnoccsd}$ data group needed for a PNO-CCSD(T) calculation is just:

$$\text{pnoccsd}
\begin{align*}
\text{tolpno} & \quad 1.d-7 \\
c\text{ccsd(t)}
\end{align*}$$
12.1 SELECTION THRESHOLDS USED IN THE PNOCCSD PROGRAM

How to quote:

- for PNO-based triples (T0) or (T) calculations: Perturbative triples correction for local pair natural orbital based explicitly correlated CCSD(F12*) using Laplace transformation techniques. Gunnar Schmitz, Christof Hättig, J. Chem. Phys. 145, 234107 (2016)

12.1 Selection Thresholds used in the pnoccsd Program

The accuracy and the computational costs for calculations with the pnoccsd program depend crucially on a number of selection thresholds. Their default values are coupled to the PNO truncation threshold $\text{tolpno}$, such that the errors from all other approximations are smaller than the PNO truncation error. Depending on the application it might be that, in particular for energy differences, certain errors cancel out to a large extent and significant computational saving might be obtained by loosening specific thresholds.

The following thresholds can be set in the data group $\text{pnoccsd}$:

- $\text{tolpno}$ The PNO truncation threshold. The default value is $10^{-7}$ and gives typically errors in the (total) correlation energy $<1\%$ which decrease as a rule of thumb approximately with $\sqrt{\text{tolpno}}$.
- $\text{tolosv}$ The OSV truncation threshold (cmp. Ref. [20]) which is by default set to $0.1 \times \text{tolpno}$. This threshold mainly influences the time for the PNO-MP2 step.
- $\text{tolri}$ The threshold for selecting the local RI basis (cmp. Ref. [20]), which is by default set to $10^{7/12} \times \sqrt{\text{tolpno}}$. This threshold is important for the performance and accuracy of the integral evaluation.
- $\text{tolpair}$ The energy threshold for selecting the significant LMO pairs. If not specified in $\text{pnoccsd}$ it is set to $(0.1 \times \text{tolpno})^{2/3}$.
- $\text{toltno}$ The threshold for the TNO truncation. The default is $\text{toltno} = \text{tolpno}$. Since the TNOs are restricted through the PNOs this is the tightest useful value. Setting it tighter than $\text{tolpno}$ will usually not improve the accuracy. It only affects the triples corrections and is important for their costs and accuracy.
- $\text{toltrip}$ The selection threshold for LMO triples included for the (T0) and (T) corrections. By default $\text{toltrip}$ is set to $10 \times \text{toltno}$. It only affects the triples corrections and is important for their costs and accuracy.
CHAPTER 12. PNO-BASED CCSD AND CCSD(T)

For further options and thresholds see Sec. 22.2.22.

12.2 Characteristics of the Implementation

The \texttt{pnoccsd} program works$^*$ with localized molecular occupied orbitals (LMOs). Their local nature is exploited to truncate for each LMO pair the number of interacting virtual orbitals and thereby the number of required two-electron integrals. PNO-MP2 belongs to the family of local correlation methods which have in common the key idea that the correlation energy can be written as a sum of pair contributions

$$E_{\text{corr}}^{\text{MP2}} = \sum_{i \leq j} e_{ij}^2 = \frac{1}{4} \sum_{i,a,b} \epsilon_{ij}(ab)$$  \hspace{1cm} (12.1)

and that with localized molecular orbitals the pair contributions $e_{ij}^2$ decrease fast with the distance $|r_{ij}|$ between the LMOs $i$ and $j$ (approximately with $1/|r_{ij}|^6$) so that for large molecules the number of pairs that need to be included to compute the correlation energies within a given accuracy increases only linearly with the number of atoms. Furthermore, only such virtual orbitals contribute significantly to the correlation energy $e_{ij}^2$ of a pair $ij$ which are spatially close to $i$ and $j$.

The OSV-PNO hybrid approach implemented in the \texttt{pnoccsd} program starts with the determination of truncated subsets of projected atomic orbitals (PAOs) and orbital-specific virtual (OSV) orbitals for each LMO $i$ as the eigenvectors of diagonal density contributions $D_{ii}$ computed from (approximate) MP2 doubles amplitudes:

$$D_{ii}^ab = 2 \sum_{c} t_{ii}^{ac} t_{ii}^{cb} = \sum_{\tilde{c}} d_{ii}^{ac} n_{\tilde{c}}^{ii} d_{i\tilde{c}}^{ab}$$ \hspace{1cm} (12.2)

with occupation numbers $n_{\tilde{c}}^{ii}$ not smaller than a predefined threshold $\text{tolosv}$. The OSVs are first used to calculate for each pair $ij$ estimates for the pair correlation energy contribution $e_{ij}^2$ and to set up a list of pairs $ij$ for which significant contributions to the total correlation energy are expected. Only for this list of pairs the OSVs of the two LMOs are merged together to an orthonormal set of pre-PNOs $\tilde{c}_{ij}$ which are used to compute the contribution of the pair $ij$ to the density matrix via approximated MP2 amplitudes and as eigenvectors of these densities the coefficients of the pair natural orbitals:

$$D_{\tilde{c}_{ij}b_{ij}}^{ij} = 2 \sum_{\tilde{c}_{ij}} t_{\tilde{c}_{ij}b_{ij}}^{ij} \tilde{c}_{ij}^{ij} = \sum_{\tilde{c}} d_{\tilde{c}_{ij}b_{ij}}^{ij} n_{\tilde{c}}^{ij} d_{\tilde{c}_{i\tilde{c}}}^{ij}.$$ \hspace{1cm} (12.3)

Similar as for the OSVs also the PNOs with occupation numbers $n_{\tilde{c}}^{ij}$ below the PNO truncation threshold $\text{tolpno}$ are discarded.

For OSV-PNO-MP2 the MP2 equations are then solved with the amplitudes and two-electron integrals projected onto the so determined set of pair natural orbitals. For the explicitly-correlated variant OSV-PNO-MP2-F12 similar sets of orbital and pair specific auxiliary orbitals (OSX) are determined for the occupied and the complementary virtual orbital spaces.

$^*$The program can also run with canonical orbitals but will then not be efficient.
12.2. CHARACTERISTICS OF THE IMPLEMENTATION

which appear in the calculation of the three-electron integrals for the additional contributions from the geminals.

The thresholds for discarding PNOs and OSVs and the subset of auxiliary orbitals for the local RI approximation for computing two-electron integrals play an important role for the accuracy and the computational costs of calculations with the \texttt{pnoccsd} program. Per default all thresholds are coupled to the PNO truncation threshold $\texttt{tolpno}$ such that the errors due to the OSV, local RI and pair truncation approximations and due to the screening of (AO) integrals and contributions to the residual are about an order of magnitude smaller than the PNO truncation error. The default value for $\texttt{tolpno}$ is $10^{-7}$ which gives PNO truncation errors in the correlation energy $< 1\%$. Test calculations showed that the relative errors in the correlation energy decrease typically linear with $\sqrt{\texttt{tolpno}}$.

12.2.1 Strong pair approximation

Beyond MP2 the PNO implementation makes per default use of a strong pair approximation:

- The 3.rd order CCD ladder terms and corresponding exchange terms:

$$
\sum_{kl} t^{kl}_{ab}(ki\tilde{|}lj) + \sum_{cd} t^{ij}_{cd}(ac\tilde{|}cd) - \sum_{ck} \left( (ki\tilde{|}bc)t^{kj}_{ac} + (kj\tilde{|}ac)t^{ki}_{bc} \right)
$$

(12.4)

decay together as $R^{-6}$ with the distance between the centers of the LMOs $i$ and $j$ and for the first term also with the distance between the centers of the LMOs $k$ and $l$. These terms are only evaluated if $ij$ is a strong pair. For the last two terms in addition $ki$ and $kj$ and for the first term $kl$, $ki$, and $lj$ are required to be strong pairs.

- The Coulomb integrals $(ki\tilde{|}ca)$ in the ring terms are neglected if $ki$ is a distant or neglected pair.

Per default the threshold for $T_{\text{strg}} = \sqrt{10} \times T_{\text{PNO}}$ and $T_{\text{weak}} = T_{\text{pair}}^{2/3} \times T_{\text{strg}}^{1/3}$. Above $(pq\tilde{|}rs)$ denote $t_{11}$-dressed two-electron integrals.
Chapter 13

Random Phase Approximation Calculations: Energy and First-Order Properties

Ground state energies and analytic first-order properties (e.g., 'gradients' for structure optimizations) can be computed within the random phase approximation (RPA) using the `rirpa` module. Theory and development of the `rirpa` module is published in references [196,197] for the energy and reference [198] for the first-order properties. See also [199] for a survey of applications of RIRPA. For two-component relativistic RPA energy calculations, see reference [200]. For perturbative beyond-RPA calculations, see references [201,202]. For energy and gradients, the resolution-of-the-identity (RI) approximation is used to approximate the two-electron repulsion integrals in the correlation treatment and is combined with an imaginary frequency integration. The RI approximation is also employed by default for the computation of the Coulomb integrals for the HF energy. For the energy, it is optional to use RI for the Fock exchange integrals ('RI-K'), while RI-K for the gradients is not available yet. Open shell systems and the frozen core approximation may be used in RPA energy calculations but are not presently available in gradient calculations. Two-component RPA energy calculations are only possible for Kramers-restricted closed-shell systems. ECPs are presently not compatible with RIRPA gradients. Neither RPA energy nor gradients support symmetry at the moment. The gradients may be used together with the scripts `jobex` (for structure optimizations) and `NumForce` (for numerical harmonic vibrational frequencies).

13.1 Ground State Energy Theory

The RPA energy

$$E^{\text{RPA}} = E^{\text{HF}} + E^{\text{C RPA}}$$  \hspace{1cm} (13.1)
13.1. *GROUND STATE ENERGY THEORY*

consists of the Hartree-Fock exact exchange energy $E^{HF}$ and a correlation energy piece $E^{C\,RPA}$. *rirpa* computes Eq. (13.1) non-selfconsistently from a given set of converged input orbitals. The correlation energy

$$E^{C\,RPA} = \frac{1}{2} \sum_n (\Omega_{n}^{RPA} - \Omega_{n}^{TDARPA})$$

is expressed in terms of RPA excitation energies at full coupling $\Omega_{n}^{RPA}$ and within the Tamm-Dancoff approximation $\Omega_{n}^{TDARPA}$. The further discussion is restricted to the one-component (nonrelativistic) treatment, for the sake of convenience. For the derivation of the two-component RPA theory see ref. [200]. The excitation energies are obtained from time-dependent DFT response theory and are eigenvalues of the symplectic eigenvalue problem [203,204]

$$(\Lambda - \Omega_{0n}\Delta)|X_{0n}, Y_{0n}\rangle = 0.$$  (13.3)

The super-vectors $X_{0n}$ and $Y_{0n}$ are defined on the product space $L_{occ} \times L_{virt}$ and $L_{occ} \times L_{virt}$, respectively, where $L_{occ}$ and $L_{virt}$ denote the one-particle Hilbert spaces spanned by occupied and virtual static KS molecular orbitals (MOs). The super-operator

$$\Lambda = \begin{pmatrix} A & B \\ B & A \end{pmatrix}$$

contains the so-called orbital rotation Hessians,

$$(A + B)_{ijab} = (\epsilon_a - \epsilon_i)\delta_{ij}\delta_{ab} + 2(ia|jb),$$

$$(A - B)_{ijab} = (\epsilon_a - \epsilon_i)\delta_{ij}\delta_{ab}.$$  (13.6)

$\epsilon_i$ and $\epsilon_a$ denote the energy eigenvalues of canonical occupied and virtual KS MOs. *rirpa* computes so-called direct RPA energies only, i.e. no exchange terms are included in Eqs. (13.5) and (13.6).

In RIRPA the two-electron integrals in Eqs (13.5) are approximated by the resolution-of-the-identity approximation. In conjunction with a frequency integration this leads to an efficient scheme for the calculation of RPA correlation energies [196]

$$E^{C\,RIRPA} = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} F^{C}(\omega),$$

where the integrand contains $N_{aux} \times N_{aux}$ quantities only,

$$F^{C}(\omega) = \frac{1}{2} \text{tr} \left[ \ln \left( I_{aux} + Q(\omega) \right) - Q(\omega) \right].$$  (13.8)

$N_{aux}$ is the number of auxiliary basis functions. The integral is approximated using Clenshaw-Curtiss quadrature.

**Prerequisites**

Calculations with *rirpa* require
• a converged SCF calculation

• `rirpa`-options may be included by adding them in the lines below the keyword `$rirpa` in the control file. Possible options are:
  
  – `npoints` (integer) - Number of frequency integration points (default is 60).
  – `nohxx` - HF energy is skipped, (HXX = Hartree + eXact (Fock) eXchange).
  – `rpaprof` - Generates profiling output.

• the maximum core memory the program is allowed to allocate should be defined in the data group `$maxcor` (in MB); the recommended value is ca. 3/4 of the available (physical) core memory at most.

• orbitals to be excluded from the correlation treatment have to be specified in data group `$freeze`

• an auxiliary basis defined in the data group `$cbas`

• an auxiliary basis defined in the data group `$jbas` for the computation of the Coulomb integrals for the Hartree-Fock energy. This is optional if the `nohxx` option is set.

• (optional) an auxiliary basis defined in the data group `$jkbas` for the computation of the exchange integrals for the Hartree-Fock energy. `$rik` should be added to the control file for RI-JK to be effective.

Effective core potentials (ECPs) are not presently compatible with the HF energy at the KS reference as computed in `rirpa`. The `nohxx` option must therefore be included for systems where ECPs were used to obtain the reference KS orbitals in order to skip the HF energy calculation and compute solely the correlation energy.

To perform a two-component relativistic RIRPA calculation [200] on (Kramers-restricted) closed-shell systems taking into account spin-orbit coupling, the two-component version of `ridft` has to be run before (see Chapter 6.4) using the keywords `$soghf` and `$kramers`. The implementation is currently only available in combination with the `nohxx` option.

13.2 Gradients Theory

All details on the theory and results are published in [198]. The RI-RPA energy is a function of the MO coefficients $C$ and the Lagrange multipliers $\epsilon$ and depends parametrically (i) on the interacting Hamiltonian $\hat{H}$, (ii) on the AO basis functions and the auxiliary basis functions. All parameters may be gathered in a supervector $X$ and thus

$$E^{\text{RIRPA}} = E^{\text{RIRPA}}(C, \epsilon|X).$$  \hspace{1cm} (13.9)

$C$ and $\epsilon$ in turn depend parametrically on $X$, the exchange-correlation matrix $V^{\text{XC}}$, and the overlap matrix $S$ through the KS equations and the orbital orthonormality constraint. First-order properties may be defined in a rigorous and general fashion as total derivatives.
of the energy with respect to a “perturbation” parameter \(\xi\). However, the RI-RPA energy is not directly differentiated in our method. Instead, we define the RI-RPA energy Lagrangian

\[
L_{\text{RI-RPA}}(C, \mathcal{E}, D^\Delta, W|X, V^{\text{XC}}, S) = E_{\text{RI-RPA}}(C, \mathcal{E}|X) + \sum_\sigma \left( \langle D^\Delta_\sigma (C^T_\sigma F_\sigma C_\sigma - \mathcal{E}_\sigma) \rangle - \langle W_\sigma (C^T_\sigma S C_\sigma - 1) \rangle \right). \tag{13.10}
\]

\(C, \mathcal{E}, D^\Delta, \) and \(W\) are independent variables. \(L_{\text{RI-RPA}}\) is required to be stationary with respect to \(C, \mathcal{E}, D^\Delta, \) and \(W\).

\[
\begin{align*}
\left( \frac{\partial L_{\text{RI-RPA}}}{\partial D^\Delta_\sigma} \right)_{\text{stat}} &= C^T_\sigma F_\sigma C_\sigma - \mathcal{E}_\sigma = 0, \tag{13.11} \\
\left( \frac{\partial L_{\text{RI-RPA}}}{\partial W_\sigma} \right)_{\text{stat}} &= C^T_\sigma S C_\sigma - 1 = 0. \tag{13.12}
\end{align*}
\]

\(D^\Delta\) and \(W\) are determined by the remaining stationarity conditions,

\[
\begin{align*}
\left( \frac{\partial L_{\text{RI-RPA}}}{\partial \mathcal{E}} \right)_{\text{stat}} &= 0, \tag{13.13} \\
\left( \frac{\partial L_{\text{RI-RPA}}}{\partial C} \right)_{\text{stat}} &= 0. \tag{13.14}
\end{align*}
\]

It turns out from eqs (13.13) and (13.14) that the determination of \(D^\Delta\) and \(W\) requires the solution of a single Coupled-Perturbed KS equation. Complete expressions for \(D^\Delta\) and \(W\) are given in [198]. At the stationary point “stat = \((C = C, \mathcal{E} = \epsilon, D^\Delta = D^\Delta, W = W)\)”, first-order RI-RPA properties are thus efficiently obtained from

\[
\frac{dE_{\text{RI-RPA}}(C, \epsilon|X)}{d\xi} = \left\langle \left( \frac{\partial L_{\text{RI-RPA}}}{\partial X} \right)_{\text{stat}} \frac{dX}{d\xi} \right\rangle + \left\langle \left( \frac{\partial L_{\text{RI-RPA}}}{\partial V^{\text{XC}}} \right)_{\text{stat}} \left( \frac{\partial V^{\text{XC}}}{\partial \xi} \right)_{\text{stat}} \right\rangle
+ \left\langle \left( \frac{\partial L_{\text{RI-RPA}}}{\partial S} \right)_{\text{stat}} \frac{dS}{d\xi} \right\rangle. \tag{13.15}
\]

Finally, the RPA energy gradients may be explicitly expanded as follows:

\[
\frac{dE_{\text{RI-RPA}}(C, \epsilon|X)}{d\xi} = \left\langle D_{\text{RI-RPA}} \frac{dh}{d\xi} \right\rangle + \left\langle \Gamma^{(4)} \frac{d\Pi^{(4)}}{d\xi} \right\rangle + \left\langle D^\Delta \left( \frac{\partial V^{\text{XC}}}{\partial \xi} \right)_{\text{stat}} \right\rangle
+ \left\langle \Gamma^{(3)} \frac{d\Pi^{(3)}}{d\xi} \right\rangle + \left\langle \Gamma^{(2)} \frac{d\Pi^{(2)}}{d\xi} \right\rangle - \left\langle W \frac{dS}{d\xi} \right\rangle. \tag{13.16}
\]

where \(D_{\text{RI-RPA}}\) is the KS ground state one-particle density matrix \(D\) plus the RI-RPA difference density matrix \(D^\Delta\) which corrects for correlation and orbital relaxation effects. \(h\) is the one-electron Hamiltonian; \(\Pi^{(2/3/4)}\) are 2-, 3-, and 4-centre electron repulsion integrals and the \(\Gamma^{(2/3/4)}\) are the corresponding 2-, 3-, and 4-index relaxed 2-particle density matrices; \(W\) may be interpreted as the energy-weighted total spin one-particle density matrix.

This result illustrates the key advantage of the Lagrangian method: Total RI-RPA energy derivatives featuring a complicated implicit dependence on the parameter \(X\) through the variables \(C\) and \(\epsilon\) are replaced by partial derivatives of the RI-RPA Lagrangian, whose computation is straightforward once the stationary point of the Lagrangian has been fully determined.
Gradients Prerequisites

Geometry optimizations and first order molecular property calculations can be executed by adding the keyword `rpagrad` to the `$rirpa` section in the control file. RPA gradients also require

- an auxiliary basis defined in the data group `$jbas` for the computation of the Coulomb integrals for the Hartree-Fock energy
- an auxiliary basis defined in the data group `$cbas` for the ERI's in the correlation treatment.
- zero frozen core orbitals; RIRPA gradients are not compatible with the frozen core approximation at this time.

The following gradient-specific options may be further added to the `$rirpa` section in the control file

- `drimp2` - computes gradients in the DRIMP2 limit.
- `niapblocks` (integer) - Manual setting of the integral block size in subroutine rirhs.f; for developers.

In order to run a geometry optimization, `jobex` must be invoked with the level set to `rirpa`, and the `-ri` option (E.g. `jobex -ri -level rirpa`).

In order to run a numerical frequency calculation, `NumForce` must be invoked with the level set to `rirpa`, e.g., `NumForce -d 0.02 -central -ri -level rirpa`.

13.3 Further Recommendations

- The direct RPA correlation energy is defined in a Kohn-Sham context without inclusion of exchange integrals and therefore the use of self-consistent KS orbitals obtained from (semi-)local functionals is recommended. HF-orbitals or KS-orbitals obtained from hybrid functionals lead to inferior results.
- Experience has demonstrated that the difference in RPA correlation energies obtained from different (semi-)local functionals is very small (much smaller than the inherent error of the method).
- Like MP2, RIRPA results are known to converge very slowly with increasing basis set size, in particular slowly with increasing $l$-quantum number of the basis set. For reliable results the use of QZVP basis sets (or higher) is recommended. For non-covalently bound systems larger basis sets (especially, with more diffuse functions) are needed.
- It is recommended to exclude all non-valence orbitals from RIRPA calculations, as neither the TURBOMOLE standard basis sets SVP, TZVPP, and QZVPP nor the cc-pVXZ
basis set families (with X=D,T,Q,5,6) are designed for correlation treatment of inner shells (for this purpose polarisation functions for the inner shells are needed). The default selection for frozen core orbitals in Define (orbitals below -3 a.u. are frozen) provides a reasonable guess. If core orbitals are included in the correlation treatment, it is recommended to use basis sets with additional tight correlation functions as e.g. the cc-pwCVXZ and cc-pCVXZ basis set families.

- We recommend the use of auxiliary basis sets optimized for the corresponding (MO) basis sets. The auxiliary basis sets optimized for RI-MP2 and RI-CC2 are suitable for \texttt{rirpa} \cite{196} correlation energy calculations.

- For systems where ECPs are required as well as within the two-component relativistic implementation, RIRPA total energies (HF@KS + correlation) must be computed in two steps. RIRPA correlation energies can be obtained using the \texttt{nohxx} option, and the HF energy can then be computed separately, e.g., in \texttt{ridft} if the RI-J approximation is used for the Coulomb integrals. To compute the HF@KS energy, compute the KS orbitals first; then disable \texttt{$dft$} and set \texttt{$scfiterlimit 1$} in the control file to perform a single SCF iteration. Finally add the total HF@KS energy from \texttt{ridft} to the correlation energy from the \texttt{nohxx-rirpa} calculation to obtain the total RIRPA energy. \textit{Note:} the molecular orbitals are altered by \texttt{ridft} after a single-iteration, so the HF@KS energy must be computed \textit{after} the RIRPA correlation energy.

- Tight SCF (\texttt{$scfconv 7$}) and one-electron density matrix (\texttt{$denconv 1d-7$}) convergence criteria, large basis sets (QZVP), and large frequency grids which ensure a sensitivity measure of no more than 1d-4 should be used in combination with \texttt{rpagrad} for accurate results.

\section{Comments on the Output}

- The most important output for \texttt{rirpa} are the Hartree-Fock (HXX) energy and the RIRPA correlation energy which are written to the standard output.

- The optimal scaling parameter for the quadrature grid is printed together with a sensitivity parameter. The sensitivity parameter provides a numerical estimate for the error in the numerical integration used to evaluate $E^C_{\text{RIRPA}}$. Experience demonstrates that the sensitivity parameter correlates well with the condition number of the matrix $Q$. Small gap systems have large condition numbers and therefore require large grids. An estimate of the number of eigenvalues smaller than 0.05 H is given and if necessary, a warning to increase the grid size is printed to standard output.

- The molecular dipole and quadrupole moments are written to the standard output whenever a gradient calculation is carried out.

- Rotational constants are provided in the \texttt{rirpa} output below the coordinates section.

- Enabling the option \texttt{rpaprof} will output additional timings information.
Chapter 14

Many body perturbation theory in the $GW$ approximation

DFT estimates of both single-particle excitation energies and vertical excitation spectra can be systematically improved upon by the $GW$- and Bethe–Salpeter methods, which are both based on a single-particle Green’s function.

14.1 Single particle spectra based on the $GW$ approximation

14.1.1 Theoretical background

A method to systematically improve upon DFT estimates of single-particle excitation spectra, that is, ionization potentials and electron affinities, is the $GW$ method. Its central object is the single-particle Green’s function $G$; its poles describe single-particle excitation energies and lifetimes. In particular, the poles up to the Fermi-level correspond to the primary vertical ionization energies. The $GW$-approach is based on an exact representation of $G$ in terms of a power series of the screened Coulomb interaction $W$, which is called the Hedin equations. The $GW$-equations are obtained as an approximation to the Hedin-equations, in which the screened Coulomb interaction $W$ is calculated neglecting so called vertex corrections. In this approximation the self–energy $\Sigma$, which connects the fully interacting Green’s function $G$ to a reference non-interacting Green’s function $G_0$, is given by $\Sigma = GW$.

This approach can be used to perturbatively calculate corrections to the Kohn–Sham spectrum. To this end, the Green’s function is expressed in a spectral representation as a sum
of quasi-particle states.

\[
G(r, r'; z) = \sum_n \frac{\Psi_{r,n}(r, z) \Psi_{r', n}^+(r', z)}{z - \varepsilon_n(z) + i\eta \text{sgn}(\varepsilon_n(z) - \mu)}. \tag{14.1}
\]

Under the approximation that the KS states are already a good approximation to these quasi-particle states \(\Psi_{1,n}\) the leading order correction can be calculated by solving the zeroth order quasi-particle equation:

\[
\varepsilon_n = \epsilon_n + \langle n|\Sigma[G_{KS}](\varepsilon_n) - V_{xc}|n\rangle \tag{14.2}\]

An approximation to the solution of this equation can be obtained by linearizing it:

\[
\varepsilon_n = \epsilon_n + Z_n \langle n|\Sigma(\epsilon_n) - V_{xc}|n\rangle \tag{14.3}\]

here, \(Z_n\) is given by:

\[
Z_n = \left[1 - \langle n|\frac{\partial \Sigma(E)}{\partial E}\bigg|_{E=\epsilon_n}\rangle\right]^{-1} \tag{14.4}\]

reducing the computational effort to a single iteration.

The self-energy \(\Sigma\) appearing in Eqn. (14.2) is calculated in the \(GW\) approximation from the KS Green’s function and screening. This is the so-called \(G_0W_0\) approximation. The self-energy splits in an energy independent exchange part \(\Sigma^x\) and a correlation part \(\Sigma^c(E)\) that does depend on energy. Their matrix elements are given by:

\[
\langle n|\Sigma^x|n'\rangle = -\sum_i (ni|in'), \tag{14.5}\]

and

\[
\langle n|\Sigma^c(\epsilon_n)|n\rangle = \sum_m \sum_n |(nm|\rho_m)^2| \frac{\epsilon_n - \epsilon_n^* - Z_m \text{sgn}(\epsilon_n - \mu)}{\epsilon_n - \epsilon_n^* - Z_m \text{sgn}(\epsilon_n - \mu)}. \tag{14.6}\]

Where \(Z_m = \Omega_m - i\eta\) are the excitation energies shifted infinitesimally into the complex plane. The \(\rho_m\) are the corresponding excitation densities. More details, tests and benchmark calculations are can be found in Ref. 205.

14.1.2 \(GW\) features

The \(GW\) method is implemented in \textsc{TURBOMOLE} in the \texttt{escf} module supporting the following features:

- LDA, GGA, meta-GGA and their Hybrid functionals can be used for the underlying DFT calculation.
- Single-shot \(G_0W_0\)
- Quasiparticle selfconsistent GW (qsGW)
- Eigenvalue-only selfconsistent GW (evGW)
• In $G_0W_0$, the linearized, Eqn. (14.3), and solved, Eqn. (14.2), quasiparticle equation.

• Both RPA and TDDFT response functions can be used to screen the Coulomb interaction in constructing $W$, although we only recommend to use RPA response.

• Closed shell and open shell references are supported in all calculations. Additionally, Kramers-restricted closed shell and also Kramers-unrestricted closed and open shell systems within the two-component relativistic framework (inclusion of spin-orbit coupling) can be treated using $soghf$. For open shell two-component calculations collinear and non-collinear approaches are implemented.

14.1.3 General recipe for $G_0W_0$ calculations

The general recipe for a $G_0W_0$ and evGW calculations with dRPA response using RI is as follows:

1. define session
2. Choose reasonable cbas auxiliary basis sets (define)
3. dscf or ridft calculation
4. Provide $gw$ OR $rigw flags and keywords
5. To trigger the fast RI algorithm add $rick
6. escf calculation

Ad 1) The def2-TZVPP basis seems to be the most useful, it comes for all tested systems within 0.1 eV of the def2-QZVP result with about half the number of basis functions. A cbas must be set, the use of jbas-type fitting bases is discontinued for GW since Turbomole 7.3. In the final define menu select the gw menu to set options for the actual GW calculation. The gw menu in define will set all needed variables for a gw/rigw calculation. The according $scfinstab and $soes flags will be set, and also the $gw or $rigw flags are written to the control file with the chosen options. Also the $rick flag is set. The control file provided by define can usually be used for a calculation without further modifications; which are nevertheless described below of one wishes to modify it manually.

Ad 3) Symmetry up to $D_{2h}$ is available for both closed shell (rpas) and open shell system (urpa) for GW, for $gw$ and $rigw. Especially in the gw module the use of symmetry leads to large speedups and the user is encouraged to exploit symmetry if possible. Two-component calculations can only be performed in $C_1$. The $gw$ module can also handle open-shell 2c calculations, while $rigw is formally limited to Kramers-restricted closed shell molecules in the 2c case. Moreover, the simplified methods xGW and sGW, which neglect contributions from excitation vectors are available for all point groups implemented in Turbomole.

Ad 4) In the last define step the gw menu can be selected to set up a $G_0W_0$ (and also evGW and qsGW) calculation. There are three distinct versions available for $G_0W_0$ and evGW:
1. \$gw uses spectral representations just as the previous version, which scales as \(N^6\) with system size. This version is to be preferred when full quasiparticle spectra are desired (i.e.: QP energies are also needed for non-valence orbitals, or generally for all). It is compatible with nearly all available starting points:

(a) scalar/non-relativistic closed-shell systems (up to \(D_{2h}\) symmetry)
(b) scalar/non-relativistic open-shell systems (up to \(D_{2h}\) symmetry)
(c) two-component (2c) Kramers-restricted systems (\(C_1\) only)
(d) two-component (2c) open-shell systems (\(C_1\) only)

2. \$rigw; RI-AC-G0W0 and RI-AC-evGW variants construct the self-energy \(\Sigma_C\) on the imaginary axis using numerical integration. The obtained result is then analytically continued to the real axis using Pade approximants. This ansatz scales roughly as \(N^4\), and yields reliable results for valence orbitals, especially for HOMO and LUMO quasiparticle energies. RI-AC-GW is the default variant for \$rigw calculations. It is available for the following starting points:

(a) scalar/non-relativistic closed-shell systems (up to \(D_{2h}\) symmetry)
(b) scalar/non-relativistic open-shell systems (up to \(D_{2h}\) symmetry)
(c) two-component (2c) Kramers-restricted systems (\(C_1\) only)

3. \$rigw; RI-CD-G0W0 and RI-CD-evGW variants construct the self-energy \(\Sigma_C\) using contour deformation. This ansatz scales roughly as \(N^4\) (valence orbitals) - \(N^5\) (core orbitals), and yields reliable results for most orbitals. RI-CD-GW is invoked by the \textit{contour} keyword within the \$rigw datagroup. It is available for the following starting points:

(a) scalar/non-relativistic closed-shell systems (up to \(D_{2h}\) symmetry))
(b) scalar/non-relativistic open-shell systems (up to \(D_{2h}\) symmetry))
(c) two-component (2c) Kramers-restricted systems (\(C_1\) only)

Especially for 2c calculations the prefactor of 256 for a \$gw calculation is reduced to 4-8 in a \$rigw calculation, making calculations feasible also for large systems. This prefactor reduction is valid for both \$rigw variants, RI-AC-GW and RI-CD-GW. It is highly recommended to use RI-AC-GW or RI-CD-GW (\$rigw) over full GW (\$gw): Virtually no accuracy is lost, at a largely reduced computational effort.

Ad 5) \$rick is a synonym for the keyword \$rik in escf, however \$rick does not interfere with other programs for easier batch processing.

Ad 6) The GW module integrated in \texttt{escf} is (since Turbomole 7.3) largely decoupled from the iterative solver used for normal excited state calculations. Therefore the user is discouraged to only calculate partial spectra. Always \textit{ALL} excitations should be included in the \$gw approach, as the self-energy usually converges rather slowly with the number of included excitations. If a system is too large, and this is no longer possible one can resort
to the $rigw$ approach. If the HOMO-LUMO GAP, or IP/EA of a system are the primary
interest of the user usage of the $rigw$ approach is always recommended. The output of
both approaches ($gw$ and $rigw$) is processed by the same routines, and therefore they are
compatible in further production steps such as e.g. BSE calculations for properties.

Ad 7) Freezing orbitals with $freeze$ in combination with $GW$ is only possible with $gw$ in
Cl symmetry, but not with $rigw$.

Performance & Accuracy: Since Turbomole 7.3 specialized $GW$ algorithms are implemented
in $escf$, leading to large speedups. The analytic continuation ($rigw$) variant usually yields
self-energies with meV accuracy compared to standard $gw$ for HOMO/LUMO orbitals, and
is much more conservative with memory and CPU requirements. For two-component calcu-
lations (including spin-orbit interactions) also the prefactor of $G_0W_0$ and $evGW$ is largely
reduced in $rigw$. The standard $gw$ variant is however accurate and reliable throughout
all quasiparticle states, also describing non-valence orbitals well and therefore recommended
whenever possible.

Possible source of errors: The DFT options used in $dscf$ or $ridft$ should not be altered
before starting $escf$. Otherwise erratic quasiparticle energies may be obtained. Also any
files containing excitations (sing, unrs) from other $escf$ runs should be removed prior to the
$GW$ run. Also a cbas must be set before starting $escf$.

14.2 Excitation energies from the Bethe–Salpeter equation

14.2.1 Theoretical background

The Bethe–Salpeter (BS) excitation energies $\omega_n$ are obtained as solutions of a pseudo-
Hermitian eigenvalue equation, which has the same form as in time-dependent Hartree–Fock
(TD-HF) theory. For the sake of simplicity, only the equations for general references are
given below. The orbitals are assumed to be complex.

$$
\begin{pmatrix}
A & B \\
B^* & A^*
\end{pmatrix}
\begin{pmatrix}
X_n \\
Y_n
\end{pmatrix}
= \omega_n
\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}
\begin{pmatrix}
X_n \\
Y_n
\end{pmatrix}.
$$

(14.7)

In the following, the indices $a,b,\ldots (i,j,\ldots)$ refer to unoccupied (occupied) spinors, the
indices $p,q,r,\ldots$ include occupied and unoccupied spinors. The definitions of the matrices
$A$ and $B$ differ in the one-particle energies, which are the orbital energies in case of TD-HF
and the $GW$ quasi-particle energies $\epsilon^{QP}$ in case of BS. Also, the exchange interaction
is screened in case of BS,

$$
A_{ia,jb} = \Delta^{QP}_{ia,jb} + (ai|jb) - (ji|ab),
$$

(14.8)

$$
B_{ia,jb} = (ai|bj) - (ja|ib).
$$

(14.9)

The exchange interaction $(pq|rs)$, which is defined as

$$
(pq|rs) = \sum_{tu}(\epsilon^{-1})_{pq,tu}(tu|rs) \leftrightarrow W = \epsilon^{-1} v,
$$

(14.10)
14.2. EXCITATION ENERGIES FROM BSE

is screened by the inverse of the dielectric function,
\[
e_{pq,rs} = \delta_{pr}\delta_{qs} - \langle pq|rs \rangle \left[ \chi_0(\omega = 0) \right]_{rs,rs},
\]
(14.11)
\[
\left[ \chi_0(\omega = 0) \right]_{rs,rs} = \sum_{ia} \frac{\delta_{ra}\delta_{si} + \delta_{ri}\delta_{sa}}{\varepsilon_i^{QP} - \varepsilon_a^{QP}},
\]
(14.12)
which depends on theGW quasi-particle energies. It can be expressed in terms of an infinite-order perturbation expansion in the Coulomb interaction,
\[
W = \varepsilon^{-1}v
\]
(14.13)
\[
= v + v\chi_0(\omega = 0)v + v\chi_0(\omega = 0)v + \ldots .
\]
To obtainW, the RI-approximation is introduced for the two-electron integrals. As a direct result, the inversion \( \varepsilon \) is replaced by the inversion of a matrix in the auxiliary basis:
\[
W \approx \mathbf{b}^\top \tilde{i} \mathbf{b} = \mathbf{b}^\top \left( 1 + i + i^2 + i^3 + \ldots \right) \mathbf{b}
\]
(14.14)
\[
i = 2\mathbf{b}\chi_0(\omega = 0)\mathbf{b}^\top \Leftrightarrow i_{PQ} = 2 \sum_{ia} \frac{b_{P,ai}b_{Q,ai}}{\varepsilon_i^{QP} - \varepsilon_a^{QP}}.
\]
(14.15)
For further details, we refer to Ref. [206].

14.2.2 BSE features

The BSE method is implemented in theescf module. It is activated by the keyword $$bse$$. Its features and different variants are discussed in the following.

Reference determinant

The BSE method supports both Hartree–Fock and Kohn–Sham references, that is, orbitals obtained from a dscf or ridft computation. Note that symmetry is only supported up to \( D_{2h} \) and its subgroups. In case of wave functions of higher symmetry, the orbitals have to be converted using define’s option susy to a subgroup of \( D_{2h} \). Two-component references (\$soghf) including spin-orbit interactions can be used.

Excitations

Singlet, triplet and spin-unrestricted excitation energies based on the Bethe–Salpeter equation are available in escf. Similar to the RPA and TDA variants in TD-HF, the eigenvalues of the full \( 2 \times 2 \) “super-matrix” can be computed, or of \( \mathbf{A} \) only. To define these options, the same input blocks as for a TD-HF computation are read in: $$scfinstab$$ and $$soes$$. See Section 8 for details. For two-component calculations only the TDA variant is implemented. Note that 2c-BSE is, compared to TD-DFT, not limited to closed shell cases but also implemented for open shell cases.
Quasiparticle energies

The BSE method reads in quasiparticle energies obtained from a preceding GW calculation. It supports all different GW methods available in escf. Since Turbomole 7.3 the number of frozen orbitals can be different in the GW and BSE step. However, qenergies.dat files from Turbomole 7.2 and earlier are not directly compatible with Turbomole 7.3 and higher, and it is recommended to redo the GW calculation. The reason for this is that the quasiparticle states for frozen orbitals are also projected since Turbomole 7.3, and always all orbitals are therefore updated and reported in the qenergies.dat file.

Quasiparticle energies in $A$ and $W$

By default, the matrices $A$ and $W$ are set up using quasiparticle energies. To set up $A$ using KS/HF orbital energies instead, i.e.

$$A_{ia,jb} = \Delta \varepsilon_{ia,jb} + (ai|jb) - (ji|ab),$$  \hspace{1cm} (14.16)

the option noqpa has to be added to the $\$bse$ block in control. Similarly, if the denominator in $\chi_0$ and, consequently, the static screened interaction should be constructed using KS/HF orbital energies instead of GW quasiparticle energies, the option noqpw has to be set. The quasiparticle energies are read in from the file qenergies.dat, which has to be created in a preceding GW calculation using escf. A different file name can be defined using the option file in the $\$bse$ block.

Computation of the static screened interaction

The static screened interaction is obtained from the auxiliary matrix $\tilde{I}$. By default, this is computed by Cholesky decomposition and inversion of $(1 - i)^{-1}$. An alternative iterative procedure,

$$\tilde{I}^{(i+1)} = 1 + i \tilde{I}^{(i)},$$  \hspace{1cm} (14.17)

is activated by the option iterative. The convergence threshold (default: $1.0d-12$) and maximum number of iterations (default: 100) can be adjusted by the options thrconv and iterlim, respectively.

Auxiliary basis sets

The static screened interaction is computed using the RI approximation, therefore, an auxiliary basis set is required. Since the integrals are similar to those in MP2, the cbas auxiliary basis sets are recommended. They can be conveniently defined using the cc sub-menu of define.

14.2.3 General recipe for a BSE calculation

1. dscf or ridft calculation to converge reference orbitals
2. Provide $gw or $rigw control flags and perform a GW calculation
3. Choose reasonable \texttt{cbas} auxiliary basis sets if not done in the GW step
4. \texttt{escf} calculation to obtain \texttt{qpenergies.dat}
5. Remove $gw and $rigw control flags
6. Set BSE control flags
7. Add the keyword $rik or $rick if not already present
8. \texttt{escf} calculation to obtain excitation energies
Chapter 15

Calculation of Vibrational Frequencies and Vibrational Spectra

Calculation of second derivatives of total energies leads to the molecular Hessian, which enables prediction of vibrational frequencies and infrared spectra (within the harmonic approximation) as well as the application of improved algorithms for geometry optimization and transition state search.

The \texttt{aoforce} module calculates analytically harmonic vibrational frequencies within the HF- or (RI)DFT-methods for closed-shell- and spin-unrestricted open-shell-systems. Broken occupation numbers would lead to results without any physical meaning. Note, that RI is only used partially, which means that the resulting Hessian is only a (very good) approximation to exact second derivatives of the RIDFT-energy expression. Apart from a standard force constant calculation which predicts all (symmetry allowed and forbidden) vibrational transitions, it is also possible to specify certain irreps for which the calculation has to be done exclusively or to select only a small number of lowest eigenvalues (and eigenvectors) that are generated at reduced computational cost.

Furthermore, the \texttt{NumForce} script allows the calculation of second derivatives for all methods for which a program for analytic gradients is available in \textsc{Turbomole}, i.e. the main use of this script is the prediction of vibrational spectra at the MP2 level and for excited states using RI-CC2 or TDDFT.

If force constant calculations result in imaginary frequencies, molecular distortions along these normal modes should lower the energy. To distort the molecule, use the interactive module \texttt{vibration}, output of the new coordinates is done to the general input file on \texttt{$\text{newcoord}$}.

Vibrational frequencies also enable calculation of the molecular partition function and thus prediction of thermodynamic functions at temperatures other than 0 K and finite pressure.
(within the assumption of an ideal gas and no coupling between degrees of freedom). These functions can be obtained with the interactive module Freeh, results are printed to standard I/O.

Prerequisites

1. Both aoforce and even more NumForce require well converged SCF-/DFT-calculations (e.g. $scfconv 8$ and jobex [-ri] -gcart 4).
2. The maximum core memory the program aoforce is allowed to allocate should be defined in the data group $maxcor$; the recommended value is about 50% of the available (physical) core memory (in case of RI-calculations subtract the memory specified in $ricore$).
3. To start aoforce in the lowest eigenvalue search mode, use the keyword $les$. For its use as well as other keywords dealing with the calculation of only some irreps, see the Referenceguide part of this manual.
4. NumForce additionally requires the file gradient and will not work, if the calculation is not done at a stationary point of the molecular total energy. For reliable results, always use NumForce with the option -central (i.e. central differences) and be aware of effects due to the step length (option -d real; default value is 0.02 a.u.). It is strongly recommended to use NumForce in DFT calculations only with the option weight derivatives in $dft$, since this provides more accurate gradients and thus frequencies, see Section 22.2.13.
5. The NumForce script can be run for different levels of theory, which means that the binaries it calls have to be specified additionally. To perform calculations using the RI approximation, call NumForce with the option -ri. MP2 and CC2 calculations are requested via the options -level mp2 and -level cc2, respectively. NumForce works also on the RI-RPA level with -level rirpa (note: the -ri option must be used in this case). To select the correct option(s), use the explanations you get by calling NumForce -h.

For a review of theory and implementation see refs. [207,208].

Limitations

The aoforce code has presently a number of limitations one should be aware of:

- It can only handle basis sets up to at most g functions.
- Point groups with reducible E-representations (such as $C_n$ and $C_{nh}$ with $n \geq 3$, $S_n$ with $n \geq 5$, or $T$ and $T_d$)
- Frozen internal or cartesian coordinates are not recognized. aoforce will always evaluate the full hessian matrix.
15.1 Analysis of Normal Modes in Terms of Internal Coordinates

A note in advance: The analysis of normal modes can (at nearly no computational cost) always be redone as long as you keep a copy of the file hessian.

A general prerequisite for this option is that you have defined a set of non-redundant coordinates for all 3N-6 (3N-5) degrees of freedom of your molecule. To make sure that this is the case, you should switch off redundant coordinates (currently, this is only possible by manually removing the data group $redundant$ and also removing the entry redundant on in $optimize$). Run define to generate non-redundant coordinates by using the iaut command in the internal coordinate menu (or by creating them manually via idef). We recommend to use the irem command first to delete all previous definitions of internal coordinates. See Section 4 for further details. If the molecules point group is not $C_1$, define will set some of the coordinate to status d (display) or i (ignore). Use the ic command to change all coordinates to k. You can also achieve this by editing in the $intdef$ data-group manually.

The analysis in internal coordinates is switched on by adding a line in the data-group $drvopt$ that has the following syntax:

```
analysis [only] intcoord [print print-level]
```

Keywords in square brackets are optional. If only is added, the program assumes that the file hessian exists and runs only the analysis part of aoforce. The program will give the following output (controlled by the print level given in parenthesis):

- diagonal elements of the Hessian in internal coordinates (force constants of bonds, angles, etc.) (print level 0)
- complete force constant matrix in internal coordinates (print level 2)
- normal modes in terms of internal coordinates (print level 1)
- Potential energy contributions $\tilde{V}_{ij}^n$, defined as
  
  $$\tilde{V}_{ij}^n = L_i^n L_j^n F_{ij} / \omega^n$$

  where $L_i^n$ are the elements of the normal coordinate belonging to mode $n$ and $F_{ij}$ are the elements of the force constant matrix, both expressed in the internal coordinate basis; $\omega$ is the related eigenvalue. The program will list the diagonal contributions $\tilde{V}_{ii}^n$ (print level 1), the off-diagonal contributions $\tilde{V}_{ij}^n + \tilde{V}_{ji}^n = 2\tilde{V}_{ij}^n$ (print level 2 for up to 10 atoms, else print level 10) and the brutto contributions $\sum_i \tilde{V}_{ij}^n$ (print level 1).
- Based on these quantities, the program will give an assignment of normal modes by listing all internal coordinates with large diagonal or brutto contributions (print level 0).
Note that for large molecules or complicated topologies the B-matrix (that is used to transform from Cartesian coordinates into internal coordinates and vice versa) may become singular. In this case only the normal modes in the internal coordinate basis can be listed.

15.2 Calculation of Raman Spectra

Vibrational Raman scattering cross sections are computed in the approximation of the polarizability theory from derivatives of the frequency-dependent polarizability tensor with respect to normal modes of vibration,

\[ \left( \frac{d\sigma}{d\Omega} \right) = k_\omega \left( c_i \alpha'^2(\omega) + c_a \gamma'^2(\omega) \right) . \]

Here, \( \alpha'^2(\omega) \) and \( \gamma'^2(\omega) \) denote the isotropic part and the anisotropy of the differentiated polarizability tensor, respectively. The coefficients \( c_i \) and \( c_a \) depend on the scattering geometry and the polarization of the incident and scattered radiation. The factor

\[ k_\omega = \frac{\hbar}{4\pi\epsilon_0^2 c^4} \frac{(\omega - \omega_v)^4 g_v}{2\omega_v} \]

includes the frequency \( \omega_v \) and the degeneracy \( g_v \) of the vibration. \( c \) is speed of light and \( \epsilon_0 \) stands for the dielectric constant of vacuum.

Computation of Raman spectra with TURBOMOLE is a three-step procedure. First, vibrational frequencies and normal modes are calculated by aoforce. Cartesian polarizability derivatives are computed in the second step by egrad, see Section 8.4.9. Finally, the program intense is used to project the polarizability derivatives onto vibrational normal modes and to compute Raman scattering cross sections which are written out along with vibrational frequencies and normal modes. The script Raman can be used to perform all these steps automatically.

15.3 Calculation of VCD Spectra

VCD intensities are proportional to the rotational strengths, which are defined as scalar product between the electric and magnetic transition dipole moments. The rotational strength for the transition of the \( n \)th vibrational normal mode in the electronic ground state is

\[ R_n = \text{Im}(\mu_{el,n} \cdot \mu_{mag,n}). \]

Within the harmonic approximation, the electric and magnetic transition dipole moments can be written as

\[ (\mu_{el,n})_\beta = \sqrt{\frac{\hbar}{\omega_n}} \sum_{\lambda\alpha} P^\lambda_{\alpha\beta} S^\lambda_{\alpha,n} \]

\[ (\mu_{mag,n})_\beta = -\sqrt{2\hbar^3 \omega_n} \sum_{\lambda\alpha} M^\lambda_{\alpha\beta} S^\lambda_{\alpha,n} . \]
$P_{\alpha \beta}^\lambda$ is the so called \textit{atomic polar tensor} (APT), $M_{\alpha \beta}^\lambda$ the so called \textit{atomic axial tensor} (AAT) and $S_{\alpha, \kappa}^\lambda$ the transformation matrix from cartesian coordinates to normal coordinates. \vspace{1ex} \\
$\omega_n$ is the frequency of the \textit{n}th vibrational normal mode, $\alpha$ and $\beta$ describe cartesian coordinates and $\lambda$ labels the atom nuclei. 

Both the APT and the AAT are divided in an electronic and a nuclear contribution. According to Chem. Phys. Lett. 252, 221 (1996), the electronic contribution of the AAT within the \textit{coupled perturbed Hartree-Fock} (CPHF) formalism is given by

\[
I_{\alpha \beta}^\lambda = \sum_{i=1}^{N_{occ}} \sum_{\mu, \nu=1}^{N_{bf}} \left[ c_{\mu i} c_{\nu i} \langle \chi_{R^\lambda \alpha}^{\mu} | \chi_B^{\nu} \rangle + \sum_{p=1}^{N} c_{\mu p} c_{\nu p} U^B_{ip} \langle \chi_{R^\lambda \alpha}^{\mu} | \chi_B^{\nu} \rangle \\
+ \sum_{p=1}^{N} c_{\mu p} c_{\nu p} U^R_{ip} \langle \chi_{B^\lambda \alpha}^{\mu} | \chi_B^{\nu} \rangle + \sum_{p, q=1}^{N} c_{\mu p} c_{\nu q} U^R_{ip} U^B_{iq} \langle \chi_{R^\lambda \alpha}^{\mu} | \chi_B^{\nu} \rangle \right].
\]

To compute VCD spectra with TURBOMOLE, \texttt{mpshift} and subsequently \texttt{aoforce} have to be called. First, if \texttt{$vcd$} is set, \texttt{mpshift} calculates the disturbed $U^B_{ip}$. In the second step vibrational frequencies, normal modes and VCD rotational strengths are calculated by \texttt{aoforce}. At present, calculation of VCD spectra is possible at Hartree-Fock and DFT level (for LDA, GGA and hybrid-GGA functionals) in $C_1$ symmetry. Since the angle between the electric and magnetic transition dipole moments is not gauche invariant, it will only be printed out if the distance between the center of mass and the origin is smaller than 1e-03 a0. The script \texttt{VCD} can be used to perform these two steps automatically.

15.4 Vibrational frequencies with fixed atoms using \texttt{NumForce}

The \texttt{NumForce} script provides with the option \texttt{-frznuclei} a possibility to do a vibrational analysis with fixed atoms. The atoms for which the cartesian coordinates should frozen have to be marked in \texttt{$coord$} with a "f" behind the atom type. The frozen coordinates will be skipped during the numerical evaluation of the force constant matrix; instead all off-diagonal elements of the force constant matrix which refer to one or two frozen coordinates will be set to zero, while the diagonal elements for the frozen coordinates will be set to an arbitrarily chosen large value. 

This feature is mainly intended to allow for a vibrational analysis in embedded cluster calculations e.g. for defects in ionic crystals. The vibrational analysis uses a kind of "frozen phonon" approximation which corresponds to setting the masses of the fixed atoms to infinity, i.e. decoupling the fixed atoms mechanically from the "mechanically active" subsystem. The resulting vibrational frequencies will thus only provide good approximations to the true (harmonic) frequencies for such modes for which the mechanical coupling to the embedding environment is negligible. In particular the frequencies of stretch modes which involve bonds between the "mechanically active" subsystem and atoms with frozen coordinates will be strongly affected by this approximation.
15.5 INTERFACE TO HOTFCHT

Note:

- The \texttt{frznuclei} is not compatible with the polyhedral difference algorithm. It can only be used with central differences which should be enforced with the \texttt{central} option.

- If the option \texttt{frznuclei} is switched on, the program assumes that the constraints enforced by fixing coordinates remove the six external degrees of freedom for an overall rotation or translation of the system and therefore the hessian matrix is not projected onto the subspace of internal coordinates. Fixing the coordinates of only one or two atoms might does lead to some artificial small, but non-zero frequencies.

- Zero-point vibrational energies calculated with the \texttt{frznuclei} option are only meaningful for comparison of systems with the same mechanically active atoms and similar embedding, as the contributions from the frozen coordinates are not included.

15.5 Interface to hotFCHT

\texttt{aoforce} supports the generation of input files for the hotFCHT code (version 2.0 and later) of R. Berger and co-workers, see \texttt{hotFCHT}, which allows for the calculation of Franck-Condon factors. Just include the keyword \texttt{hotfcht} in the control file. The option is also active in analysis mode, that is as long as you still have the data group \texttt{hessian} (in the control file or in a file referenced in the control file) you can always use \texttt{aoforce} (in analysis mode) to quickly generate the hotFCHT input. The program will write three files. The first one, \texttt{hotfcht\_header.inp} contains a collection of the most important keywords of hotFCHT (set to some default values, please adapt to your needs) and list of all atomic masses (either TURBOMOLE’s default masses or the ones given in the \texttt{atoms} data group). The other two, \texttt{hotfcht\_data\_i.inp} and \texttt{hotfcht\_data\_f.inp} contain the vibrational frequencies, normal modes and the names of the irreducible representations of the normal modes. In the former file, these data are associated with the hotFCHT keywords for the initial state, while the latter file contains the same data, but associated with the keywords for the final state. In order to run a hotFCHT calculation, you need to optimize the structures of two electronic states (usually the electronic ground state and an excited or ionized state) and obtain the harmonic force fields for both, using either aoforce or NumForce. In order to generate the hotFCHT input, just concatenate the \texttt{hotfcht\_header.inp} file (from any of the two calculations) and the \texttt{hotfcht\_data\_i.inp} file from the calculation that refers to the initial state (e.g. the ground state in case of an absorption spectrum) and the \texttt{hotfcht\_data\_f.inp} file from the calculation of the final state (the excited state in case of an absorption spectrum). Carefully edit the keywords in the header of the resultant file and run hotFCHT (please, refer to the hotFCHT documentation for further information).
Chapter 16

First order electron-vibration coupling

16.1 Theoretical background

At the effective single-particle level, the Hamiltonian of the coupled system of electrons and vibrations is given by [209]

\[ \hat{H} = \hat{H}^e + \hat{H}^v + \hat{H}^{ev}, \]

(16.1)

where the first term \( \hat{H}^e \) describes the electronic system and the second term \( \hat{H}^v \) the vibrational degrees of freedom. The last term in the Hamiltonian

\[ \hat{H}^{ev} = \sum_{\mu \nu} \sum_\alpha \hat{d}^\dagger_\mu \lambda_{\mu \nu}^{\alpha} \hat{d}_\nu (\hat{b}_\alpha^\dagger + \hat{b}_\alpha) \]

(16.2)

describes the first order electron-vibration (EV) interaction. The EV coupling constants are given as

\[ \lambda_{\mu \nu}^{\alpha} = \left( \frac{\hbar}{2\omega_{\alpha}} \right)^{1/2} \sum_\chi \langle \mu | \frac{d\hat{H}^e}{d\chi} | \nu \rangle A_\chi^{\alpha}, \]

(16.3)

where \( \chi = (k, u) \) is a shorthand notation that refers both to the displacement of atom \( k \) from the equilibrium value of the position \( \vec{R}_k \) along the Cartesian component \( R_{k, u} \) with \( u = x, y, z \) as well as the index pair itself. Furthermore, \( A_\chi^{\alpha} = C_\chi^{\alpha}/\sqrt{M_k} \) are the mass-normalized normal modes, obtained from the eigenvectors \( C_\chi^{\alpha} \) of the dynamical matrix as calculated from the aoforce module [209].
16.2 evib features

The evib module, implemented in TURBOMOLE, allows to calculate the matrix elements of the first order derivative of the Kohn-Sham operator with respect to atomic displacements $\chi$

$$H^\epsilon_{\mu\nu,\chi} = \langle \mu | \frac{dH^\epsilon_e}{d\chi} | \nu \rangle,$$

(16.4)

which are required to obtain the first order EV coupling constant, as given in Eq. (16.3) [209].

Features and limitations:

- LDA, GGA and mGGA functionals supported,
- RHF and UHF,
- SMP parallelization,
- only c1 symmetry at the moment,
- derivatives of the quadrature weights are not supported, use of large grids recommended,
- just direct calculation, no ri-approximation at the moment.

16.3 General usage of evib

Calculating the matrix elements given in Eq. (16.4) consists of two steps. First a force constant calculation using aoforce is performed, where the following control flags have to be added:

$snosalc$
$sijuai_out$

This will save the derivative of the density matrix.

The subsequent run of evib requires the following control flags:

$no weight derivatives$

in the $dft$ section, usage of large grids is therefore recommended and the multiple grids m3 to m5 should be avoided.

The elements of the matrix in Eq. (16.4) are stored in binary format in dfdx.dat (dfdx_a.dat and dfdx_b.dat for UHF), using formatted Fortran output with a record length of 8 bytes for each matrix element. The matrix elements $H^\epsilon_{\mu\nu,\chi}$ are stored in the atomic orbital (AO) basis in blocks ordered as (i) $(N_{ao}+1) \times N_{ao}/2$ matrix elements of the upper part of the triangular matrix for the $\mu\nu$ indices at a certain $\chi = (k,u)$, (ii) Cartesian component $u = x, y, z$, (iii) atom number $k$.

Optionally,
$\text{dfdx}_i \text{ textout}$

  can be used to generate text output of the matrix elements.

For bigger systems this option can, however, generate very large output files.
Chapter 17

Calculation of NMR Shieldings

The program mpshift calculates nuclear magnetic resonance (NMR) shielding constants using the GIAO (Gauge-Including Atomic Orbital) method.

At present the following methods are implemented:

HF-SCF the coupled-perturbed Hartree–Fock (CPHF) equations in the AO basis are solved using a semi-direct iterative algorithm [210] similar to dscf. The (multipole-accelerated-) resolution-of-the-identity-fitting approximation is available for the Coulomb term (MARI-J) [211]. Due to the effective screening approach the exchange part shows a low-order scaling.

DFT using either non-hybrid functionals where no iterations are needed [212] or hybrid functionals where the same algorithm as at the HF-SCF level is used. Meta-GGAs and the XCfun library can be further used [211].

MP2 semi-direct method, see ref. [25] and [213].

The following Hamiltonians are available in addition to the usual non-relativistic one:

ECP In molecules with ECP-carrying atoms, chemical shieldings on all the other atoms can be computed with mpshift in the way suggested by van Wüllen [214]. ECPs can be used to treat scalar-relativistic effects on neighboring atoms [215].

X2C A scalar-relativistic or spin-free all-electron exact two-component Hamiltonian can be used to calculate the NMR shielding tensor of heavy elements [115]. A finite nucleus model based on a Gaussian charge distribution is available for the scalar potential and the vector potential. This model can be also used with the DLU-X2C Hamiltonian below. Grids with an increased number of radial points [111] (e.g. gridsize 4a) should be used. Moreover, it is recommended to use NMR-tailored basis sets, i.e. the x2c-XVPall-s (X=S,TZ) type bases.
These employ additional tight functions to accurately sample the density in the vicinity of the nuclei.

**DLU-X2C** A local X2C Hamiltonian is further available and recommended. The diagonal local approximation to the unitary decoupling transformation (DLU) is employed. This results in a very efficient algorithm. The error introduced by the DLU scheme is negligible. For details on the theory, implementation and application please see ref. [115].

### 17.1 Prerequisites

1. `mpshift` needs converged MO vectors from a SCF or DFT run (`dscf` or `ridft`)
2. For SCF or DFT calculations, no specifications have to be made in the control file but currently only closed shell cases are implemented in `mpshift`.
3. To perform an MP2 calculation of the NMR shieldings, you have to prepare the input with `mp2prep -c`

### 17.2 How to Perform a SCF or DFT Calculation

All you have to do for running `mpshift` is typing `mpshift` at the shell level.

The results of a SCF or DFT calculation (the trace of the total shielding tensors, its anisotropy and the CPHF contribution for each symmetry distinct atom) are written into the control file after the keyword `$nmr <rhf/dft> shielding constants`.

This data group is write-only for `mpshift`, but you can utilize it for graphical rendering of the calculated NMR spectra and for a quick overview of the results. A more detailed output with the complete shielding tensors can be found in the output of `mpshift`, so it is recommended to put the output in a file when calling the program.

### 17.3 How to Perform a MP2 calculation

To perform an MP2 calculation of the NMR shieldings you have to prepare the input with `mp2prep -c`.

`mpshift` will then calculate both the SCF and MP2 shielding constants. The result is written into the control file after the keyword `$nmr mp2 shielding constants`. In addition, the HF shielding constants are given after `$nmr rhf shielding constants`.

The script `mp2prep` will create the keywords

```
$csmp2
$thize .10000000E+10
```
17.4 Chemical Shifts

NMR shifts are obtained by comparing nuclear shieldings of your test compound with a reference molecule \(\delta_{\text{subst}} = \delta_{\text{ref}} + \sigma_{\text{ref}} - \sigma_{\text{subst}}\). Therefore you have to choose a reference molecule with a well-known shift for which you can easily calculate the absolute shielding constant. This implies a certainty about the geometry, too. Furthermore you have to use the very same basis set for corresponding atoms to minimize the basis set influence.

Keywords for the module Mpshift

A list of keyword for the module mpshift can be found in Section 22.2.28.

17.5 Other Features

- The mpshift program can be restarted at any stage of computing, since all intermediate results are written into the file restartcs. In case of an external program abort you have to remove the $actual step flag (by the command actual -r or using an editor). mpshift analyses this file and decides where to continue.
- Vibrational circular dichroism (VCD) spectra can be calculated using the gallier script utilizing the aoforce module [215].
• The conductor-like screening model (COSMO) to account for counterions and solvation effects can be selected [211].

• NMR shielding tensors can be calculated for given nuclei only by setting \$nucsel in the control file.

• The default maximum number of iterations for the CPHF procedure is set to 30. It can be increased by adapting \$csmaxiter in the control file.

• \texttt{mpshift} is parallelized by OpenMP. The corresponding environment variables have to be set previously to running \texttt{mpshift}.

17.6 Known Limitations

• Only closed shell calculations are currently supported.

• Molecular point groups that contain reducible e representations are not supported (C\textsubscript{n}, C\textsubscript{nh} with n > 2).

• Spin–orbit coupling can not be considered yet.
Chapter 18

Embedding and Solvation Effects

TURBOMOLE provides a number of different embedding schemes to model the interaction of the quantum system with environments. They reach from a simple point charge embedding to the continuum solvation model \texttt{cosmo} and the atomistic polarizable embedding.

Most of these schemes ignore each other. So they should not be used in combination unless it has been tested that the chosen combination works indeed correctly together.

The embeddings schemes differ also in the extent to which they have been implemented in the different programs and for different functionalities.

18.1 Charge and multipole embedding

**Point Charge Embedding:** The embedding of the quantum system in an electric potential of an (non-periodic) set of charges and multipole moments is driven by the data group $\texttt{point\_charges}$. In the simplest case it has the structure:

\begin{verbatim}
$point\_charges
  <x> <y> <z> <q>
\end{verbatim}

where $<x>$, $<y>$, $<z>$ are the coordinates and $<q>$ the value of the point charge.

The point charge embedding is implemented in the \texttt{dscf}, \texttt{ridft}, \texttt{grad}, \texttt{rdgrad}, \texttt{escf}, \texttt{ricc2}, \texttt{ccsdf12}, and \texttt{pnoccsd} programs and can be used essentially with every method and for all properties including gradients with respect to nuclear coordinates. Exceptions are (auxiliary) basis set gradients, analytic second derivatives (\texttt{aoforce} (but they can be computed semi-numerical with \texttt{NumForce}).

For QM/MM applications it is also possible to compute the forces that the quantum system exerts on the point charges. For further details about available options and the input see Sec. 22.2.9.
Point Mutipole Embedding: In addition to point charges one can also use point multipoles up to octupole moments. The input uses generalization of the point charge input:

\[
\text{\$point\_charges \ mxrank=3} \\
\quad <x> <y> <z> <q> <qx> <qy> <qz> <qxx> <qyy> <qzz> <qxy> <qxz> <qyz> \ldots
\]

The value of keyword \textit{mxrank} defines the maximum multipole rank (0=charge, 1=dipole, 2=quadrupole, 3=octupole) and the tensor components are given for each multipole site after the coordinates in canonical order. For the components of the octupole moment the canonical order is:

\[
\text{xxx yyy zzz xxy xxz xyy yyz xzz yzz xyz }
\]

The multipole embedding (beyond charges) is only implemented for (excitation) energies. Gradients are not (yet) available and symmetry can not be used.

Gaussian Smeared Charges: Instead of point charges one use Gaussian charge distributions of the form \(G(\vec{r}) = N \exp \left(-\alpha(\vec{r} - \vec{r}_0)^2\right)\). The input format is in this case:

\[
\text{\$point\_charges \ gaussians} \\
\quad <x> <y> <z> <q> <alpha>
\]

The normalization factor \(N\) is determined internally such that the total (integrated) charge of the distribution is \(q = \int_{R^3} G(\vec{r}) d\vec{r}\).

For Gaussian charge distributions gradients are available, but symmetry can not be used.
18.2 Treatment of Solvation Effects with COSMO

The Conductor-like Screening Model [216] (Cosmo) is a continuum solvation model (CSM), where the solute molecule forms a cavity within the dielectric continuum of permittivity $\varepsilon$ that represents the solvent. The charge distribution of the solute polarizes the dielectric medium. The response of the medium is described by the generation of screening charges on the cavity surface.

CSMs usually require the solution of the rather complicated boundary conditions for a dielectric in order to obtain the screening charges. Cosmo instead uses the much simpler boundary condition of vanishing electrostatic potential for a conductor,

$$\Phi^{tot} = 0.$$ 

This represents an electrostatically ideal solvent with $\varepsilon = \infty$. The vector of the total electrostatic potential on the cavity surface segments is determined by the solute potential $\Phi^{solv}$, which consist of the electronic and the nuclear part, and the vector of the screening charges $q$,

$$\Phi^{tot} = \Phi^{solv} + Aq = 0.$$ 

$A$ is the Coulomb matrix of the screening charge interactions. For a conductor, the boundary condition $\Phi^{tot} = 0$ defines the screening charges as

$$q = -A^{-1}\Phi^{solv}.$$ 

To take into account the finite permittivity of real solvents, the screening charges are scaled by a factor,

$$f(\varepsilon) = \frac{\varepsilon - 1}{\varepsilon + \frac{1}{2}}$$

$$q^* = f(\varepsilon)q$$

The deviation between the Cosmo approximation and the exact solution is rather small. For strong dielectrics like water it is less than 1%, while for non-polar solvents with $\varepsilon \approx 2$ it may reach 10% of the total screening effects. However, for weak dielectrics, screening effects are small and the absolute error therefore typically amounts to less than one kcal/mol. As shown in [217] ions can be described more accurately by using the scaling factor $f(\varepsilon) = \frac{\varepsilon - 1}{\varepsilon + 0}$. This also leads to results (e.g. by comparing solvation free energies) more or less identical to IEFPCM or SS(V)PE. This is possible since TURBOMOLE version 7.1 by adding the keyword ions to the epsilon option in the $\$cosmo$ section (see 22.2.11).

The dielectric energy, i.e. the free electrostatic energy gained by the solvation process, is half of the solute-solvent interaction energy.

$$E_{\text{dielectric}} = \frac{1}{2}f(\varepsilon)q^*\Phi^{solv}$$

The total free energy of the solvated molecule is the sum of the energy of the isolated system calculated with the solvated wave function and the dielectric energy

$$E = E(\Psi^{solv}) + E_{\text{dielectric}}.$$
A COSMO energy calculation starts with the construction of the cavity surface grid. Within the SCF procedure, the screening charges are calculated in every cycle and the potential generated by these charges is included into the Hamiltonian. This ensures a variational optimization of both the molecular orbitals and the screening charges and allows for the evaluation of analytic gradients.

**Radii based Cavity Construction:** In order to ensure a sufficiently accurate and efficient segmentation of the molecular shaped cavity the COSMO implementation uses a double grid approach and segments of hexagonal, pentagonal, and triangular shape. The cavity construction starts with a union of spheres of radii \( R_i + RSOLV \) for all atoms \( i \). In order to avoid problems with symmetric species, the cavity construction uses de-symmetrized coordinates. The coordinates are slightly distorted with a co-sinus function of amplitude AMPRAN and a phase shift PHSRAN. Initially a basis grid with NPPA segments per atom is projected onto atomic spheres of radii \( R_i + RSOLV \). In order to avoid the generation of points in the problematic intersections, all remaining points, which are not in the interior of another sphere, are projected downwards onto the radius \( R_i \). In the next step a segment grid of NSPH segments per H atom and NSPA segments for the other atoms is projected onto the surface defined by \( R_i \). The basis grid points are associated to the nearest segment grid centers and the segment coordinates are re-defined as the center of area of their associated basis grid points, while the segment area is the sum of the basis grid areas. Segments without basis grid points are discarded. In order to ensure nearest neighbor association for the new centers, this procedure is repeated once. At the end of the cavity construction the intersection seams of the spheres are paved with individual segments, which do not hold associated basis grid points.

**Density based Cavity Construction:** Instead of using atom specific radii the cavity can be defined by the electron density. In such an isodensity cavity construction one can use the same density value for all atoms types or the so-called scaled isodensity values. In the later approach different densities are used for the different atom types. The algorithm implemented in TURBOMOLE uses a marching tetrahedron algorithm for the density based cavity construction. In order to assure a smooth density change in the intersection seams of atoms with different isodensity specification, this areas are smoothened by a radii based procedure.

**Radii based Isosurface Cavity:** A cavity construction algorithm based on the triangulation of an iso-surface is available as an alternative to the radii or density based construction. It overcomes deficiencies which have become apparent for the original COSMO standard cavity, especially in concave regions of the molecular shaped cavity. The new construction, called FINE Cavity, is described in details in [218].

To enable the new radii based isosurface cavity the keyword $cosmo_isorad$ has to be added to the control file.
18.2. TREATMENT OF SOLVATION EFFECTS WITH COSMO

**A-Matrix Setup:** The A matrix elements are calculated as the sum of the contributions of the associated basis grid points of the segments k and l if their distance is below a certain threshold, the centers of the segments are used otherwise. For all segments that do not have associated basis grid points, i.e., intersection seam segments, the segment centers are used. The diagonal elements $A_{kk}$ that represent the self-energy of the segment are calculated via the basis grid points contributions, or by using the segment area $A_{kk} \approx 3.8\sqrt{a_k}$, if no associated basis grid points exist.

**Outlying charge correction:** The part of the electron density reaching outside the cavity causes an inconsistency that can be compensated by the "outlying charge correction". This correction will be performed at the end of a converged SCF or an iterative MP2 calculation and uses an outer surface for the estimation of the energy and charge correction [219]. The outer surface is constructed by an outward projection of the spherical part of the surface onto the radius $R_i + ROUTF \ast RSOLV$. It is recommended to use the corrected values.

**Numerical Frequency Calculation:** The calculation of harmonic frequencies raises the problem of non-equilibrium solvation in the Cosmo framework, because the molecular vibrations are on a time scale that do not allow a re-orientation of the solvent molecules. Therefore, the total response of the continuum is split into a fast contribution, described by the electronic polarization, and a slow term related to the orientational relaxation. As can be shown [220] the dielectric energy for the disturbed state can be written as

$$E^{die}_{dist} = \frac{1}{2} f(\varepsilon)q(P^0)\Phi(P^0) + \frac{1}{2} f(n^2)q(P^\Delta)\Phi(P^\Delta) + f(\varepsilon)q(P^0)\Phi(P^\Delta),$$

where $P^\Delta$ denotes the density difference between the distorted state and the initial state with density $P^0$. The interaction is composed of three contributions: the initial state dielectric energy, the interaction of the potential difference with the initial state charges, and the electronic screening energy that results from the density difference. The energy expression can be used to derive the correspondent gradients, which can be applied in a numerical frequency calculation. Because the COSMO cavity changes for every distorted geometry the initial state potential has to be mapped onto the new cavity in every step. The mapped potential of a segment of the new cavity is calculated from the distance-weighted potentials of all segments of the old cavity that fulfill a certain distance criterion. The mapped initial state screening charges are re-calculated from the new potential.

**Iterative MP2 Cosmo:** For ab initio MP2 calculations within the CSM framework three alternatives can be found in the literature [221]. The first approach, often referred to as PTE, performs a normal MP2 energy calculation on the solvated HF wave function. The response of the solvent, also called reaction field, is still on the HF level. It is the only of the three approaches that is formally consistent in the sense of second-order perturbation theory [222,223]. In the so-called PTD approach the vacuum MP2 density is used to calculate the reaction field. The third approach, often called PTED, is iterative so that the reaction
field reflects the density of the first-order wave function. In contrast to the PTE approach the reaction field, i.e. the screening charges, change during the iterations until self consistency is reached. Gradients are available on the formally consistent PTE level only [224].

**Vertical excitations and Polarizabilities for TDDFT, TDA and RPA:** The escf program accounts for the COSMO contribution to the excitation energies and polarizabilities. The COSMO settings have to be defined for the underlying COSMO dscf or ridft calculation. In case of the excitation energies the solvent response will be divided into the so-called slow and fast term [220,225]. The screening function of the fast term depends on the refractive index of the solvent which can be defined in the input. If only the COSMO influence on the ground state should be taken into account we recommend to perform a normal COSMO calculation (dscf or ridft) and to switch off COSMO (i.e. deactivate $\$cosmo$) before the escf calculation.

**The Direct COSMO-RS method (DCOSMO-RS):** In order to go beyond the pure electrostatic model a self consistent implementation of the COSMO-RS model the so-called "Direct COSMO-RS" (DCOSMO-RS) [226] has been implemented in ridft and dscf.

COSMO-RS (COSMO for Real Solvents) [227,228] is a predictive method for the calculation of thermodynamic properties of fluids that uses a statistical thermodynamics approach based on the results of COSMO SCF calculations for molecules embedded in an electric conductor, i.e. using $f(\varepsilon) = 1$. The liquid can be imagined as a dense packing of molecules in the perfect conductor (the reference state). For the statistical thermodynamic procedure this system is broken down to an ensemble of pair wise interacting surface segments. The interactions can be expressed in terms of surface descriptors, e.g. the screening charge per segment area ($\sigma_t = q_t/a_t$). Using the information about the surface polarity $\sigma$ and the interaction energy functional, one can obtain the so-called $\sigma$-potential ($\mu_S(\sigma;T)$). This function gives a measure for the affinity of the system $S$ to a surface of polarity $\sigma$. The system $S$ might be a mixture or a pure solvent at a given temperature $T$. Because the parabolic part of the potential can be described well by the COSMO model, we subtract this portion form the COSMO-RS potential:

$$\tilde{\mu}_S(\sigma;T) = \mu_S(\sigma;T) - (1 - f(\varepsilon))c_0\alpha^2.$$ 

The parameter $c_0$ can be obtained from the curvature of a COSMO-RS $\sigma$-potential of a nonpolar substance, e.g. hexane. Thus, the remaining part of the chemical potential of a compound $i$ with mole fraction $x_i$ in the mixture $S$ can be expressed as:

$$\mu^i \approx \sum_{t=1}^{m} f_{pol} a_t \tilde{\mu}_S(\sigma;T) + \mu^i_{\xi;S} + kT \ln(x_i).$$

where the combinatorial term $\mu^i_{\xi;S}$ accounts for effects due to the size and shape differences of the molecules in the mixture and $a_t$ denotes the area of segment $t$. The $kT \ln(x_i)$ can be skipped for infinite dilution. The factor $f_{pol}$ has been introduced to account for the missing
solute-solvent back polarization. The default value is one in the current implementation. The free energy gained by the solvation process in the DCOSMO-RS framework is the sum of the dielectric energy of the Cosmo model and the chemical potential described above:

\[ E_{\text{diel,RS}} = \frac{1}{2} f(\varepsilon)q^i \Phi^\text{sol} + \mu^i = E_{\text{diel}} + \mu^i \]

From the above expression the solvent operator \( \hat{V}^{RS} \) can be derived by functional derivative with respect to the electron density:

\[ \hat{V}^{RS} = -\sum_{t=1}^{m} f(\varepsilon)q_t + q_t^{\Delta RS} \frac{|r_t - r|}{r_t - r} = \hat{V}^{\text{cos}} - \sum_{t=1}^{m} q_t^{\Delta RS} \frac{|r_t - r|}{r_t - r}. \]

Thus, the solvation influence of the COSMO-RS model can be viewed as a correction of the Cosmo screening charges \( q_t \). The additional charges denoted as \( q_t^{\Delta RS} \) can be obtained from

\[ q_t^{\Delta RS} = -A^{-1} \Phi^{\Delta RS}, \]

where the potential \( \Phi^{\Delta RS} \) arises from the chemical potential of the solute in the solvent:

\[ \Phi^{\Delta RS} = \delta \mu_S(\delta q)_{q=q_t}. \]

In order to get a simple and differentiable representation of the COSMO-RS \( \sigma \)-potential \( \mu_S(\sigma; T) \), we use equally spaced cubic splines. An approximate gradient of the method has been implemented. DCOSMO-RS can be used in SCF energy and gradient calculations (geometry optimizations) with \texttt{dscf}, \texttt{ridft}, \texttt{grad}, and \texttt{rdgrad}. Please regard the restriction of the DCOSMO-RS energy explained in the keyword section 22.2.11. Because the DCOSMO-RS contribution can be considered as a slow term contribution in vertical excitations it does not have to be taken into account in response calculations. For the calculation of vertical excitation energies it is recommended to use the mos of a DCOSMO-RS calculation in a Cosmo response calculation (see above).

**Solvation effects on excited states using COSMO in ricc2:** The COSMO approach has been recently implemented into the ricc2 module of TURBOMOLE. It is now possible to equilibrate the solvent charges for any excited state or the ground state as mentioned in the MP2 section above. Using the methods CCS/CIS or ADC(2) the implementation is complete, for CC2 or higher methods, however it still has to be proven if there are terms missing. The recent implementation contains contributions to the off-diagonal elements of the one-electron density. Furthermore the energy contributions for non-equilibrated states can be calculated. Non-equilibrated means in this sense, that the slow part of the solvent charges (described by \( f(\varepsilon) \)) are still equilibrated with a given initial state, while the fast electronic part of the solvent charges (described by \( f(n^2) \)) are in equilibrium with the target state. To handle this one has to do a macro iteration, like in MP2. This macro iteration can be managed with the script 'cc2cosmo' which is the same as 'mp2cosmo' but using ricc2 instead of rimp2 or mpgrad. To set up the basic settings one can reuse the cosmoprep module, note that one has to specify the refractive index 'refind' when observing excited states. To specify the state to which the solvent charges should be equilibrated one inserts the keyword 'cosmorel state=(x)', where the ground state (x) is used normally but
can be replaced by any requested excited state. Make sure to request relaxed properties for any desired state, otherwise the COSMO macro iteration will not work in ricc2. The off-diagonal contributions mentioned above can be switched off by setting the keyword 'nofast' in $cosmo. A typical input might look like:

```plaintext
$ricc2
 adc(2)
$excitations
 irrep=a' multiplicity= 1 nexc= 1 npre= 1 nstart= 1
 irrep=a'' multiplicity= 1 nexc= 1 npre= 1 nstart= 1
 exprop relaxed states=all
$response
 fop relaxed
$cosmo
 epsilon= 50.000
 rsolv= 1.30
 refind= 3.0000
 cosmorel state=(a'' 1)
 # nofast
$cosmo_correlated
$cosmo_atoms
...
```

This would deliver an excited state calculation for the lowest singlet A' and A'' excitations using the ADC(2) method. The solvent charges are equilibrated to state 1^1A'' and the non-equilibrium energy contributions for the MP2 ground state and the 1^1A' excited state are calculated furthermore. All contributions to the one-electron density are included since the proper keyword is commented out. Note: when doing solvent relaxations with the CCS/CIS model, no request of relaxed ground–state properties are needed, since the relaxed ground state is identical to the HF ground state. A short summary of the COSMO input is given at the beginning of the ricc2 output as well as a summary of the energy contributions is given at the end of the ricc2 output.
18.3 Frozen Density Embedding calculations

18.3.1 Background Theory

In the subsystem formulation of the density-functional theory a large system is decomposed into several constituting fragments that are treated individually. This approach offers the advantage of focusing the attention and computational cost on a limited portion of the whole system while including all the remaining environmental effects through an effective embedding potential. Here we refer in particular to the (fully-variational) Frozen Density Embedding (FDE) [229] with the Kohn-Sham Constrained Electron Density (KSCED) equations [230, 231].

In the FDE/KSCED method the embedding potential required by an embedded subsystem with density $\rho_A$ to account for the presence of another (frozen) subsystem with density $\rho_B$ is:

$$v_{\text{emb}}(r) = v_{\text{ext}}^B(r) + v_J[\rho_B](r) + \delta T_{\text{nadd}}^{s}[\rho_A;\rho_B] \frac{\delta T_{\text{nadd}}^{s}[\rho_A;\rho_B]}{\delta \rho_A(r)} + \delta E_{\text{xc}}^{\text{nadd}}[\rho_A;\rho_B] \frac{\delta E_{\text{xc}}^{\text{nadd}}[\rho_A;\rho_B]}{\delta \rho_A(r)} \quad (18.1)$$

where $v_{\text{ext}}^B(r)$ and $v_J[\rho_B](r)$ are the electrostatic potentials generated by the nuclei and electron density of the subsystem $B$, respectively, and

$$T_{\text{nadd}}^{s}[\rho_A;\rho_B] = T_s[\rho_A + \rho_B] - T_s[\rho_A] - T_s[\rho_B], \quad (18.2)$$

$$E_{\text{xc}}^{\text{nadd}}[\rho_A;\rho_B] = E_{\text{xc}}[\rho_A + \rho_B] - E_{\text{xc}}[\rho_A] - E_{\text{xc}}[\rho_B] \quad (18.3)$$

are the non-additive non-interacting kinetic energy and exchange-correlation energy functionals, respectively. In the expressions above $T_s[\rho]$ is the (unknown) non-interacting kinetic energy density functional and $E_{\text{xc}}[\rho]$ is the exchange-correlation energy functional. Note that, while the first two terms in Eq. (18.1) refer to classical electrostatics (and could be described by e.g. external point-charges), the last two terms are related to quantum-mechanical effects.

Using freeze-and-thaw [232] cycles, the role of the frozen and the embedded subsystem is iteratively exchanged, till convergence. If expressions (18.2) and (18.3) are computed exactly, then the density $\rho_A + \rho_B$ will coincide with the exact density of the total system.

Because the FDE/KSCED was originally developed in the Kohn-Sham framework, using standard GGA approximations for $E_{\text{xc}}[\rho]$, the non-additive exchange-correlation potential ($\delta E_{\text{xc}}^{\text{nadd}}/\delta \rho_A(r)$) can be computed exactly as a functional of the density, leaving the expression of the non-additive kinetic energy term as the only approximation (with respect the corresponding GGA calculation of the total system), because the exact explicit density dependence of $T_s$ from the density is not known. Using GGA approximations for the kinetic energy functional ($T_s \approx \tilde{T}_s^{\text{GGA}}$) we have:

$$T_{\text{nadd}}^{s}[\rho_A;\rho_B] \approx \tilde{T}_s^{\text{GGA}}[\rho_A + \rho_B] - \tilde{T}_s^{\text{GGA}}[\rho_A] - \tilde{T}_s^{\text{GGA}}[\rho_B] \quad (18.4)$$

and

$$\frac{\delta T_{\text{nadd}}^{s}[\rho_A;\rho_B]}{\delta \rho_A(r)} \approx \tilde{v}_T^{\text{GGA}}[\rho_A + \rho_B](r) - \tilde{v}_T^{\text{GGA}}[\rho_A](r). \quad (18.5)$$
where \( \tilde{v}^{GGA}_T(r) = \delta \tilde{T}^{GGA}_s / \delta \rho(r) \).

The FDE total energy of total system is:

\[
E_{FDE}[\tilde{\rho}_A, \tilde{\rho}_B] = T_s[\tilde{\rho}_A] + T_s[\tilde{\rho}_B] + T_{nadd}^{\tilde{\rho}_A; \tilde{\rho}_B} + V_{ext}[A + B] + J[\tilde{\rho}_A + \tilde{\rho}_B] + E_{xc}[\tilde{\rho}_A + \tilde{\rho}_B].
\]

(18.6)

Note that this energy differs from the KS total energy of the total system due to the approximation in Eq. (18.4) as well as the approximated kinetic potential (see Eq. 18.5) which lead to approximated embedded densities \( \tilde{\rho}_A \approx \rho_A \) and \( \tilde{\rho}_B \approx \rho_B \). With the current state-of-the-art GGA kinetic approximations, the error in the binding energy for weakly interacting systems is close to chemical accuracy.

Using the Generalized Kohn-Sham (GKS) theory, also hybrid exchange-correlation functionals can be used in embedding calculations. To obtain a practical computational method, the obtained embedding potential must be approximated by a local expression as shown in Ref. [233]. This corresponds to performing for each subsystem hybrid calculations including the interaction with other subsystems through an embedding potential derived at a semilocal level of theory. When orbital dependent exchange-correlation functionals (e.g. hybrid functional and LHF) are considered within the FDE method, the embedding potential includes a non-additive exchange-correlation term of the form

\[
E_{nadd}^{xc}[\rho_A; \rho_B] = E_{xc}[\Phi^{A+B}[\rho_A + \rho_B]] - E_{xc}[\Phi^A[\rho_A]] - E_{xc}[\Phi^B[\rho_B]]
\]

(18.7)

where \( \Phi^{A+B}[\rho_A + \rho_B] \) denotes the Slater determinant which yields the total density \( \rho_A + \rho_B \). Since such a determinant is not easily available, the non-additive exchange-correlation contribution cannot be determined directly and the non-additive exchange-correlation term can be approximated as [234]

\[
E_{nadd}^{xc}[\rho_A; \rho_B] \approx E_{xc}^{GGA}[\rho_A + \rho_B] - E_{xc}^{GGA}[\rho_A] - E_{xc}^{GGA}[\rho_B].
\]

(18.8)

### 18.3.2 Frozen Density Embedding calculations using the FDE script

The shell script FDE controls and executes automatically FDE calculations. The script FDE prepares the input files (running define), runs the calculations (only dscf is supported in the present versiob), and combines the results (running fdetools). Because the FDE equations are coupled sets of one-electron equations (one for each subsystem), full relaxation of the electron densities of both subsystems is obtained by using a freeze-and-thaw [232] procedure until convergence.

The converged FDE calculations are store in the subdirectories STEPN/SUBSYSTEM_A and STEPN/SUBSYSTEM_B, where N is the number of the FDE iteration. The subdirectory ISOLATED_SUBSYSTEM_A and ISOLATED_SUBSYSTEM_B contain instead the calculations for isolated subsystems (see also Section 18.3.3).

Current functionalities and limitations of FDE are:

- only \( C_1 \) point group;
18.3. **FROZEN DENSITY EMBEDDING CALCULATIONS**

- only for closed-shell systems that consist of two closed-shell subsystems (e.g. weakly interacting closed-shell dimers);
- only total and binding energy calculations (no gradients);
- serial and OMP \texttt{dscf} runs (no MPI);
- monomolecular and supermolecular basis set approach;
- LDA/GGA kinetic energy functionals (for weakly interacting systems);
- full or pure electrostatic embedding;
- LDA/GGA, hybrid or orbital-dependent exchange-correlation potentials;
- multilevel FDE calculation;
- energy-decomposition;
- FDE calculation with subsystem B taken frozen.

In order to perform a FDE calculation, the files \texttt{coord} and \texttt{control} for the total system are necessary to take informations on atomic coordinates and basis sets. The input file for the total system can be generated, as usual, with \texttt{define} but no calculation on the total system is required. \texttt{$\$denconv 1.d-7} option should be defined in file \texttt{control} in order to better converge the embedded densities and better describe the dipole moment.

Given a closed-shell supramolecular system with a GGA/LDA exchange-correlation functional, the command

\begin{verbatim}
FDE -p 3
\end{verbatim}

invokes an iterative resolution of the KSCED equations with revAPBek [235, 236] as approximation of the non-additive kinetic potential (see Eq. 18.5) in the monomolecular basis set approach. The two subsystems are defined via an integer $m = 3$ in the example above which identifies the first atom of the subsystem B in the file \texttt{coord} of the supramolecular system with $n$ atoms, where the atoms 1...$m - 1$ belong to the subsystem A while the atoms $m$...$n$ to the B one. Thus the file \texttt{coord} must contains first all the atoms of the system A and then all the atoms of the system B.

As an example we report here the \texttt{FDE -p 3} output for the \textit{HF} dimer:

\begin{verbatim}
FDE Version 1.02
Frozen Density Embedding Main Driver
Scf-like procedure for
closed-shell interacting systems (dimers)

program development: Savio Laricchia
Eduardo Fabiano
\end{verbatim}
Monomolecular basis set approach...

Serial calculation will be performed...
running /home/fabiods/REDO/branch64/TURBOMOLE/bin/em64t-unknown-linux-gnu/dscf

b-lyp exchange-correlation potential in KS supermolecular calculation...
revapbek kinetic energy approximation will be used...
Default convergence criterion on the system dipole: 0.005
Default value of starting damping parameter is 0.45
Default value of step damping parameter is 0.10
Default value of maximum damping parameter is 0.90
Default value of maximum fde iterations is 20
Saving options in fde.input

<table>
<thead>
<tr>
<th>Subsystem A atomic coordinates and basis set information</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
</tr>
<tr>
<td>2.5015</td>
</tr>
<tr>
<td>3.2889</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subsystem B atomic coordinates and basis set information</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
</tr>
<tr>
<td>-2.7537</td>
</tr>
<tr>
<td>-1.0191</td>
</tr>
</tbody>
</table>
18.3. FROZEN DENSITY EMBEDDING CALCULATIONS

Running Isolated subsystems:

************************
* ISOLATED SUBSYSTEM A *
************************
Done!

************************
* ISOLATED SUBSYSTEM B *
************************
Done!

Saved isolated subsystems data in:
isolated_energy.ks
mos_A.ks
mos_B.ks

********************
* FDE - step 1 *
********************

FDE ENERGY (TOTAL SYSTEM): -200.96417090754 Ha
FDE BINDING ENERGY: 5.865327 mHa
3.680548 kcal/mol
Dipole convergence: 0.138071, Damping: 0.45

********************
* FDE - step 2 *
********************

FDE ENERGY (TOTAL SYSTEM): -200.96418098234 Ha
FDE BINDING ENERGY: 5.875401 mHa
3.686870 kcal/mol
Dipole convergence: 0.009246, Damping: 0.35

********************
* FDE - step 3 *
********************

FDE ENERGY (TOTAL SYSTEM): -200.96418289036 Ha
FDE BINDING ENERGY: 5.877309 mHa
3.688067 kcal/mol
Dipole convergence: 0.004395, Damping: 0.25
CHAPTER 18. EMBEDDING AND SOLVATION EFFECTS

See embedded subsystems calculations in:
STEP3/SUBSYSTEM_A
STEP3/SUBSYSTEM_B
See total system in:
STEP3/ENERGY_SYSTEM

Sun Mar 25 23:00:21 CEST 2012
Total time: 20 secs.

The final energies are stored in the file fde_energy. The directory STEP3/ENERGY_SYSTEM contains the total system with density $\rho_A + \rho_B$; this directory can (only) be used for density analysis.

18.3.3 Options

All the options for the FDE can be specified as commandlines, and are described below. The options can be also be specified in file fde.input, which is read by the FDE script. If fde.input is not present it is created by the FDE script. Command lines options overwrites options found in the fde.input file.

Subsystem definition

The flag -p integer is required or it must be present in the fde.input file.

Equivalent command: --pos-cut integer

fde.input option: pos-cut= integer

Kinetic-energy functionals

In order to use different GGA approximations of the non-additive kinetic potential, the flag -k string must be used. Here string is the acronym used to identify a given GGA kinetic energy approximation, that can be selected among the following functionals:

- string=revapbek: generalized gradient approximation with a PBE-like enhancement factor, obtained using the asymptotic expansions of the semiclassical neutral atom as reference [235, 236] (revAPBEk). This is the default choice;
- string=lc94: Perdew-Wang (PW91) exchange functional reparametrized for kinetic energy by Lembarki and Chermette [237] (LC94);
- string=t-f: gradient expansion truncated at the zeroth order (GEA0), corresponding to the Thomas-Fermi functional.

For example, the command
approximates the non-additive kinetic contribution to the embedding potential through the functional derivative of LC94 kinetic energy functional.

A pure electrostatic embedding can be also performed with FDE script, where the embedding potential required by a subsystem A to account for the presence of the B one will be merely:

$$v_{\text{emb}}(\mathbf{r}) = v_{\text{ext}}^B(\mathbf{r}) + v_J[\rho_B](\mathbf{r})$$  \hspace{1cm} (18.9)

with $v_{\text{ext}}^B(\mathbf{r})$ and $v_J[\rho_B](\mathbf{r})$ the electrostatic potentials generated respectively by the nuclei and electron density of the subsystem B. To perform an electrostatic embedding calculation use

FDE -p 3 -k electro

and can be performed for both Kohn-Sham (only for LDA/GGA exchange-correlation functionals) and Hartree-Fock methods.

The electrostatic embedding is implemented only for testing purpose. It resembles an electrostatic embedding with external point-charges and/or point-dipoles, but it is “exact” as it is based on the whole densities (i.e. it considers all multipole moments of the density and the polarizabilities at all orders).

Equivalent command: --kin string
fde.input option: kin= string

FDE charged subsystems

FDE can perform calculations for charged closed-shell systems whose charge is localized on one or both subsystems. To localize the charge on a given subsystem, --chargeA= integer must be used for the subsystem A and --chargeB= integer for the B one. Here integer denotes the charge added to the neutral subsystem. For example, the command

FDE -p 3 --chargeA= 2

performs a FDE calculation for a negative charged closed shell system (for example Zn(H₂O)₂⁺⁺) whose subsystem B has charge 2. Note that in this case the starting control file must have a charge +2.

fde.input option: chargeA= integer, chargeB= integer

FDE with subsystem B taken frozen

FDE can perform embedding calculations where the subsystem B is taken frozen, i.e. without scf calculation on it using an embedding potential. Therefore only one step will be performed if the flag --frozen will be used
The frozen embedding calculation is stored in the subdirectory \texttt{STEP1/SUBSYSTEM.A}. The control file is modified with the following keywords:

\begin{verbatim}
$fde read
$fde-input zj file=fde_ZJ.mat
$fde-input kxc file=fde_KXC.mat
\end{verbatim}

The program \texttt{dscf} will read the submatrices \texttt{fde_ZJ.mat} and \texttt{fde_KXC.mat} and add them to the Hamiltonian.

\texttt{fde.input} option: \texttt{frozen=1}

**Parallel calculations**

If \texttt{PARA_ARCH=SMP} and OMP calculation will be performed. The flag \texttt{-nth nthreads} can be used to specify the number of threads. For example, with the following command

\begin{verbatim}
FDE -p 3 -nth 4
\end{verbatim}

will use 4 threads.

Equivalent command: \texttt{--nthreads integer}

\texttt{fde.input} option: \texttt{nthreads= integer}

**Monomolecular and supermolecular basis set approach**

The $\rho_A$ and $\rho_B$ densities can be expanded using the supermolecular or monomolecular basis set. In a supermolecular basis set expansion the basis functions $\{\chi\}$ of both subsystems are employed to expand the subsystem electron densities. In a monomolecular basis set expansion, instead, only basis functions $\{\chi^\ell\}$ centered on the atoms in the $\ell$-th subsystem are used to expand the corresponding density.

Both monomolecular and supermolecular basis set expansion of the electron densities are implemented in \texttt{FDE}: with the flag \texttt{-m} a monomolecular expansion is performed, while for a supermolecular one \texttt{-s} is used. In the absence of both flags a monomolecular expansion is performed by default.

For an accurate calculation of binding-energies of weakly interacting molecular systems a supermolecular basis set is required (to avoid the basis-set superposition error). Otherwise a very large monomolecular basis set is necessary.

\textbf{NOTE}: The FDE script supports only basis-set in the TURBOMOLE library.

Equivalent command: \texttt{--mono} or \texttt{--super}

\texttt{fde.input} option: \texttt{method=mono} or \texttt{method=super}
Convergence of the freeze-and-thaw cycles

The script \texttt{FDE} runs a self-consistent calculation when a convergence criterion is fulfilled. The convergence criterion is the change in the total dipole moment. This is a tight convergence criterion, as the dipole moment is highly sensitive to small changes in electron density. The convergence parameter $\varepsilon^j$ for the $j$-th step in the freeze-and-thaw procedure is computed by means the following expression

$$\varepsilon^j = \frac{|\Delta \mu_A^j| + |\Delta \mu_B^j|}{2}$$

(18.10)

where

$$|\Delta \mu_i^j| = |\mu_i^j| - |\mu_i^{j-1}| \quad i = A, B$$

is the difference between the dipole moments of two consecutive steps for the $i$-th subsystem.

Eq. (18.10) allows to consider changes in both subsystems or one of them because of the relaxation of their electron densities. By default, \texttt{FDE} stops when $\varepsilon^j \leq 0.005$ a.u.. The default value for the convergence criteria can be changed using the flag --\texttt{epsilon= real} where \texttt{real} is a decimal number.

The maximum number of freeze-and-thaw cycles can be specified by --\texttt{max-iter= integer}, and the default value is 20.

In order to make easy the convergence of the iterative solution of the KSCED coupled equations, a damping factor $\eta$ must be used for the matrix elements of the embedding potential $(v_{\text{emb}})_{ik}$ as perturbation to a given subsystem

$$d(v_{\text{emb}})^j_{ik} = (1 - \eta)(v_{\text{emb}})^j_{ik} + \eta(v_{\text{emb}})^{j-1}_{ik}$$

(18.11)

for the $j$-th iteration. Here $d(v_{\text{emb}})^j_{ik}$ is the matrix element effectively used in the $j$-th iteration after the damping. In \texttt{FDE} the starting value of $\eta$ can be changed using --\texttt{start-damp= real} (default value is 0.45) where \texttt{real} is a decimal number. The damping parameter can also dynamically change at each iterative step (according to the convergence process) of a quantity set by --\texttt{step-damp= real} (default value is 0.10). The minimum value set by --\texttt{max-damp= real} (default value is 0.90).

\texttt{fde.input} options:

- \texttt{epsilon= real}
- \texttt{max-iter= integer}
- \texttt{start-damp= real}
- \texttt{max-damp= real}
- \texttt{step-damp= real}

Embedding energy error

The embedding error in the total energy is computed as

$$\Delta E = E^{\text{FDE}}[\bar{\rho}_A; \bar{\rho}_B] - E^{\text{DFT}}[\rho]$$

(18.12)
where $E_{\text{DFT}}$ is the DFT total energy of total system with density $\rho(r)$. In order to compute $\Delta E$ as well as its components, the flag --err-energy must be used. This flag will required also the DFT calculation on the total system. In this case the converged SCF output file must be named output.dscf.

An example of session output for the computation of embedding energy and energy error decomposition, when --err-energy flag is present, is the following:

\[
\begin{align*}
\text{FDE ENERGY (TOTAL SYSTEM)}: & \quad -200.99720391651 \text{ Ha} \\
\text{FDE BINDING ENERGY}: & \quad 4.960885 \text{ mHa} \\
& \quad 3.113002 \text{ kcal/mol} \\
\text{FDE ENERGY ERROR}: & \quad 2.003352 \text{ mHa} \\
\text{ERROR ENERGY DECOMPOSITION} \\
\text{coulomb contribution}: & \quad -0.693026 \text{ mHa} \\
\text{nuclear contribution}: & \quad -3.136544 \text{ mHa} \\
\text{exchange-correlation contribution}: & \quad -1.156390 \text{ mHa} \\
\text{kinetic contribution}: & \quad 6.989320 \text{ mHa}
\end{align*}
\]

where the FDE energy ($E^{\text{FDE}}$), the FDE binding energy, the embedding energy error ($\Delta E$) and the error energy decomposition in its coulomb, nuclear, exchange-correlation and kinetic contributions are reported. This output is present at each FDE iteration.

\textit{fde.input} option: err-energy=1

**Restarting**

The script \texttt{FDE} checks in the current directory for previous FDE calculations. If these are present, then the FDE calculation will be restarted from the last iteration found. The directories \texttt{ISOLATED_SUBSYSTEM_A} and \texttt{ISOLATED_SUBSYSTEM_B} will be overwritten by the converged calculations from previous run. The energy and the orbital from the isolated systems are saved in the current directory in the files: \texttt{isolated_energy.ks, mos_A.ks} and \texttt{mos_B.ks}.

Note that a restart is possible only if the same subsystem definition and the same basis set are used (e.g. the same -p flag and the -s or -m flag). Other flags, e.g. kinetic and xc-functionals and convergence parameters, can be instead modified.

As all the options are saved in the \texttt{fde.input} file, to restart a FDE calculation the \texttt{FDE} script can be inkoved without any parameters.

To force a calculation from scratch use:

\texttt{FDE -p 3 --scratch}
18.3. FROZEN DENSITY EMBEDDING CALCULATIONS

Table 18.1: Other options in the shell script FDE

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-d or --dipole</td>
<td>dipole=1</td>
</tr>
<tr>
<td></td>
<td>dipole moment each step</td>
</tr>
<tr>
<td>-v or --verbose</td>
<td>shows more informations</td>
</tr>
<tr>
<td>--save-mos</td>
<td>save-mos=1</td>
</tr>
<tr>
<td></td>
<td>save the MOs of both subsystems for each step</td>
</tr>
<tr>
<td>--save-matrix</td>
<td>save-matrix=1</td>
</tr>
<tr>
<td></td>
<td>save fde matrices in each step</td>
</tr>
<tr>
<td>--help</td>
<td>list all commands</td>
</tr>
</tbody>
</table>

18.3.4 FDE with hybrid and orbital-dependent functionals

In order to use local approximations (18.1) and (18.8) with FDE, the flag \(-f\) string must be add to the options of the script. Here string denotes the local/semilocal approximation to hybrid or orbital-dependent exchange-correlation potentials in \(v_{emb}(r)\). All LDA/GGA functionals in TURBOMOLE can be considered as approximations.

For example, the command

\[
\text{FDE -p 3 -f b-lyp}
\]

can be used to approximate bh-lyp or b3-lyp hybrid non-additive potentials, while the command

\[
\text{FDE -p 3 -f pbe}
\]

approximates the pbe0 hybrid non-additive potentials. Other combinations of functionals are not recommended (meta-GGA are not supported).

Finally, also calculations with the Local Hartree-Fock (LHF) potential can be performed. In this case the command

\[
\text{FDE -p 3 -f becke-exchange}
\]

can be used to approximate the LHF non-additive potential [234].

Equivalent command: --func string
fde.input option: func= string
18.4 Periodic Electrostatic Embedded Cluster Method

18.4.1 General Information

The Periodic Electrostatic Embedded Cluster Method (PEECM) functionality [238] provides electronic embedding of a finite, quantum mechanical cluster in a periodic, infinite array of point charges. It is implemented within HF and DFT energy and gradient TURBOMOLE modules: \texttt{dscf}, \texttt{grad}, \texttt{ridft}, \texttt{rdgrad}, and \texttt{escf}. Unlike embedding within a finite set of point charges the PEEC method always yields the correct electrostatic (Madelung) potential independent of the electrostatic moments of the point charges field. It is also significantly faster than the traditional finite point charges embedding.

18.4.2 Theoretical Background

Generally, the PEEC method divides the entire, periodic and infinite system into two parts, the inner (I) part, or so called cluster, and the outer (O) part which describes its environment. Thus, unlike "true" periodic quantum mechanical methods, PEECM primarily aims at calculations of structure and properties of localized defects in dominantly ionic crystals. The innermost part of the cluster is treated quantum mechanically (QM), whereas in the remaining cluster part cations are replaced by effective core potentials (ECPs) and anions by ECPs or by simply point charges. Such an "isolating" outer ECP shell surrounding the actual QM part is necessary in order to prevent artificial polarization of the electron density by cations which would otherwise be in a direct contact with the QM boundary. The outer part or the environment of the cluster is described by a periodic array of point charges, representing cationic and anionic sites of a perfect ionic crystal.

The electronic Coulomb energy term arising from the periodic field of point charges surrounding the cluster has the following form

\[ J = \sum_{\mu \nu} \sum_{k \in O} \sum_{L \in O} N_{\mu \nu} q_k \int \frac{\mu(\vec{r})\nu(\vec{r})}{|\vec{r} - \vec{R}_k - \vec{L}|} d\vec{r}, \]

where UC denotes the unit cell of point charges, \( D_{\mu \nu} \) are elements of the density matrix, \( \mu, \nu \) are basis functions, \( q_k \), \( \vec{R}_k \) denote charges and positions of point charges, and \( \vec{L} \) denote direct lattice vectors of the outer part O. It is evaluated using the periodic fast multipole method (PFMM) [239] which, unlike the Ewald method [240], defines the lattice sums entirely in the direct space. In general, PFMM yields a different electrostatic potential than the Ewald method, but the difference is merely a constant shift which depends on the shape of external infinite surface of the solid (i.e. on the way in which the lattice sum converges toward the infinite limit). However, this constant does not influence relative energies which are the same as obtained using the Ewald method, provided that the total charge of the cluster remains constant. Additionally, since the electrostatic potential within a solid is not a well defined quantity, both the absolute total energies and orbital energies have no meaning (i.e. you cannot compare energies of neutral and charged clusters!).
18.4. PERIODIC ELECTROSTATIC EMBEDDED CLUSTER METHOD

18.4.3 Calculation Setup

There are three key steps in setting up a PEECM calculation. In the first step the periodic field of point charges has to be defined by specifying the point charges unit cell. Next step is the definition of the part infinite of point charges field that will be replaced by the explicit quantum mechanical cluster. Finally, the quantum mechanical cluster together with surrounding ECPs representing cationic sites as well as point charges representing anions is defined and put in place of the point charges. The input preparation steps can be summarized as follows

1. Dimensionality of the system is specified by the keyword `periodic` in the `$embed` section: `periodic 3` means a bulk three-dimensional system, `periodic 2` denotes a two-dimensional surface with an aperiodic $z$ direction.

2. Definition of the unit cell of periodic point charges field is specified in the subsections `cell` and `content` of the `$embed` section.

3. Definition of the values of the point charges by specifying a charge value per species, using the subsection `charges`, or a charge value for each point charge, using the subsection `ch_list`. Note that only one of the subsections can be defined.

4. Definition of the part of point charges field that will be replaced by the QM cluster together with the isolating shell (ECPs, explicit point charges) is specified in the subsection `cluster` of the `$embed` section.

5. Definition of the quantum mechanical cluster as well as the surrounding ECPs and anionic point charges is included in the usual `$coord` section.

The following two examples show the definition of the point charges unit cells.

**Example 1. Ca$_4$F$_{19}$ cluster embedded in bulk CaF$_2$**

In this example a QM cluster with the composition Ca$_4$F$_{19}$, surrounded by 212 ECPs and 370 explicit point charges, representing Ca$^{2+}$ cations and F$^-$ anions is embedded in a periodic field of point charges (+2 for Ca and -1 for F) corresponding to the CaF$_2$ fluorite lattice.

First, the program has to know that this is a three-dimensional periodic system. This is specified by the keyword `periodic 3`, meaning periodicity in three dimensions. The dimensions of the unit cell for bulk CaF$_2$ are given in the subsection `cell` of the `$embed` keyword. By default, the unit cell dimensions are specified in atomic units and can be changed to Å using `cell ang`. The positions of the point charges in the unit cell are specified in the subsection `content`. In this example positions are given in fractional crystal coordinates (`content frac`). You can change this by specifying `content` for Cartesian coordinates in atomic units or `content ang` for Cartesian coordinates in Å. The values of point charges for Ca and F are given in the subsection `charges`.

```plaintext
/embed
 periodic 3
 cell
```
The above input defines a periodic, perfect, and infinite three-dimensional lattice of point charges corresponding to the bulk CaF\(_2\) structure. In order to use this lattice for PEECM calculation we have to make “space” for our QM cluster and the isolating shell. This is done by specifying the part of the lattice that is virtually removed from the perfect periodic array of point charges to make space for the cluster. The positions of the removed point charges are specified in the subsection `cluster` of the `$embed` keyword. Note, that the position of the QM cluster and the isolating shell must exactly correspond to the removed part of the crystal, otherwise positions of the cluster atoms would overlap with positions of point charges in the periodic lattice, resulting in a “nuclear fusion”.

```
cluster
F 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000
Ca -2.6194465796043 -2.6194465796043 -2.6194465796043 -2.6194465796043
Ca 2.6194465796043 -2.6194465796043 2.6194465796043 2.6194465796043
Ca 2.6194465796043 2.6194465796043 -2.6194465796043 2.6194465796043
Ca -2.6194465796043 2.6194465796043 2.6194465796043 2.6194465796043
F -5.23988931592086 0.00000000000000 0.00000000000000 0.00000000000000
F 0.00000000000000 0.00000000000000 0.00000000000000 -5.23988931592086
F 5.23988931592086 0.00000000000000 0.00000000000000 0.00000000000000
F 0.00000000000000 -5.23988931592086 0.00000000000000 0.00000000000000
F 0.00000000000000 5.23988931592086 0.00000000000000 0.00000000000000
```
F -5.23988931592086 -5.23988931592086 0.00000000000000
F -5.23988931592086 0.00000000000000 -5.23988931592086
F -5.23988931592086 0.00000000000000 5.23988931592086
F -5.23988931592086 5.23988931592086 0.00000000000000
F 5.23988931592086 -5.23988931592086 0.00000000000000
...
repeated for Ca_{216}F_{389}
end

By default, the positions of point charges are specified in atomic units as Cartesian coordinates. You can change this by specifying cluster frac for fractional crystal coordinates or cluster ang for Cartesian coordinates in Å.

Finally, you have to specify the coordinates of the QM cluster along with the surrounding ECPs representing cationic sites and explicit point charges representing anions. This is done in the usual way using the $coord keyword.

$coord
0.00000000000000 0.00000000000000 0.00000000000000 f
-2.86167504097169 -2.86167504097169 -2.86167504097169 ca
2.86167504097169 2.86167504097169 -2.86167504097169 ca
-2.86167504097169 2.86167504097169 2.86167504097169 ca
2.86167504097169 -2.86167504097169 2.86167504097169 ca
0.00000000000000 -5.24009410923923 0.00000000000000 f
-5.24009410923923 0.00000000000000 0.00000000000000 f
0.00000000000000 5.24009410923923 0.00000000000000 f
0.00000000000000 0.00000000000000 -5.24009410923923 f
5.24009410923923 0.00000000000000 0.00000000000000 f
0.00000000000000 0.00000000000000 5.24009410923923 f
0.00000000000000 -5.24009410923923 -5.24009410923923 f
-5.24009410923923 -5.24009410923923 0.00000000000000 f
5.24009410923923 -5.24009410923923 0.00000000000000 f
0.00000000000000 -5.24009410923923 5.24009410923923 f
0.00000000000000 5.24009410923923 -5.24009410923923 f
...
repeated for Ca_{216}F_{389}
$end

This is the standard TURBOMOLE syntax for atomic coordinates. The actual distinction between QM cluster, ECP shell, and explicit point charges is made in the $atoms section.

$atoms
f 1,6-23
In the example above the F atoms 1 and 6-23 as well Ca atoms 2-5 are defined as QM atoms with def-TZVP basis sets. The Ca atoms 24-235 are pure ECPs and have no basis functions (basis = none) and F atoms 236-605 are explicit point charges with charge -1, with no basis functions and no ECP.

This step ends the input definition for the PEECM calculation.

Example 2. Al$_8$O$_{12}$ cluster embedded in $\alpha$-Al$_2$O$_3$ (0001) surface

In this example a QM cluster with the composition Al$_8$O$_{12}$, surrounded by 9 ECPs representing Al$^{3+}$ cations is embedded in a two-dimensional periodic field of point charges (+3 for Al and -2 for O) corresponding to the (0001) surface of $\alpha$-Al$_2$O$_3$.

As in the first example, the program has to know that this is a two-dimensional periodic system and this is specified by the keyword periodic 2. The dimensions of the unit cell for the (0001) $\alpha$-Al$_2$O$_3$ surface are given in the subsection cell of the $\text{embed}$ keyword. The aperiodic direction is always the z direction, but you have to specify the unit cell as if it was a 3D periodic system. This means that the third dimension of the unit cell must be large enough to enclose the entire surface in this direction. The unit cell dimensions are specified in Å using cell ang. The positions of the point charges in the unit cell are specified as Cartesian coordinates in Å (content ang). The values of point charges for Al and O are given in the subsection charges.

```
$embed
periodic 2

cell ang
 4.8043 4.8043 24.0000 90.0000 90.0000 120.0000

content ang
 Al 2.402142286 1.386878848 5.918076515
 Al -0.000013520 -0.000003382 7.611351967
 Al -0.000008912 2.773757219 8.064809799
 Al 2.402041674 1.386946321 0.061230399
 Al -0.000005568 -0.000003223 10.247499466
 Al 2.402137518 1.386872172 9.977437973
 Al 0.000000070 2.773757935 5.390023232
 Al 0.000006283 -0.000005607 3.696748018
```
The above input defines a periodic, perfect, and infinite two-dimensional lattice of point charges corresponding to the (0001) \( \alpha \)-Al\(_2\)O\(_3\) surface. In order to use the lattice for PEECM calculation we have to make “space” for our QM cluster and the surrounding ECP shell. This is done by specifying the part of the lattice that is virtually removed from the perfect periodic array of point charges to make space for the cluster. The positions of the removed point charges are specified in the subsection cluster of the $embed$ keyword. Note, that the position of the QM cluster must exactly correspond to the removed part of the crystal, otherwise positions of the cluster atoms would overlap with positions of point charges in the periodic lattice, resulting in a “nuclear fusion”.

```
class ang
Al -0.000012482 5.547518253 9.977437973
Al 2.402141094 6.934402943 8.064809799
Al 2.402144432 4.160642624 10.247499466
```
The positions of point charges are specified in Å as Cartesian coordinates.

Finally, you have to specify the coordinates of the QM cluster along with the surrounding ECPs. This is done in the usual way using the $coord$ keyword.

```
$coord
-0.0000000000 10.4832931590000 18.85463057110000 al
4.53939007480000 13.10412613690000 15.24028611330000 al
4.53939638280000 7.86247730390000 19.36497297520000 al
9.07879063200000 10.48329315900000 18.85463057110000 al
4.53957326800000 13.10399998250000 21.25351019750000 al
-0.0000000000 15.72496001430000 19.36497297520000 al
4.53938331720000 18.34577677080000 21.25351019750000 al
9.07880357850000 15.72496001430000 19.36497297520000 al
1.71508649490000 7.85428007030000 16.92802041340000 o
2.86788376470000 10.36268741690000 21.02725683720000 o
end
```

The positions of point charges are specified in Å as Cartesian coordinates.
-1.32965829240000 13.02724227310000 21.02729288000000 o
5.94446987180000 10.31245694970000 16.92802519900000 o
7.54034461170000 8.06028184100000 21.02725231600000 o
1.41923561090000 13.28312353520000 16.92802393000000 o
7.74915508620000 13.02724227310000 21.02729288000000 o
1.40506312580000 18.17494056150000 16.92802519900000 o
3.00093786570000 15.92251179600000 21.02725231600000 o
6.25449323900000 15.71676382100000 16.92802041340000 o
7.40729073370000 18.22517102690000 21.02725231600000 o
10.49804944110000 13.28312353520000 16.92802393000000 o
9.07900452260000 20.96648359440000 21.25351019750000 al
-0.00001684120000 5.24164297480000 15.24028611330000 al
-4.53921616520000 13.10399998250000 21.25351019750000 al
9.07900452260000 5.24156822400000 21.25351019750000 al
4.53938151440000 7.86247730390000 14.38337457400000 al
-0.00002554910000 15.72496001430000 14.38337457400000 al
-0.00001684120000 20.96660974680000 15.24028611330000 al
13.61820356690000 13.10412613690000 15.24028611330000 al
9.07878826040000 15.72496001430000 14.38337457400000 al

This is the standard TURBOMOLE syntax for atomic coordinates. The actual distinction between QM cluster and ECP shell is made in the $atoms section.

$atoms
  al 1-8
      basis =al def-SV(P)
  o  9-20
      basis =o def-SV(P)
  al 21-29
      basis =none
      ecp  =al ecp-10 hay & wadt

In the example above the Al atoms 1-8 and O atoms 9-20 are defined as QM atoms with def-SV(P) basis sets. The Al atoms 21-29 are pure ECPs and have no basis functions (basis =none).

This step ends the input definition for the PEECM calculation.
18.5 Polarizable embedding calculations

Polarizable embedding (PE) calculations are based on a hybrid model of quantum mechanics and molecular mechanics (QM/MM) in which the classical region is represented by an electrostatic potential with up to octupole moments and induced point dipole moments. The main improvement over the more common QM/MM approaches without polarizable MM sites can be found for the description of electronic excitations but also for any other process which causes a significant change in the QM density and which is accompanied by a fast response of the environment.

In TURBOMOLE, only ground state energies computed with the \texttt{dscf}, \texttt{ridft}, and \texttt{ricc2} module and electronic excitation properties based on RI-CC2 are implemented. The general theory is presented in ref. [241] and [242,243], the PERI-CC2 model and the TURBOMOLE implementation is described in ref. [244].

18.5.1 Theory

In the following, only the most important ideas are presented and discussed with a focus on the PERI-CC2 model. The essential concept is the introduction of an environment coupling operator \( \hat{G}(D_{CC}) \)

\[
\hat{G}(D_{CC}) = \hat{G}_{es} + \hat{G}_{pol}(D_{CC})
\]  

with the electrostatic contribution

\[
\hat{G}_{es} = \sum_{m=1}^{M} \sum_{k=0}^{K} \sum_{pq} \Theta_{m,pq}^{(k)} Q_{m}^{(k)} \hat{E}_{pq}
\]  

and the polarization contribution

\[
\hat{G}_{pol}(D_{CC}) = \sum_{u=1}^{U} \sum_{pq} \Theta_{u,pq}^{(1)} \mu_{u}^{\text{ind}}(D_{CC}) \hat{E}_{pq}.
\]  

Here, \( \Theta_{m,pq}^{(k)} \) are multipole interaction integrals of order \( k \) and \( \mu_{u}^{\text{ind}} \) are the induced dipoles which can be obtained from the electric field \( F_{u} \) and the polarizability \( \alpha_{u} \) at a site \( u \):

\[
\mu_{u}^{\text{ind}} = F_{u} \alpha_{u}
\]  

Because the induced dipoles depend on the electron density and \textit{vice versa}, their computations enter the self-consistent part of the HF cycle. Introducing \( \hat{G}(D_{CC}) \) into standard equations for the HF reference state and the CC2 equations leads to a general PE-CC2 formulation. To maintain efficiency, a further approximation has been introduced which makes
the operator only dependent on a CCS-like density term. These general ideas define the PERI-CC2 model and allow to formulate the corresponding Lagrangian expression

$$
L_{\text{PERI-CC2}}(t, \bar{t}) = E_{\text{PE-HF}} + \langle HF | \hat{W} (\hat{T}_1 + \hat{T}_2 + \frac{1}{2} \hat{T}_1^2) | HF \rangle + 
\sum_{\mu_1} \hat{t}_{\mu_1} \langle \mu_1 | \hat{W} + [\hat{F}_{\text{PE}}, \hat{T}_1] + [\hat{W}, \hat{T}_2] | HF \rangle + 
\sum_{\mu_2} \hat{t}_{\mu_2} \langle \mu_2 | \hat{W} + [\hat{F}_{\text{PE}}, \hat{T}_2] | HF \rangle 
- \frac{1}{2} \sum_{uv} F_{\text{elec}}^u (D^\Delta | R_{uv} F_{\text{elec}}^v (D^\Delta) \rangle
$$

from which all PERI-CC2 equations including the linear response terms may be derived. Note that the dependency on the density couples the CC amplitude and multiplier equations for the ground state solution vector.

This coupling is avoided by the simplified polarizable embedding method (sPE) described in ref. [245].

$$
L_{\text{sPERI-CC2}}(t, \bar{t}) = E_{\text{PE-HF}} + \langle \Lambda | \hat{g}_N + \hat{F}_{\text{PE}}^N + \hat{G}_{\text{pol}}^N (D^\Delta_{\text{CC}}) | CC \rangle .
$$

The subscript N indicates that the operator is normal ordered with respect to the Hartree–Fock state. Here, a polarization operator \( \hat{G}_{\text{pol}}^N (D^\Delta_{\text{CC}}) \) was introduced,

$$
\hat{G}_{\text{pol}}^N (D^\Delta_{\text{CC}}) = -\frac{1}{2} M \sum_{uv} \left( \hat{F}_{u} \right)^\top R_{uv} F_{\text{elec}}^v (D^\Delta_{\text{CC}}) .
$$

which depends on the elements of the difference density matrix \( D^\Delta_{\text{CC}} \). These are defined as

$$
D^\Delta_{\text{CC}}^{pq} = \langle HF | \hat{a}_p^\dagger \hat{a}_q | CC \rangle - D_{\text{HF}}^{pq} ,
$$

hence, they do not depend on the Lagrangian multipliers.

### 18.5.2 Computational details: SCF calculations

To carry out a PE-SCF calculation with the DSCF or RIDFT module, you have to specify the following in the control file:

```plaintext
$point_charges pe [options]

<length unit>

<no. MM sites> <order k> <order pol> <length exclude list>

<list of MM sites: exclude list, xyz coords, multipole mom., pol. tensor>
```

`length unit` specifies the unit for the MM site coordinates (use `AA` or `AU`)
no. MM sites the amount of MM sites (length of the list)

order k the order of multipoles used (0: point charges, 1: dipole moments, 2: quadrupole moments, 3: octupole moments)

order pol the treatment of polarizabilities (0: none, 1: isotropic, 2: anisotropic)

length exclude list number of elements in the exclude list

list of MM sites each MM sites is described on one line, entries separated by blanks; first entry is the exclude list of with as much elements as defined in the head line (If the first element in the exclusion list of one site occurs in the exclude list of another site, they do not contribute to each others polarization); next follows the MM site coordinates in (x,y,z positions), the point charge, the dipole moment (for $k \geq 1$, x,y,z component), the quadrupole moment (for $k \geq 2$, xx, xy, xz, yy, yz, zz component), the octupole moment (for $k = 3$, xxx, xxy, xxz, xyy, xyz, xzz, yyy, yyz, yzz, zzz component), the polarizability (one component for pol-order 1, xx, xy, xz, yy, yz, zz component for pol-order 2)

An example for a polarizable embedding with coordinates given in Å, point charges and isotropic polarizabilities:

```plaintext
$point_charges pe
AA
6 0 1 1
39 -0.2765102481 2.5745845304 3.5776314866 0.038060 15.217717
39 1.3215071687 2.3519378014 2.8130403183 -0.009525 14.094642
39 -0.5595582934 1.2645007691 4.7571719292 -0.009509 14.096775
39 -1.5471918244 2.5316479230 2.3240961995 -0.009519 14.096312
39 -0.3207417883 4.1501938400 4.4162313889 -0.009507 14.096476
41 -1.1080691595 4.9228723099 -1.6753825535 0.038060 15.217717
41 -0.9775910525 6.5274614891 -2.4474576239 -0.009525 14.094642
41 -2.5360480539 4.8923046027 -0.6040781123 -0.009509 14.096775
41 0.3630488878 4.6028736791 -0.7155647205 -0.009519 14.096312
41 -1.2817317422 3.6689143712 -2.9344225518 -0.009507 14.096476
```

All values are given in atomic units (except coordinates if stated otherwise). These data are mandatory. An alternative input format can also be used by specifying `daltoninp` as option on the `$point_charges` line. The format is completely compatible with the current Dalton 2015 input format (The definition can be found in the manual from http://daltonprogram.org/www/documentation.html. See there for more information).

In addition, you can specify further options on the same line as the `$point_charges` flag. These are:

- `rmin=<float>`: minimum distance between an active MM site and any QM center (in a.u.), treatment is handle by option `iskip`, (DEFAULT: 0.00 a.u.)
18.5. POLARIZABLE EMBEDDING CALCULATIONS

- **iskip=(1,2)**: treatment of too close MM sites
  - (1) zeroing all contributions
  - (2) distribute values to nearest non-skipped MM site (DEFAULT)

- **rmax=<float>**: maximum distance between an active MM site and QM center of coordinates (in a.u.), sites too far away are skipped (zeroed) (DEFAULT: 1000.00 a.u.)

- **nomb**: no treatment of many body effects between induced dipoles (all interaction tensors on the off-diagonal of the response matrix are set to Zero); works best with isotropic polarizabilities, speeds up calculations (especially for large response matrices), has reduced accuracy, not well tested so far

- **longprint=(1,2,3)**: sets a flag for additional output
  - (1) print all MM site input information
  - (2) additionally: print all induced dipoles due to nuclei/multipole/electron electric filed
  - (3) additionally: print response matrix

- **file=<input file>**: specifies a file from which the data group $point\_charges$ is read. Note that all options which are following on the line in the control file are then ignored because reading continues in the input file (But here, further options can be specified after the $point\_charges$ flag). The file has to start with $point\_charges$ as top line and should be finished with $end$

- **ccdens**: activates the simplified polarizable embedding method

Limitations with respect to standard SCF computations:

- In PE-SCF computations, symmetry cannot be exploited.
- PE-SCF computations do not work in parallel (MPI parallelization).
- For two-component all-electron calculations, the decoupling of the embedding potential is neglected, i.e. it is affected by a picture-change error just like the two-electron integrals.

The energy of a PE-SCF calculation printed in the output contains the following terms:

\[
E_{\text{PE-SCF}} = E_{\text{QM}} + E_{\text{QM/MM,es}} + E_{\text{pol}} \quad (18.21)
\]

Here, \( E_{\text{QM}} \) is the energy of the quantum mechanical method of your choice, \( E_{\text{QM/MM,es}} \) the electrostatic interaction energy between the QM and the MM region, and \( E_{\text{pol}} \) the energy gain due to the total of induced dipole moments. If necessary, missing terms can be computed without knowledge of the electron distribution.
At the moment, TURBOMOLE does not offer the possibility to generate the necessary potentials or to create a potential file from a set of coordinates. Embedding potentials can be obtained from literature or generated by approaches like the LoProp method. Atom centered polarizabilities are also available from other methods or from experiment. Finally, there are some polarizable force fields which, in principle, can be used for the PE method (for example, the AMOEBA force field).

18.5.3 Computational details: PERI-CC2 calculations

Apart from the definition of the embedding described above, the input for PERI-CC2 calculations is the same as without polarizable embedding.

There are several limitations for the use of PERI-CC2:

- only ground state energies, excitation energies and transition moments are supported (no other properties or gradients and so on)
- no other wave function model than CC2 is supported
- no use of symmetry
- no MPI parallelization is available (but SMP binaries work)
- open-shell systems are not covered (exception: two-component references)
Chapter 19

Molecular Properties, Wavefunction Analysis, and Interfaces to Visualization Tools

19.1 Molecular Properties, Wavefunction Analysis, and Localized Orbitals

Molecular properties (electrostatic moments, relativistic corrections, population analyses for densities and MOs, construction of localized MOs, NTOs, etc.) can be calculated with proper. This program is menu-driven and reads the input that determines which properties are evaluated from standard input (i.e. the terminal or an input file if started as proper < inputfile). The control file and files referenced therein are only used to determine the molecular structure, basis sets, and molecular orbitals and to read results computed before with other programs.

proper is a post-processing tool, mainly intended for an interactive use. Several functionalities are also integrated in the programs that generate MOs or densities and can be invoked directly from the modules dscf, ridft, rimp2, mpgrad, ricc2 and egrad, if corresponding keywords are set in the control file. If one wants to skip the MO- or density generating step for dscf, ridft, rimp2, mpgrad, ricc2 it is possible to directly jump to the routine that carries out the analyses by starting the program with "<program> -proper". (For ricc2 it is, however, recommended to use instead ricctools -proper.) Currently, the respective keywords have to be inserted by hand (not with define) in the control file.

Here we briefly present the functionalities. A detailed description of the keywords that can be used in combination with the -proper flag is found Section 22.2.26.
19.1.1 Selection of densities

The proper program tries on start to read all densities that have been pre-calculated with any of the other programs of the TURBOMOLE package, prints a list with the densities that have been found and selects one of them for the calculation of properties. The default choice can be changed in the menu that is entered with the option dens. Here one can also list or edit additional attributes of the densities or build linear combinations of the available densities to form differences and superposition of densities.

The feature can thus be used to evaluate difference densities between the ground and excited electronic states or differences between densities calculated with different electronic structure methods.

The selected density can then be used in the subsequent menus to evaluate a variety of properties as expectation values or on a grid of points to generate interface files for visualization.

19.1.2 Electrostatic moments

Use the mtps option in the eval menu in proper, or add the $moments keyword control file when you start a program with the -proper flag to evaluate electrostatic moments.

Up to quadrupole moments are calculated by default, on request also octupole moments are available. By default unnormalized traced cartesian moments are calculated which are defined as

$$Q^{(n)}_{\alpha\beta...\nu} = \int dr \rho(r) r_\alpha r_\beta ... r_\nu ,$$

where $\rho(r)$ is the charge density as position $r$. With the option Buckingham one can request in addition the computation of cartesian traceless (Buckingham) multipole moments defined as:

$$M^{(n)}_{\alpha\beta...\nu} = \frac{(-1)^n}{n!} \int dr \rho(r) r^{2n} \frac{d^n}{dr_\alpha dr_\beta ... dr_\nu} \frac{1}{r}$$

19.1.3 Relativistic corrections

The option relcor in the eval menu of proper or the keyword $mvd (when starting a program with the -proper flag) initiate the calculation of relativistic corrections. With the -proper flag they are calculated for the SCF or DFT total density in case of dscf and ridft, for the SCF+MP2 density in case of rimp2 and mpgrad and for that of the calculated excited state in case of egrad. Quantities calculated are the expectation values $\langle p^2 \rangle$, $\langle p^4 \rangle$ and the Darwin term $\langle \sum_A 1/Z_A \rho(R_A) \rangle$. Note, that at least the Darwin term requires an accurate description of the cusp in the wave function, thus the use of basis sets with uncontracted steep basis functions is recommended. Moreover note, that the results for these quantities are not really reasonable if ECPs are used (a respective warning is written to the output).
19.1. Population analyses

For population analyses enter the `pop` menu of `proper`. The available options and parameters that can be specified are the same as those for the `$pop` keyword (vide infra). If an electronic structure program is started with the `-proper` flag the population analyses is requested with the keyword `$pop`.

`mulliken` or `$pop` without any extension start a Mulliken population analysis (MPA). For `-proper` the analysis is carried out for all densities present in the respective program, e.g. total (and spin) densities leading to Mulliken charges (and unpaired electrons) per atom in RHF(UHF)-type calculations in `dscf` or `ridft`, SCF+MP2 densities in `rimp2` or `mpgrad`, excited state densities in `egrad`. Suboptions (see Section 22.2.26) also allow for the calculation of Mulliken contributions of selectable atoms to selectable MOs including provision of data for graphical output (simulated density of states).

With `$pop nbo` a Natural Population Analysis (NPA) [247] is done. Currently only the resulting charges are calculated.

With `$pop paboon` a population analyses based on occupation numbers [248] is performed yielding "shared electron numbers (SENs)" and multicenter contributions. For this method always the total density is used, i.e. the sum of alpha and beta densities in case of UHF, the SCF+MP2-density in case of MP2 and the GHF total density for (two-component-)GHF. Note that the results of such an analysis may depend on the choice of the number of modified atomic orbitals ("MAOs"). By default, the number of MAOs is chosen such that they are reasonable in most cases (see Section 22.2.26). Nevertheless it is recommended to read carefully the information concerning MAOs given in the output before looking at the results for atomic charges and shared electron numbers. For different ways of selecting MAOs see Section 22.2.26.

With `$pop wiberg` Wiberg bond indices (WBI) [249] are calculated.

19.1.5 Generation of localized MOs

The option `1mos` in the `mos` menu of `proper` and the keyword `$localize` with the `-proper` flag trigger the calculation of localized molecular orbitals. Per default a Boys localization including all occupied MOs is carried out (i.e. the squared distance of charge centers of different LMOs is maximized). Alternative localization methods are Pipek-Mezey and Intrinsic Bond Orbitals (IBOs). As output one gets localized MOs (written to files `1mos` or `1alp/1bet` in UHF cases), informations about dominant contributions of canonical MOs to LMOs and about location of LMOs (from Mulliken PA) are written to standard output.

19.1.6 Intrinsic Bond Orbitals Analysis

The option `ibos` in the `mos` menu of proper initiates the computation of intrinsic bond orbitals [250] (IBOs). Instead of a Mulliken PA in the AO basis the contributions a population analysis in the basis of the intrinsic atomic orbitals [250] (IAOs) and an IAO atomic
charge analysis is done. The start guess for the IBO optimization is slightly different then
the one used with the option lmos, which in the case of degenerate solutions (core orbitals,
symmetry-degenerate LMOs located at the same centers) can lead to slightly different IBOs.
As proposed in Ref. [250] the IAOs are obtained by projection of the occupied orbitals onto
pre-computed atomic orbitals from Hartree-Fock calculations on the isolated atoms in the
correlation consistent triple-ζ basis (cc-pVTZ and cc-pVTZ-PP for pseudo-potential basis
sets). These are available for most main group and transition metal atoms, for atoms beyond
Kr with the standard pseudo-potential cores. If additional definitions are needed, they can
be added to the basis set library.

**Available reference orbitals for IAOs:**

<table>
<thead>
<tr>
<th>Atoms</th>
<th>all electron</th>
<th>default core</th>
<th>large core</th>
</tr>
</thead>
<tbody>
<tr>
<td>H–He</td>
<td>1s / cc-pVTZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li–Be</td>
<td>2s / cc-pVTZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B–Ne</td>
<td>2s1p / cc-pVTZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na–Mg</td>
<td>3s1p / cc-pVTZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al–Ar</td>
<td>3s2p / cc-pVTZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>4s2p / TZV</td>
<td>2s1p / LANL2DZ ECP</td>
<td>1s / ecp-18-sdf</td>
</tr>
<tr>
<td>Ca</td>
<td>4s2p / cc-pVTZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sc–Ni</td>
<td>4s2p1d / cc-pVTZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu–Zn</td>
<td>4s2p1d / cc-pVTZ</td>
<td></td>
<td>2s1p1d /cc-pVTZ-PP</td>
</tr>
<tr>
<td>Ga–Kr</td>
<td>4s3p1d / cc-pVTZ</td>
<td></td>
<td>2s2p1d /cc-pVTZ-PP</td>
</tr>
<tr>
<td>Rb</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y–Cd</td>
<td>—</td>
<td>2s1p1d / cc-pVTZ-PP</td>
<td></td>
</tr>
<tr>
<td>In–Xe</td>
<td>—</td>
<td>2s2p1d / cc-pVTZ-PP</td>
<td></td>
</tr>
<tr>
<td>Cs–Lu</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hf–Hg</td>
<td>—</td>
<td>2s1p1d / cc-pVTZ-PP</td>
<td></td>
</tr>
<tr>
<td>Tl–Rn</td>
<td>—</td>
<td>2s2p1d / cc-pVTZ-PP</td>
<td></td>
</tr>
</tbody>
</table>

**Natural transition orbitals** For excited states calculated at the CIS (or CCS) level
the transition density between the ground and an excited state

\[ E_{ia} = \langle \Psi_{ex}|a_i^\dagger a_i|\Psi_{ex} \rangle \]  

(19.1)
can be brought to a diagonal form through a singular value decomposition (SVD) of the
excitation amplitudes \( E_{ia} \):

\[ \left[ O^\dagger EV \right]_{ij} = \delta_{ij} \sqrt{\lambda_i} \]  

(19.2)

The columns of the matrices \( O \) and \( V \) belonging to a certain singular value \( \lambda_i \) can be
interpreted as pairs of occupied and virtual natural transition orbitals [251,252] and the
singular values \( \lambda_i \) are the weights with which this occupied-virtual pair contributes to the
excitation. Usually electronic excitations are dominated by one or at least just a few NTO
transitions and often the NTOs provide an easier understanding of transition than the
excitation amplitudes \( E_{ia} \) in the canonical molecular orbital basis.
From excitation amplitudes computed with the ricc2 program NTOs and their weights (the singular values) can be calculated with the ntos option in the mos menu of proper or with ricctools. E.g. using the right eigenvectors for the second singlet excited state in irrep 1 with:

\[
\text{ricctools -ntos CCRE0-2--1---1}
\]

Both programs store the results for the occupied and virtual NTOs in files named, respectively, ntos_occ and ntos_vir. The option nto in the grid menu of the proper program can used to evaluate NTOs for visualization on a grid of points.

Note that the NTO analysis ignores for the correlated methods (CIS(D), ADC(2), CC2, CCSD, etc.) the double excitation contributions and correlation contributions to the ground state. This is no problem for single excitation dominated transition out of a “good” single reference ground state, in particular if only a qualitative picture is wanted, but one has to be aware of these omissions when using NTOs for states with large double excitation contributions or when they are used for quantitative comparisons.

**Difference densities based on natural transition orbitals** If the excitation vectors have been obtained starting from a GHF reference, the NTOs are complex and contain contributions from both spin function. Moreover, the transitions are usually dominated by two NTOs at least. Thus, the interpretation of 2c-NTOs may become difficult. To get a simple picture of the transition at hand still, approximate difference densities can be computed according to

\[
\rho(r)_n = \Re \left( \sum_{ab} N_{orr} \phi_a(r) \phi_b(r) \sum_i C_i^a C_i^b - \sum_{ij} \phi_i(r) \phi_j(r) \sum_a C_i^a C_j^a \right).
\]

(19.3)

The first term corresponds to the increase of the occupation of the virtual NTOs, while the second term corresponds to the decrease of the occupation of the occupied NTOs.

This approximate difference density is available for excitation vectors obtained with the following methods: CCS/CIS, CIS(D∞), ADC(2) and CC2. Symmetry other than C1 is currently not supported. Note that the approximate difference densities are based on the same approximations as the NTOs, namely ignoring correlation and double excitation contributions.

From excitation amplitudes computed with the ricc2 program the approximate difference densities are computed with ricctools. E.g. using the right eigenvectors for the second singlet excited state in irrep 1:

\[
\text{ricctools -diffden CCRE0-1--1---2}
\]

This resulting density file can be visualized using the analysis mode of the ricc2 program as described in Section 10.3.3, e.g. by adding the following lines to the control file
$ananadens$
calc my_approx_diffden from
1d0 cc2-1a-002-approxdiffden.cao
$pointval$

and running

ricc2 -fanal

**Fit of charges due to the electrostatic potential:** $esp\_fit$ fits point charges at the positions of nuclei to electrostatic potential arising from electric charge distribution (for UHF cases also for spin density, also possible in combination with $soghf$). For this purpose the ("real") electrostatic potential is calculated at spherical shells of grid points around the atoms. By default, Bragg-Slater radii, $r_{BS}$, are taken as shell radii. A parametrization very close to that suggested by Kollman (a multiple-shell model with shells of radii ranging from $1.4*r_{vdW}$ to $2.0*r_{vdW}$, $r_{vdW}$ is the van-der-Waals radius; U.C. Singh, P.A. Kollman, J. Comput. Chem. 5(2), 129-145 (1984)) is used if the keyword is extended:

$esp\_fit$ kolman

### 19.2 Interfaces to Visualization Tools

There are several possibilities to visualize structures, vibrational frequencies, molecular orbitals, densities and a large number of properties.

The easiest one is to use the graphical user interface of TURBOMOLE TmoleX. TmoleX is either included in your TURBOMOLE distribution or can be downloaded for free from the COSMologic web site TmoleX client version. Use the COSMObuild part of TmoleX to read in the 3D data from file (plt or plv format).

**Visualization of Molecular Geometries**

The tool $t2x$ can be used to convert the atomic coordinates stored in the $grad$ and $coord$ data groups into the xyz-format, which is supported by most viewers, e.g. jmol. Typing

$t2x > opt.xyz$

in a directory containing the control file generates a series of frames using the information in $grad$. Note $t2x$ writes to standard output which here is redirected to a file. If you are only interested in the most recent structure, type

$t2x -c > str.xyz$

which only extracts the information on $coord$. 


19.2. INTERFACES TO VISUALIZATION TOOLS

Visualization of Densities, MOs, Electrostatic Potentials and Fields

Note that the easiest way to visualize orbitals, densities and electrostatic properties is to use the graphical user interface TmoleX.

There are several other possibilities to visualize molecular orbitals or densities. The molden option in the export menu of proper converts the MO and geometry information to the molden format. Alternatively one can use the conversion program tm2molden, which is interactive and self-explanatory. The generated file can be read in by the molden program (see molden web site).

For larger systems this may become very time-consuming, as plotting data (values on grids) are calculated by the respective programs (e.g. molden). It is more efficient to calculate the data for plots (MO amplitudes, densities, etc.) with TURBOMOLE and to use a visualization tool afterwards, a way, that is described in the following.

**Calculation of data on grids** to be used for plots with visualization tools (e.g. gOpenMol, available via gopenmol download) can be generated with the options in the grid menu of proper. Alternatively one can use the keyword $pointval$ in combination with the -proper option. This keyword is obeyed by all TURBOMOLE program that generate densities as dscf, ridft, rimp2 mpgrad, ricc2 (see Section 10.3.3) and egrad. Note, that with -proper and $pointval$ all of the following quantities may be calculated simultaneously, and that for programs dscf, ridft, rimp2 and mpgrad the density matrix generating steps may be skipped by typing "<program> -proper".

**Electron densities** The option dens in the grid menu of proper or with the above mentioned programs setting of the keyword

$pointval$ dens

or simply

$pointval$

results in the calculation of densities

\[ \rho(\vec{R}_P) = \sum_{\nu\mu} D_{\nu\mu} \phi_\nu(\vec{R}_P) \phi_\mu(\vec{R}_P) \] (19.4)

on an orthogonal grid of point \( \vec{R}_P \). The size of the grid is automatically adjusted to the size of the molecule and the resolution is adjusted to yield acceptable plots (for specification of non-default grid types (planes, lines) and non-default output formats see Section 22.2.26).

The names of the output files are:

td.plt total density (UHF: \( \alpha \) density plus \( \beta \) density )
sd.plt spin density (\( \alpha \) density minus \( \beta \) density )
mp2d.plt MP2 density
mp2sd.plt  MP2 spin density
esd.plt  differential spin density for excited state
<myname>.plt general density passed e.g. by the ricc2 program.

The .plt files may be visualized with gOpenMol; the file coord.xyz, which is also necessary for gOpenMol, is generated by the above programs, if \$pointval is set in the control-file.

For two-component wavefunctions (only module ridft with \$sohgf is set): Total density is on file td.plt like for one-component wave functions; this is also true for all other quantities depending only on the density matrix (electrostatic potential etc.). sd.plt contains the absolute value of the spin vector density, which is the absolute value of the following vector:

\[ s_i(r) = \left( \begin{array}{c} \Psi_\alpha^* \\ \Psi_\beta^* \end{array} \right) \sigma_i \left( \begin{array}{c} \Psi_\alpha \\ \Psi_\beta \end{array} \right) \quad i = x, y, z \]

\$pointval fmt=txt

leads to a file containing the spin density vectors, which can be used by gOpenMol. It is advisable to choose ca. one Bohr as the distance between two gridpoints. The options for visualizing two-component wavefunctions are not yet available in the proper program.

**TDDFT Transition densities** The escf program can plot the TDDFT transition densities. For the excited state \( n \) the transition density is

\[ \rho^n(r) = \sqrt{2} \sum_{ia} (X^n + Y^n)_{ia} \phi_i(r) \phi_a(r) \]

\[ = \sqrt{2} \sum_{ia} \sqrt{\omega_{ia}/\omega_n} Z^n_{ia} \phi_i(r) \phi_a(r) \]

where \( i (a) \) are occupied (virtual) orbitals, \( \omega_n \) is the excitation energy, \( \omega_{ia} = \epsilon_i - \epsilon_a \), and \( Z^n \) contains of the TDDFT vector coefficients (for singlet closed-shell). Note that TDDFT transition density are different from the differential and non-relaxed densities. Transition density can be plotted setting:

\$pointval transdens

By default the first excited state (of the first irrep) will be printed. To print other states add the group

\$tdlist
  irrep1 num1 col1
  irrep2 num2 col2
  ....

where \( irrep \) is the number of the irrep considered in the \$soes data group, \( num \) is the number of the state, \( col \) is the column number in the case of degenerate irreps.

The plot are stored in files named:


or with different extension for the different formats.

**Available output formats:** To get a list of the available output formats of the proper program invoke the format option with the flag help. For the direct generation of graphics output different formats are available for 3D and 2D plots. They depend furthermore on the graphics libraries linked to proper. Use the format option with the help flag for a 2D and a 3D grid to get the list of formats available for the two cases. For the output formats available in combination with -proper keyword to export data on grids see Section 22.2.26.

**Electrostatic potentials** In an analogous way electrostatic potentials can be calculated on grids. The option ($pointval$) pot leads to the calculation of the electrostatic potential of electrons and nuclei (and external constant electric fields and point charges $Q$ if present).

$$V(\vec{R}_P) = - \int \frac{\rho(\vec{r})}{r_{PR}} d^3 \vec{r} + \sum_A \frac{Z_A}{R_{PA}} + \left( \frac{\vec{R}_P \vec{E} + \sum_Q \frac{Q}{R_{PQ}}}{r_{PR}} \right)$$  \hspace{1cm} (19.7)

In order to prevent the calculation of singularities at the positions of nuclei, for gridpoints that are closer to a nucleus than $10^{-6}$ a.u. the charge of the respective nucleus is omitted in the calculation of the electrostatic potential for these points. The output files are termed tp.plt, sp.plt, etc.

**Electric fields** (as derivatives of potentials) are calculated with ($pointval$) fld. The absolute values of electric fields are written to files tf.plt, sf.plt, etc. For non-default grid types and outputs that allow also for displaying of components of electric fields see Section 22.2.26.

**Exchange-correlation potentials** (Only for DFT) Computation of the Kohn-Sham exchange-correlation potential on a grid is requested with $pointval$ xc

This functionality is not (yet) available in the proper program.

**Canonical molecular orbitals.** Visualization of molecular orbitals, i.e. generation of .plt-files containing amplitudes of MOs $i$

$$A_i(\vec{R}_P) = \sum_\nu c_{i\nu} \phi_\nu(\vec{R}_P)$$  \hspace{1cm} (19.8)

or in the two-component case

$$A^\Gamma_i(\vec{R}_P) = \sum_\nu c_{i\nu}^\Gamma \phi_\nu(\vec{R}_P)$$  \hspace{1cm} (19.9)

with $\Gamma$ as a part of the coefficient matrix (Re($\alpha$), Im($\alpha$), Re($\beta$), Im($\beta$)), is achieved e.g. by ($pointval$) mo 10-12,15. This triggers the calculation of amplitudes for the MOs/spinors
10-12 and 15 on the grid. The numbering of MOs refers to that you get from the first column of the output of the tool Eiger, the one for spinors refers to the file EIGS. The filenames contain the type of the irreducible representation (irrep) of the MO, the current number within this irrep and in case of UHF calculations also the spin, e.g. 2a1g_a.plt contains amplitudes for the second alpha-spin MO of a1g type. For more-dimensional irreps columns are written to separate files, e.g. 1t2g1_a.plt, 1t2g2_a.plt and 1t2g3_a.plt contain the amplitudes of the three columns of the first irrep (alpha spin) of type t2g.

Two-component wavefunctions (only module ridft and only if $soghf$ is set): By default only the density of the chosen spinors is written in files named e.g. 10a_d.plt. Visualization of the amplitudes of the different spinor parts is achieved e.g. by

\$pointval mo 10-12,15 minco real,

where real is a plotting threshold that may take values between zero and one. The corresponding part \( \Gamma \) of the spinor (Re(\( \alpha \)), Im(\( \alpha \), Re(\( \beta \), Im(\( \beta \))) will be written to file, if \( N^\Gamma \) (see below) is larger than that threshold.

\[
N^\Gamma = \text{tr}(D^\Gamma S)
\]

\[
D^\Gamma_{\mu \nu} = \sum_i c^\Gamma_{i \nu}^* c^\Gamma_{i \mu}
\]

The filenames consist of the number of the spinor according to file EIGS and an additional number for the respective part \( \Gamma \) of the spinor (1 for Re(\( \alpha \)), 2 for Im(\( \alpha \)), 3 and 4 for the corresponding \( \beta \)-parts) e.g. 10a_4.plt for the Im(\( \beta \)) of spinor 10.

Localised molecular orbitals If one has generated localized molecular orbitals (LMOs, see above) they can also be visualized.

\$pointval lmo 3-6,8

as an example, leads to calculation of amplitudes for LMOs 3-6 and 8. The coefficients are read from file lmos (UHF: 1alp and 1bet), the numbering refers to the output from the localization section. For an UHF case the \( \beta \) spinorbitals get an offset of \( N_{\text{MO}} \), where \( N_{\text{MO}} \) is the total number molecular orbitals for each spin case. If one has e.g. 22 orbitals per spin case and is interested in plotting the first 3 \( \beta \)-type LMOs only, one have to type

\$pointval lmo 23-25

Natural molecular orbitals for two-component wavefunctions (only module ridft and only if $soghf$ is set): In two-component calculations it is often useful to visualize natural molecular orbitals. In contrast to one-component calculations the occupation numbers are no longer close to zero, one or two, but can take any value between zero and two. Therefor

\$natural orbitals file=natural
\$natural orbital occupation file=natural

has to be set additionally to $soghf$ (also possible via define).

By setting
$pointval nmo 9

in control-file a gOpenMol-compatible file named nmo_9.plt is written which can also be visualized with TmoleX.

**Natural atomic orbitals** If one has generated natural molecular orbitals (NAOs, see above) they can be visualized with the following command in the control file:

$pointval nao 7-9,12

where the numbers of the NAOs are in the output of the population analysis.

**Natural transition orbitals** If natural transition orbitals (NTOs) for electronic excitations are available in files named nto_nocc and nto_vir for, respectively, the occupied and virtual NTOs, plot files for visualizing them can be generated by setting

$pointval nto 1-5

This will generate plot files for the first five occupied and virtual NTOs. The plot file are named nto_vir_.n.plt, where n is the NTO index.

**Non-default grids** are described in detail in Sections 22.2.26. In the proper program non-default grids can be specified with the grid option. Calculation of the above quantities at single points is needed quite often, thus an example is given here.

$pointval geo=point

7 5 3
0 0 7
1 2 3

calculates densities at points (7,5,3), (0,0,7) and (1,2,3). Output is (x,y,z, density), output file suffix is .xyz.

We note in passing that calculation of electrostatic potential at positions of nuclei may be used as an efficient tool to distinguish atoms of similar atomic numbers thus providing a complement to X-Ray Structure Analysis (details see ref. [253]).
Chapter 20

Orbital Dependent Kohn-Sham Density Functional Theory

20.1 Theoretical Background

Approximations to the exchange-correlation (XC) functional of the Kohn-Sham (KS) Density Functional Theory (DFT) can be classified by the so-called “Jacob’s ladder.” The ground on which the ladder lies is the Hartree approximation (XC energy is zero), and the first rung is the local density approximation (LDA) in which the XC energy density is a simple local function of the density. The second rung of the Jacob’s ladder is the generalized gradient approximation (GGA): in this case the XC energy density depends also on the gradient of the density. In the third rung (meta-GGA) an additional variable is used, the Kohn-Sham kinetic energy density which allows, e.g., to construct self-correlation-free functionals. Functionals in the above rungs can have high accuracy for different class of problems in chemistry and solid-state physics, but their main limitation is the self-interaction error (SIE) [254–257]. To avoid the SIE the exchange must be treated exactly and this can be achieved by functionals in the fourth rung which depend explicitly on all the occupied KS orbitals. In the KS formalism the EXX (exact-exchange) energy is (for closed-shell systems $n_s = 2$) [254–257]:

$$E_{xx}^{\text{EXX}} = -\frac{n_s}{2} \sum_{\text{occ.}} \sum_{\text{occ.}} \int \int d\mathbf{r} d\mathbf{r}' \frac{\phi^\text{KS}_a(\mathbf{r}) \phi^\text{KS}_b(\mathbf{r}) \phi^\text{KS}_a(\mathbf{r}') \phi^\text{KS}_b(\mathbf{r}')}{\|\mathbf{r} - \mathbf{r}'\|}.$$  

(20.1)

i.e. the same functional form of the Hartree-Fock (HF) exchange but computed with KS orbitals which are obtained using a self-consistent local EXX potential. At this point we should recall that hybrid DFT functionals (including HF exchange), doesn’t belong to the KS formalism: in hybrid DFT, in fact, the non-local HF exchange operator $\hat{v}_x^\text{NL}(\mathbf{r}, \mathbf{r}') = -\sum_a \frac{\phi_a(\mathbf{r}) \phi_a(\mathbf{r}')}{\|\mathbf{r} - \mathbf{r}'\|}$ is employed in the self-consistent (Generalized Kohn-Sham) equations determining the orbitals.
20.1. THEORETICAL BACKGROUND

While LDA, GGA, meta-GGA and hybrid functionals are implemented (for ground-state calculations) in the `dscf` and `ridft`, the `odft` module considers functionals of the fourth rung. Currently exchange-only orbital-dependent approaches are implemented in the `odft` module. The EXX KS local potential ($v^{\text{EXX}}_x(r)$) can be obtained using the optimized effective potential (OEP) method (in each self-consistent step): [255–258]:

$$\int \text{d}r' \chi_s(r,r') v^{\text{EXX}}_x(r) = \sum_a \sum_s \langle \phi_a | \tilde{\epsilon}^\text{NL}_x | \phi_s \rangle \frac{\phi_s(r) \phi_a(r)}{\epsilon_a - \epsilon_s}$$  \hspace{1cm} (20.2)

where $\chi_s(r,r') = \sum_a \sum_s \chi_{a s} (\epsilon_a - \epsilon_s)$ is the non-interacting density response. An effective approximation to the OEP-EXX potential is given by the Localized Hartree–Fock (LHF) potential [254] which is given by

$$v^{\text{LHF}}_x(r) = - \sum_{i j} \frac{n_i}{\rho(r)} \int \text{d}r' \phi_i(r') \phi_j(r') \frac{\phi_i(r) \phi_j(r)}{\|r - r'\|}$$

$$+ \sum_{i j} \frac{n_i}{\rho(r)} \langle \phi_i | v^{\text{LHF}}_x - \tilde{\epsilon}^\text{NL}_x | \phi_j \rangle$$  \hspace{1cm} (20.3)

where the first term is called Slater potential and the second term correction term. If terms $i \neq j$ are neglected in the correction term, the Krieger-Li-Iafrate (KLI) potential [259] is obtained. Note that the Eq. (20.3) depends only on occupied orbitals, whereas Eq. (20.2) depends also on virtual orbitals. The LHF total energy is assumed to be the EXX total energy, even if LHF is not variational (although the deviation from the EXX energy is very small, usually below 0.01%). The LHF potential is equivalent to the Common Energy Denominator Approximation (CEDA) [260] and to the Effective Local Potential (ELP) [261]. Both OEP-EXX and LHF (in contrast to functionals of the first three rungs) satisfy the HOMO condition [259]

$$\langle \phi_{\text{HOMO}} | v_x | \phi_{\text{HOMO}} \rangle = \langle \phi_{\text{HOMO}} | \tilde{\epsilon}^\text{NL}_x | \phi_{\text{HOMO}} \rangle$$  \hspace{1cm} (20.4)

and the asymptotic relation [262, 263]

$$v_x(r_l) \underset{r_l \to \infty}{\to} \langle \phi_M | v_x - \tilde{\epsilon}^\text{NL}_x | \phi_M \rangle - \frac{1}{r_l}.$$  \hspace{1cm} (20.5)

where $\phi_M$ is the highest occupied orbital which do not have a nodal surface in the asymptotic region along direction $r_l$. Considering together with condition (20.4), we finally obtain that:

- $v_x(r)$ will approach $-1/r$ along all directions where $\phi_{\text{HOMO}}(r)$ does not have a nodal surface in the asymptotic region (e.g. this is the case of atoms);
- on directions which belong to the nodal surface of the HOMO, the $v_x(r)$ will approach $\langle \phi_M | v_x - \tilde{\epsilon}^\text{NL}_x | \phi_M \rangle - 1/r$.

Both OEP-EXX and LHF gives total energies very close to the Hartree-Fock one (actually $E^{\text{LHF}} > E^{\text{EXX}} > E^{\text{HF}}$), thus, without an appropriate correlation functional, these methods are not suitable for thermochemistry. On the other hand OEP-EXX and LHF give very good
KS orbital spectra. In fact the eigenvalues of the HOMO is very close to the Hartree-Fock and to exact ionization potential (I.P): this is in contrast to functional of the first three rungs which underestimate the HOMO energy by several eVs. In addition a continuum set of bound unoccupied orbitals are obtained. Thus OEP-EXX or LHF KS orbitals are very good input quantities for computing NMR shielding constants [264], energy-levels in hybrid interfaces [265] and TD-DFT excitation energies [266] (the latter using LDA/GGA kernels, not the hybrid ones).

20.2 Implementation

Both the OEP-EXX and LHF methods can be used in spin–restricted closed–shell and spin–unrestricted open–shell ground state calculations. Both OEP-EXX and LHF are parallelized in the OpenMP mode.

20.2.1 OEP-EXX

In the present implementation the OEP-EXX local potential is expanded as [258]:

\[ v_{\text{EXX}}(\mathbf{r}) = \sum_p c_p \int \frac{g_p(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}', \]  

(20.6)

where \( g_p \) are gaussian functions, representing a new type of auxiliary basis-set (see directory xbasen). Inserting Eq. (20.6) into Eq. (20.2) a matrix equation is easily obtained for the coefficient \( c_p \). Actually, not all the coefficients \( c_p \) are independent each other as there are other two conditions to be satisfied: the HOMO condition, see Eq. (20.4), and the Charge condition

\[ \int \sum_p c_p g_p(\mathbf{r}) d\mathbf{r} = -1, \]  

(20.7)

which ensures that \( v_{\text{EXX}}(\mathbf{r}) \) approaches \(-1/\mathbf{r}\) in the asymptotic region. Actually Eq. (20.6) violates the condition (20.5) on the HOMO nodal surfaces (such condition cannot be achieve in any simple basis-set expansion).

Note that for the computation of the final KS Hamiltonian, only orbital basis-set matrix elements of \( v_{\text{EXX}} \) are required, which can be easily computes as three-index Coulomb integrals. Thus the present OEP-EXX implementation is grid-free, like Hartree-Fock, but in contrast to all other XC-functionals.

20.2.2 LHF

In the LHF implementation the exchange potential in Eq. (20.3) is computed on each grid-point and numerically integrated to obtain orbital basis-sets matrix elements. In this case the DFT grid is needed but no auxiliary basis-set is required. The Slater potential can be computed numerically on each grid point (as in Eq. 20.3) or using a basis-set expansion as [254]:
\[ v_{\text{lat}}^n(r) = \frac{n_s}{\rho(r)} \sum_a u_a^T \chi(r) \chi^T(r) S^{-1} K u_a. \] (20.8)

Here, the vector \( \chi(r) \) contains the basis functions, \( S \) stands for the corresponding overlap matrix, the vector \( u_a \) collects the coefficients representing orbital \( a \), and the matrix \( K \) represents the non-local exchange operator \( \hat{v}_{\text{x}}^{\text{NL}} \) in the basis set. While the numerical Slater is quite expensive but exact, the basis set method is very fast but its accuracy depends on the completeness of the basis set.

Concerning the correction term, Eq. (20.3) shows that it depends on the exchange potential itself. Thus an iterative procedure is required in each self-consistent step: this is done using the conjugate-gradient method.

Concerning conditions (20.4) and (20.5), both are satisfied in the present implementation. KS occupied orbitals are asymptotically continued [262] on the asymptotic grid point \( r \) according to:

\[
\tilde{\phi}_i(r) = \phi_i(r_0) \left( \frac{|r|}{|r_0|} \right)^{(Q+1)/\beta_i-1} e^{-\beta_i(|r|-|r_0|)},
\] (20.9)

where \( r_0 \) is the reference point (not in the asymptotic region), \( \beta = \sqrt{-2\epsilon_i} \) and \( Q \) is the molecular charge. A surface around the molecule is used to defined the points \( r_0 \).

## 20.3 How to Perform

OEP-EXX

To run OEP-EXX calculations select:

```
$ dft
 functional oep
```

As the computation of the OEP functional is completely analytic and grid free, any selection of a grid type or size will not influence the OEP calculation in contrast to other density functionals.

Particular care is instead required to orbital and auxiliary basis set. An arbitrary combination of them can lead to very good total energy (i.e. very close to the Hartree-Fock one) but unphysical OEP potential. In the present release we strongly recommend to use the \( d\text{-}aug\text{-}cc\text{-}pVTZ-oep \) basis set and the corresponding auxiliary basis set (directory \texttt{xbasen}).

The following options can modify the quality, time and output of an OEP calculation. All the options can be set by \texttt{define}.

Every option has a reasonable default value so the user does not need to select any of the options below to run a proper OEP calculation.
\$oep\ options

Listing of all possible options for the flag \$oep.

\textbf{charge vector integer}

The Charge condition expansion coefficients in auxiliary basis set representation can be calculated in different kinds.

The selection of \textit{integer} = 1 will use the following ansatz to calculate the coefficients:

\[ c_{P_1} = \begin{cases} \frac{1}{N'_{\text{aux}}} \cdot \frac{1}{G_P} & \text{if } G_P \neq 0 \\ 0 & \text{if } G_P = 0 \end{cases} \]

\( G_P \) is the integral over a normalized Gaussian auxiliary basis function. \( N'_{\text{aux}} \) is the number of auxiliary basis functions with \( G_P \neq 0 \).

The selection of \textit{integer} = 2 will use the following ansatz to calculate the coefficients:

\[ c_{P_2} = \begin{cases} \frac{1}{\sum_P G_P} & \text{if } G_P \neq 0 \\ 0 & \text{if } G_P = 0 \end{cases} \]

The variable \textit{integer} must have an integer value. The default value is 2.

\textbf{condition [string2] string}

In the OEP method two constraints can be applied in the OEP equation. This is the HOMO condition and the Charge condition. The variable \textit{string} can have the values \textit{none}, \textit{HOMO}, \textit{Charge} and \textit{both}. No condition is chosen when \textit{none} is elected. The HOMO condition is chosen when \textit{HOMO} is elected. The Charge condition is chosen when \textit{Charge} is elected. The HOMO condition and the Charge condition are chosen when \textit{both} is elected.

The variable \textit{string2} is optional and only electable if a spin-unrestricted calculation is performed. The variable \textit{string2} can have the values \textit{alpha} and \textit{beta}. If \textit{string2} = \textit{alpha} then the condition is defined for the alpha spin channel. If \textit{string2} = \textit{beta} then the condition is defined for the beta spin channel. Both spin channels can have different values.

Example:

\[
\$oep
condition\ alpha\ HOMO
condition\ beta\ Charge
\]

If only one spin channel is defined the other spin channel uses the same condition automatically. The default value in any case is \textit{string} = \textit{both}.

\textbf{core memory integer}

Core memory is the amount of main memory given to the OEP calculation to store the three index integrals calculated during the OEP calculation. The core memory amount is given MB. The calculation runs as fast as possible if
all three index integrals can be stored in the core memory. The variable integer must have an integer value. The default value is 200.

debug
Print further information about the OEP calculation especially matrices and vectors used during the OEP calculation. Use this option carefully since a lot of data is written. The default value is .false..

eigenvalue difference integer
Two molecular orbitals are considered as degenerated (due to symmetry or incidentally), if the difference between them is smaller then $10^{-integer}$. The variable integer must have an integer value. The default value is 6.

plot coefficient string
The expansion coefficients for the auxiliary basis functions which build the local exact exchange potential are written to the file oepcVx.dat or in case of a spin-unrestricted calculation to the files oepcVxa.dat and oepcVxb.dat. If string is cartesian the expansion coefficients are given for a cartesian atomic orbital auxiliary basis, if string equals spheric the expansion coefficients are given for a spherical atomic orbital auxiliary basis. In any case the expansion coefficients are given for the single atomic orbital auxiliary basis function and contain no information about the symmetry of the system (c1 case). The default value is cartesian.

reference potential
Use the reference potential constructed by the applied conditions to the OEP calculation as exchange potential. The solution of the OEP equation is skipped. The default value is .false..

LHF

To run a LHF calculations select:

```bash
$ dft
 functional lhf
 gridsize 3
```

This can be done using define (modified grid are not supported) and then run odft.

A more suitable procedure is the following:

1) Do a Hartree–Fock calculation using dscf.

2) Use the script lhfprep to prepare the control file (the old control file will be saved in control.hf and the molecular orbitals in mos.hf or in alpha.hf and beta.hf for the spin-unrestricted case). See lhfprep -help for options. Actually LHF can be started from any guessed orbitals, but if HF orbitals are used, a much faster convergence is expected. By default the script lhfprep will add/modify the control file with:
$dft$
  functional lhf
  gridtype 6
  gridsize 3
  radsize 3

$lhf$
  off-diag on
  num-slater off
  asymptotic dynamic=1.d-3
  conj-grad conv=1.d-6 maxit=20 output=1 asy=1
  slater-dtresh 1.d-9
  slater-region  7.0  0.5  10.0  0.5
  corrct-region  10.0  0.5

$scfdump$

$scfiterlimit 30$

$scfconv 6$

$scfdamp start=0.000 step=0.500 min=0.50$

$scforbitalshift noautomatic$

$correction matrix-elements file=lhfcg$

$correction alpha matrix-elements file=lhfcg_alpha$

$correction beta matrix-elements file=lhfcg_beta$

3) Run odft.

With the LHF potential Rydberg series of virtual orbitals can be obtained. To that end, diffuse orbital basis sets have to be used and special grids are required.

gridtype 4 is the most diffuse with special radial scaling; gridtype 5 is for very good Rydberg orbitals; gridtype 6 (default in Lhfprep) is the least diffuse, only for the first Rydberg orbitals.

Only gridsize 3–5 can be used, no modified grids.

Use test-integ to check if the selected grid is accurate enough for the employed basis-set, see page 373.

The options in the $lhf$ group are:

off-diag on
  The LHF exchange potential is computed (default);

off-diag off
  The KLI exchange potential is computed (can be selected by lhfprep -kli).

num-slater on
  the Slater potential is calculated numerically everywhere: this is more accurate but quite expensive. When ECPs are used, turn on this option. It can be selected by lhfprep -num.
20.4. HOW TO PLOT THE EXCHANGE POTENTIAL

num-slater off
the Slater potential is computed using basis-sets. This leads to very fast calculations, but accurate results are obtained only for first-row elements or if an uncontracted basis set or a basis set with special additional contractions is used. This is the default.

asymptotic
for asymptotic treatment there are three options:

asymptotic off
No asymptotic-treatment and no use of the numerical Slater. The total exchange potential is just replaced by \(-1/r\) in the asymptotic region. This method is the fastest one but can be used only for the density-matrix convergence or if Rydberg virtual orbitals are of no interest.

asymptotic on
Full asymptotic-treatment and use of the numerical Slater in the near asymptotic-region. It can be selected by lhprep -asy.

asymptotic dynamic=1.d-3
Automatic switching on (off) to the special asymptotic treatment if the differential density-matrix rms is below (above) 1.d-3. This is the default.

pot-file save
the converged Slater and correction potentials for all grid points are saved in the files slater.pot and corrcp.pot, respectively. Using pot-file load, the Slater potential is not calculated but read from slater.pot (the correction potential is instead recalculated). For spin unrestricted calculations the corresponding files are slaterA.pot, slaterB.pot, corrcpA.pot and corrcpB.pot.

homo
allows the user to specify which occupied orbital will not be included in the calculation of correction potential: by default the highest occupied orbital is selected. This option is useful for those systems where the HOMO of the starting orbitals (e.g. EHT, HF) is different from the final LHF HOMO. homob is for the beta spin.

correlation func=functional
a correlation functional can be added to the LHF potential: use func=lyp for LYP, or func=vwn for VWN5 correlation.

For other options see 20.3.

20.4 How to plot the exchange potential

It is recommended to check plots of the exchange potential for both OEP-EXX and LHF potential, to avoid spurious numerical oscillations (which usually originates from too small or too large basis-set). To plot the LHF potential over a line, add to the control file (e.g. for a 2000 points along the z axis):
$\text{pointval } xc \text{ geo=\text{line}}$

```latex
grid1 vector 0 0 1 range -10,10 points 2000
origin 0 0 0
```

and run `odft -proper`. The plotting subroutine reads the file `lhfcg`, containing the matrix elements of the Correction potential is already generated by a previous run. The file `tx.vec` will be generated with four columns (distance, LHF potential, Slater potential, Correction potential).

The procedure to plot the OEP-EXX potential is the same. In this case the expansion coefficients (see Eq. 20.6) are read from the file `oepcVx.dat` (cartesian format). The file `tx.vec` will be generated with four columns (distance, EXX potential, EXX potential, zero).

## 20.5 How to quote

- For LHF calculations with `odft`:

- For OEP-EXX calculations with `odft`:
Chapter 21

Vibronic absorption and emission spectra

21.1 Theoretical Background

The accurate prediction of absorption and emission spectra often requires a quantum mechanical treatment of nuclear vibration [267]. In addition, the geometrical differences between ground and excited state structures, and the differences in vibrational spectra and normal modes lead to mode mixing, making the prediction of the vibrational structure in electronic spectra non-trivial. Under the neglect of anharmonicity, these effects can be described by the Duschinsky rotation [268]

\[ Q_i = D + JQ_f, \]  

(21.1)

where \( Q_i \) and \( Q_f \) denote initial and final state vibrational coordinates, respectively. \( D \) is the geometric displacement between ground and excited state vibrational structures and \( J \) is the Duschinsky rotation matrix. In case of absorption, the initial state is the electronic ground state and the final state is the electronically excited state; in case of emission, the opposite order applies.

Within the harmonic oscillator approximation, the absorption and emission spectra are given by:

\[ \sigma_{abs}(\omega) = \frac{4\pi^2\omega}{3c}\left|\mu_{ij}\right|^2\sum_{v_i}\left|\langle\theta_0(Q_i)|\theta_{v_i}(Q_f)\rangle\right|^2\delta(E_{v_i} - E_0 - \omega) \]  

(21.2)

and

\[ \sigma_{em}(\omega) = \frac{4\omega^3}{3c^3}\left|\mu_{ij}\right|^2\sum_{v_i}\left|\langle\theta_0(Q_i)|\theta_{v_i}(Q_f)\rangle\right|^2\delta(E_{v_i} - E_0 - \omega), \]  

(21.3)
respectively. Here, in both cases, it is assumed that absorption and emission occurs from the lowest vibration level of the initial state only (zero temperature approximation). The absorption spectrum ($\sigma_{abs}$) is given as the absorption cross section in atomic units (Bohr$^2$); the emission spectrum ($\sigma_{em}$) is given as the emission rate in inverse atomic time units.

Writing the delta function in Eqs. 21.2 and 21.3 as a Fourier transform and applying Mehler’s formula [269,270], the infinite sum in equations 21.2 and 21.3 can be eliminated and written in terms of a generating function $G(t)$ in the time domain

$$\sum_{\nu_f} |\langle \theta_0(Q_i)|\theta_{\nu_f}(Q_f)\rangle|^2 \delta(E_{\nu_f} - E_0 - \omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \exp \left( it \left( \Delta E_{if} + \frac{1}{2} \sum_j (\omega_j - \omega) \right) \right) G(t).$$

Here, $\Delta E_{if}$ denotes the adiabatic excitation energy, and $E_{\nu_f}$ and $E_0$ denote the vibrational energy of the final and initial state, respectively. The generating function is given by

$$G(t) = 2^N \left( \frac{\det(S^{-1}\Omega_i \Omega_f)}{\det(L) \det(M)} \right)^{\frac{1}{2}} \exp \left( D^T (\Omega_i BM^{-1} J^T \Omega_f B - \Omega_i B) D \right),$$

where $\Omega_i$, $\Omega_f$, $S$, $B$ are diagonal matrices with $(\Omega_i)_{kk} = \omega^i_k$, $(\Omega_f)_{kk} = \omega^f_k$, $S_{kk} = \sinh(i\omega^f_k t)$, and $B_{kk} = \tanh(i\omega^f_k t/2)$. $T$ denotes the transpose of the matrix. $\omega^i_k$ and $\omega^f_k$ denote vibrational frequencies of initial and final state, respectively. Matrices $L$ and $M$ are obtained as $M = J^T \Omega_i B J + \Omega_i$ and $L = J^T \Omega_f B^{-1} J + \Omega_f$. Hence, knowledge of ground and excited state structures and their vibrational spectra allows the construction of all matrices appearing in Eq. 21.5 and $G(t)$ can be propagated in time. In practice, $G(t)$ has to be truncated after a maximum time $t_{\text{max}}$. In addition, $G(t)$ is multiplied by a damping function $\exp(-t/\tau)$ with lifetime $\tau$, which leads to a Lorentzian broadening of the spectral lines. More details can be found in Ref. [267].

### 21.2 Implementation

In principle, any electronic structure method can be used with RADLESS if the necessary input, i.e. structures and vibrational data for the electronic ground and excited state, is provided. After successful calculation of the ground and excited state structures and their vibrational spectra, matrices of Eq. 21.5 are constructed at different times $t$ to obtain the generating function. Fourier transform of the generating function together with the appropriate prefactor gives the absorption or emission spectra. Matrix products are evaluated using basic linear algebra subroutines (BLAS) [271] for real and complex matrices. The spectra are obtained by discrete Fast Fourier transformation [272] of the $G(t)$. 
21.3 Functionalities of RADLESS

21.3.1 How to use RADLESS

RADLESS allows the calculation of vibronic absorption and emission spectra. Calculations with RADLESS can only be done within C1 symmetry. The following steps are necessary to prepare the required input:

1. Optimize ground state structure and compute vibrational spectrum with AOFORCE or NUMFORCE.
2. Optimize excited state structure and compute vibrational spectrum using NUMFORCE.
3. In a new directory, copy the S1-geometry coord and its control file (control), which points to the coordinate file coord.
4. In the same directory, copy the S0-geometry coord-gs and its control file (control-gs) pointing to coord-gs.
5. Make sure the excited state control file (control) points to vibrational modes, frequencies, and reduced masses of the excited state, whereas the ground state control file (control-gs) points to vibrational frequencies, normal modes, and reduced masses of the ground state. This can be achieved either by renaming ground state vibrational files (e.g. vib_normal_modes-gs, vibspectrum-gs etc.) or by directly adding the vibrational data to the control-gs file.
6. Add necessary keywords to excited state control file (control):
   (a) $fluorescence or/$absorption, to specify what kind of spectrum will be calculated; if both keywords are used, both spectra will be calculated.
   (b) $gsenergy= number ground state total energy (in a.u.) of the excited state structure
   (c) $esenergy= number excited state total energy (in a.u.) of the excited state structure
   (d) $spectral width integer; spectral width for fluorescence (for absorption, spectral width is given in control-gs) spectrum in atomic units. Default: adiabatic excitation energy of the current system plus four times the inverse lifetime. The radiative rate will be computed by integration from 0 to integer. Too high integer can lead to artifacts of the radiative rate due to the numerical error of the discrete Fourier transform in the high frequency region. It is recommended to set integer by approximately two times the full width at half maximum higher than the adiabatic excitation energy. The fluorescence spectrum will be written from 0 to integer onto the file FLUORESCENCE_spectrum.dat.
   (e) $transdip number; magnitude of transition dipole (length representation) in atomic units (obtained from ESCF or EGRAD output). This is only required for fluorescence spectra calculations; for absorption spectra the transition dipole is given in control-gs. Default: 1.0 au.
(f) **$max\ time\ integer** : total integration time in atomic units optional keywords. Due to the fast Fourier transform, **integer** should be a power of 2.

7. Add optional keywords to excited state control file (**control**):
   
   (a) **$broadening** : employ lifetime broadening
   
   (b) **$lifetime\ integer** : if broadening is used, **integer** is the lifetime of the damping function given in atomic units
   
   (c) **$dhoa** : Displaced harmonic oscillator approximation is applied. Duschinsky matrix is set to unity (no mode mixing).
   
   (d) **$delta_t\ number** : use an integration time step of **number** (default: 1) in atomic units

8. Add necessary keywords to **control-gs**
   
   (a) **$geenergy = number** ground state total energy of the ground state structure
   
   (b) **$eseenergy = number** excited state total energy of the ground state structure
   
   (c) **$transdip\ number** : magnitude of transition dipole (length representation) in atomic units (obtained from ESCF or EGRAD output). (This is only required for absorption spectra calculations). Default: 1.0 au.
   
   (d) **$spectral\ width\ integer** : spectral width for absorption spectrum in atomic units. Default: twice the adiabatic excitation energy of the current system. The total frequency integrated absorption will be computed by integration from 0 to **integer**. The absorption spectrum will be written from 0 to **integer** onto the file **ABSORPTION_spectrum.dat**.

Start a **RADLESS** calculation with **radless > radless.out**.

### 21.3.2 Output of RADLESS

1. Absorption and emission spectra are written to files, **ABSORPTION_spectrum.dat** and **FLUORESCENCE_spectrum.dat**, respectively. The first column gives the frequency ($\omega$) in atomic units. In case of absorption, the second column gives the absorption cross section in atomic units (Bohr$^2$). In case of emission, the second column contains the emission rate in inverse atomic time units.

2. **Genfunc_fluor.dat** and **Genfunc_abs.dat**, contain the generating functions for emission and absorption, respectively. Real part is given in the first column, imaginary part is given in the second column.

3. **DUSCHINSKY.dat** contains the Duschinsky rotation matrix

4. Geometric displacements projected on vibrational modes are given in the standard output.
5. Radiative rates are given in the standard output. The static radiative rate refers to 
\( \frac{4\Delta E_{ij}}{3\epsilon^2} |\mu_{ij}|^2 \), whereas the vibrational radiative rate is the integral over the fluorescence spectrum.

6. The frequency-integrated absorption coefficient \([273]\) \( \int \sigma_{abs}(\omega)d\omega \) is given in the standard output.
Chapter 22

Keywords in the control file

22.1 Introduction

The file control is the input file for TURBOMOLE which directly or by cross references provides the information necessary for all kinds of runs and tasks. control is usually generated by define, the input generator. This chapter provides a short-hand documentation: a list of the most important key words, the possible parameters for each keyword, default values, and a brief explanation.

22.2 Format of Keywords and Comments

TURBOMOLE input is keyword-directed. Keywords start with a '$', e.g. $title. Comments may be given after $dummy, or by a line starting with #; these lines are ignored by TURBOMOLE. Blank lines are also ignored. Keywords may be in any order unless stated otherwise below.

The sample inputs given below should help to give an idea how the keywords are to be used. Complete control files are provided in Chapter 23. An alphabetical list of all keywords is given in the index.

The control file and other input files references therein must end with this keyword:

$end

22.2.1 Keywords for System Specification

General information defining the molecular system: nuclear coordinates, symmetry, basis functions, number of occupied MOs, etc. which are required by every module.
$title
give title of run or project here.

$symmetry d4h
Schönflies symbol of the point group. All point groups are supported with the exception of NMR shielding and force constant calculations etc. which do not work for groups with complex irreps ($C_3$, $C_3h$, $T$, etc). Use a lower symmetry group in this case.

$atoms
Example:

$atoms
cu 1-4
  basis =cu ecp-18 arep
  jbas =cu ecp-18
  ecp =cu ecp-18 arep
se 5-6
  basis =se ecp-28 arep dzp
  jbas =se ecp-28
  ecp =se arep

note the backslash \ : this is necessary. For each type of atom, one has to specify
- the basis set
- and the auxiliary (fitting) basis for RIDFT calculations
- the ECP if this is used.

The files basis, ecp and jbas must provide the necessary information under the labels specified in $atoms.

$pople char
This data group specifies the number of Cartesian components of basis functions (i.e. 5d and 7f in AO-Basis, 6d and 10f in CAO-Basis) for which the SCF calculation should be performed. Possible values for char are AO (default) or CAO. If CAO is used—which is not recommended—a core guess must be used instead of a Hückel guess (see $scfmo).

RHF

$closed shells
Specification of MO occupation for RHF, e.g.

a1g 1-4              ( 2 )
a2g 1                ( 2 )
$\text{open shells type=1}

MO occupation of open shells and number of open shells. \textit{type=1} here means that there is only a single open shell consisting e.g. of two MOs:

\begin{align*}
\text{b2g} & \quad 1 \\
\text{b3g} & \quad 1
\end{align*}

\$\text{roothaan} \quad 1

\begin{align*}
a & = 1 \\
b & = 2
\end{align*}

\$\text{roothaan}

Roothaan parameters for the open shell, here a triplet case. \texttt{define} recognizes most cases and suggests good Roothaan parameters.

For further information on ROHF calculations, see the sample input in Section 23.6 and the tables of Roothaan parameters in Section 6.3.

\section*{UHF}

\$\text{uhf} \quad \text{directs the program to carry out a UHF run, e.g.}

\$\text{alpha shells}

\begin{align*}
\text{a1g} & \quad 1-4 \\
\text{a2g} & \quad 1
\end{align*}

\$\text{beta shells}

\begin{align*}
\text{a1g} & \quad 1-4 \\
\text{a2g} & \quad 1
\end{align*}

The specification of MO occupation for UHF, \$\text{uhf} overwrites closed-shell occupation specification.

\subsection{Keyword for the General Memory Specification}

Most post-SCF programs (\texttt{aoforce}, \texttt{ccsdf12}, \texttt{egrad}, \texttt{escf}, \texttt{evib}, \texttt{mpgrad}, \texttt{mpshift}, \texttt{pnccsd}, \texttt{ricc2}, \texttt{rirpa}) in \texttt{TURBOMOLE} read the data group

\$\text{maxcor 500 mib per\_core}

to control the amount of dynamically allocated memory. The integer number (above “500”) one can (optionally) give a SI prefix (\texttt{kb}, \texttt{mb}, \texttt{gb}) or an IEC prefix (\texttt{kib}, \texttt{mib}, \texttt{gib}) to specify the unit. If no unit is specified \texttt{mib} (binary megabytes, i.e. $1024^2$ bytes) are used.

In addition one can specify a reference for parallel calculations:

\texttt{per\_proc} indicates that the memory is specified per process

\texttt{per\_node} indicates that the memory is specified per computer node, i.e. shared by all processes of the calculation that run on the machine with the same host name
per_core indicates that the memory is specified per core, i.e. per thread

total means the specified memory should be divided by all processes and nodes

If not given the specified memory will be used per thread. Note that in release versions before V7.2 the memory was specified per process. For sequential calculations this sub-option has no effect.

If $\text{maxcor}$ is not given 500 MiB per thread will be used as limit for dynamically allocated memory.

Note:

- $\text{maxcor}$ defines only the memory controlled by the electronic structure code. Additional memory can be allocated by the math and MPI libraries linked into the program and by the operating and I/O systems. It is therefore recommended to set $\text{maxcor}$ not higher than to 75% – 85% of the physical core memory that is available for the calculation.

- Some programs use additional keywords ($\text{incore, ricore, ricore_slave, rpacor}$) to specify limits for dynamically allocated memory for certain tasks.

22.2.3 Other General Keywords

$\text{operating system unix}$

$\text{path}$

$\text{lock off}$

$\text{suspend off}$

The four keywords above are set by define, but are not necessary.

$\text{statistics dscf}$

or

$\text{statistics mpgrad}$

Only a statistics run will be performed to determine file space requirements as specified for dscf or mpgrad. On return the statistics option will be changed to $\text{statistics off}$.

$\text{actual step dscf}$

means current step. Keyword and data group (as e.g. dscf) is set by every program and removed on successful completion.

$\text{last step relax}$

Keyword and data group (as e.g. relax) set by every program on successful completion.

General file cross-references:

$\text{coord file=coord}$

$\text{intdef file=coord}$
22.2. FORMAT OF KEYWORDS AND COMMENTS

$\text{user-defined bonds file=coord}$

$\text{basis file=basis}$

$\text{ecp file=basis}$

$\text{jbas file=auxbasis}$

$\text{scfmo file=mos}$

$\text{uhfmo\_alpha file=alpha}$

$\text{uhfmo\_beta file=beta}$

$\text{energy file=energy}$

$\text{grad file=gradient}$

$\text{forceapprox file=forceapprox}$

It is convenient not to include all input in the control file directly and to refer instead to other files providing the corresponding information. The above cross references are default settings from define; you may use other file names. define will create most of these files. Examples of these files are given below in the samples.

$\text{coord (and intdef and userdefined bonds)}$

contains atom specification—type and location—and the bonds and internal coordinates convenient for geometry optimizations.

$\text{basis}$

specification of basis sets.

$\text{ecp}$

specification of effective core potentials.

$\text{jbas}$

auxiliary (fitting) basis for the Coulomb terms in ridft.

$\text{scfmo, uhfmo\_alpha, uhfmo\_beta}$

MO vectors of SCF or DFT calculations for RHF or UHF runs.

$\text{natural orbitals, natural orbital occupation}$

keywords and data groups set by unrestricted dscf or ridft runs. Contain natural MO vector and orbital occupation.

$\text{energy, grad}$

energies and gradients of all runs, e.g. for documentation in a geometry optimizations.

$\text{forceapprox}$

approximate force constant for geometry optimizations.

22.2.4 Keywords for redundant internal coordinates in $\text{redund\_inp}$

With the parameters in $\text{redund\_inp}$ the generation of redundant internal coordinates can be modified. All entries have to be made in the control file before invoking the ired option. Important options are:
i\textit{p}rint \textbackslash n \\
\quad print parameter for debug output: The larger \textit{n} is, the more output is printed \\
\quad \textit{n} \geq 0, \textit{n} \leq 5 (default: 0)

\textbf{metric} \textbackslash n \\
\quad method for generating and processing of redundant internal coordinates \\
\quad \textit{n} \geq -3, \textit{n} \leq 3, \textit{n} \neq 0 (default: 3)

Values for the \textbf{metric} option:

\textbf{n} = 1 \quad \textquotedblleft Delocalized Coordinates\textquotedblright\n\quad The $B^{}mB^t$ matrix is diagonalized for the complete set of redundant internal coordinates, matrix $m$ is a unit matrix.

\textbf{n} = -3 \quad Delocalized Coordinates obtained with a modified matrix $m$, the values of $m$ can be defined by user input (see below).

\textbf{n} = -1 \quad \textquotedblleft Hybrid Coordinates\textquotedblright\n\quad Natural internal coordinates are defined as in the old \textit{iaut} option. If a cage remains, delocalized coordinates (as for \textit{n}=1) are defined for the cage.

\textbf{n} = -2 \quad Very similar to the \textit{n} = 1 option, but for the remaining cage delocalized coordinates with modified matrix $m$ are defined as for \textit{n} = -3.

\textbf{n} = 2 \quad \textquotedblleft Decoupled coordinates\textquotedblright\n\quad The redundant coordinates are divided into a sequence of blocks. These are expected to have decreasing average force constants, i.e. \textit{stretches}, \textit{angle coordinates}, \textit{torsions} and \textit{\textquotedblright weak\textquotedblright coordinates}. The $BB^t$ matrix is diagonalized for each block separately after the columns of $B$ were orthogonalized against the columns of $B$ of the the preceding blocks.

\textbf{n} = 3 \quad \textquotedblleft Generalized natural coordinates\textquotedblright\n\quad Natural internal coordinates are defined first, for the remaining cage decoupled coordinates are defined.

d\textit{type} \textbackslash r \\
\quad a positive real number, which is an approximate \textquotedblleft force constant\textquotedblright, can be read in for each type of coordinate (see below). The force constants are used for the definition of the matrix $m$ in $B^{}mB^t$.

\textbf{Types of internal coordinates for the definition of $m$}

The matrix $m$ is assumed to be a diagonal matrix. For each type of coordinate a different value for the force constants $m_{ii}$ can be read in. Types of coordinates are:

\textbf{stre} \quad bond stretch (default: 0.5)

\textbf{invr} \quad inverse bond stretch (default: 0.5)
22.2. FORMAT OF KEYWORDS AND COMMENTS

bend  bond angle (default: 0.2)
outp  Out of plane angle (default: 0.2)
tors  dihedral or “torsional” angle (default: 0.2)
linc  Special angle coordinate for collinear chains, bending of the chain a–b–c in the plane of b–c–d (default: 0.2)
linp  bending of the chain a–b–c perpendicular to the plane of b–c–d (default: 0.2)
wstr  stretch of a “weak” bond, i.e. the bond is assumed to have a very low force constant, e.g. a “hydrogen bond” or a “van der Waals bond” (default: 0.05)
winv  inverse stretch of a weak bond (default: 0.05)
wbnd  bond angle involving at least one weak bond (default: 0.02)
wout  Out of plane angle for weak bonds (default: 0.02)
wtor  dihedral angle for weak bonds (default: 0.02)
wlnc  linc coordinate for weak bonds (default: 0.02)
wlinp linp coordinate for weak bonds (default: 0.02)

22.2.5 Keywords for Module uff

One has to specify only the Cartesian coordinates (data group $coord) to start a uff run. The program uff requires the data groups $uff, $ufftopology, $uffgradient and $uffhessian. If these keywords do not exist in the control file the program will generate these data groups.

The data group $uff contains the parameters described below. The default values—in the control file—are:

```
 1 1 0 ! maxcycle,modus,nqeq
 11111 ! iterm
 0.10D-07 0.10D-04 ! econv,gconv
 0.00 1.10 ! qtot,dfac
 0.10D+03 0.10D-04 0.30 ! epssteep,epssearch,dqmax
 25 0.10 0.00 ! mxls,dhls,ahls
 1.00 0.00 0.00 ! alpha,beta,gamma
 F F F ! transform,lnumhess,lmd
```

The explanation of the variables are as follows:

maxcycle
number of max. optimization cycles (maxcycle=1: single-point calculation).
modus
  can have the values +1 or -1. If modus = -1 only the topology will be calculated.

nqeq
  each nqeq cycle the partial charges will be calculated. If nqeq = 0, then the partial
  charges are calculated only in the first cycle, if the file ufftopology does not exist.

iterm
  switch for the different types of force field terms:
    100000  bond terms will be calculated.
    010000  angle terms will be calculated.
    001000  torsion terms will be calculated.
    000100  inversion terms will be calculated.
    000010  non bonded van der Waals terms will be calculated.
    000001  non bonded electrostatic terms will be calculated.

econv, gconv
  convergence criteria for energy and gradient.

qtot
  total charge of the molecule.

dfac
  distance parameter to calculate the topology. If the distance between the atoms $I$
  and $J$ is less than the sum of the covalent radii of the the atoms multiplied with dfac,
  then there is a bond between $I$ and $J$.

epssteep
  if the norm of the gradient is greater than epssteep, a deepest-descent-step will be
  done.

epssearch
  if the norm of the gradient is smaller than epssearch, no line-search step will be done
  after the Newton step.

dqmax
  max. displacement in a.u. for a coordinate in a relax step.

mxls, dhls, ahls
  parameters of linesearch:
    ahls  start value
    dhls  increment
    mxls  number of energy calculations

alpha, beta, gamma
  modification parameter for the eigenvalues of the Hessian (see below): $f(x) = x \ast$
  (alpha + beta * exp(-gamma * x)).

transform
  a switch for the transformation in the principal axis system.
22.2. FORMAT OF KEYWORDS AND COMMENTS

lnumhess
   a switch for the numerical Hessian.

lmd   a switch for a MD calculation.

Input Data Blocks Needed by UFF

$coord
cartesian coordinates of the atoms (default: $coord file=coord)

$ufftopology
contains a list of the next neighbours of each atom (see Section 22.2.5). Sometimes it is useful to enter the connectivity (in the input block nxtnei12 in the file uftopology) by hand (not always necessary; default: $ufftopology file=ufftopology).

Beyond this uff reads the force field parameters for the atoms from the file parms.in. If this file exists in the directory from which one starts an uff calculation the program will use this file, if not the program reads the data from the file $TURBODIR/uff/parms.in. If one wants own atom types, one has to add these atom types in the file parms.in. For each new atom type one has to specify the natural bond distance, the natural bond angle, the natural non-bond distance, the well depth of the Lennard-Jones potential, the scaling factor $\zeta$, the effective charge, torsional barriers involving a pair of sp$^3$ atoms, torsional barriers involving a pair of sp$^2$ atoms, generalized Mulliken–Pauling electronegativities, the idem potentials, characteristic atomic size, lower bound of the partial charge, upper bound of the partial charge. Distances, energies and charges are in atomic units and angles are in rad.

UFF Output Data Blocks

$coord
contains the (updated) cartesian coordinates of the atoms (default: $coord file=coord).

$ufftopology
contains the full information of the topology of the molecule and the whole force field terms (see below; default: $ufftopology file=ufftopology).

$uffgradient
contains the accumulated cartesian analytical gradients (default: $uffgradient file=uffgradient).

$uffhessian
contains the cartesian analytical Hessian;
(ddefault: $uffhessian file=uffhessian0-0).

The file uftopology

The topology file uftopology contains the blocks nxtnei12, nxtenei13, nxtnei14, connectivity, angle, torsion, inversion, nonbond and qpartial. It starts with $ufftopology and
ends with \$end. The first three blocks (nxtnei12, nxtnei13, nxtnei14) have the same form: they start with the atom number and the number of its neighbours, in the next line are the numbers of the neighbour atoms. Then the connectivity-block follows starting with the number of bond terms. Each line contains one bond term:

\[
I \quad J \quad d \quad BO.
\]

Here are \(I\) and \(J\) the number of the atoms, \(d\) the distance in a.u. and BO is the bond order.

The angle terms follow, starting with the number of the angle terms. In each line is one angle term:

\[
J \quad I \quad K \quad wtyp \quad \theta \quad nr_{JI} \quad nr_{IK}.
\]

Here are \(J, I,\) and \(K\) the atoms number, where atom \(I\) is in the apex. “wtyp” is the angle type and has the following values:

\[
\text{wtyp} = 1 \quad \text{linear case}
\]
\[
\text{wtyp} = 2 \quad \text{trigonal planar case}
\]
\[
\text{wtyp} = 3 \quad \text{quadratic planar case}
\]
\[
\text{wtyp} = 6 \quad \text{octahedral case}
\]
\[
\text{wtyp} = 9 \quad \text{all other cases.}
\]

\(\theta\) is the angle value in degree. \(nr_{JI}\) and \(nr_{IK}\) are the number of the bonds between \(J\) and \(I\) and the bond between \(I\) and \(K\). The hybridization of atom \(I\) determines “wtyp”.

Then the torsion terms follow, starting with the number of the torsion terms. Each line contains one torsion term:

\[
I \quad J \quad K \quad L \quad nr_{JK} \quad ttyp \quad \phi \quad \theta_{IJK} \quad \theta_{JKL}.
\]

Here are \(I, J, K,\) and \(L\) the atom numbers. \(nr_{JK}\) is the number of the bond between \(J\) and \(K\). “ttyp” is the torsion type:

\[
ttyp = 1 \quad J \text{ (sp}^3\text{)}-K \text{ (sp}^3\text{)}
\]
\[
ttyp = 11 \quad \text{like ttyp}=1, \text{ but one or both atoms are in Group 16}
\]
\[
ttyp = 2 \quad J \text{ (sp}^2\text{)}-K \text{ (sp}^3\text{)} \text{ or vice versa}
\]
\[
ttyp = 21 \quad \text{like ttyp}=2, \text{ but one or both atoms are in Group 16}
\]
\[
ttyp = 22 \quad \text{like ttyp}=2, \text{ but } J \text{ or } K \text{ is next a } \text{sp}^2\text{ atom}
\]
\[
ttyp = 3 \quad J \text{ (sp}^2\text{)}-K \text{ (sp}^2\text{)}
\]
\[
ttyp = 9 \quad \text{all other cases.}
\]

\(\phi\) is the value of the torsion angle in degree. \(\theta_{IJK}\) is the angle value of \((I-J-K)\) and \(\theta_{JKL}\) is the cwone for \(J-K-L\). The hybridizations of \(J\) and \(K\) determine “ttyp”.
The inversion terms follow starting with the number of inversion terms (e.g. the pyramidalisation of NH$_3$). In each line is one inversion term:

$$I\ J\ K\ L\ \text{ityp1}\ \text{ityp2}\ \text{ityp3}\ \omega_1\ \omega_2\ \omega_3.$$ 

$I, J, K$ and $L$ are the atom numbers. Atom $I$ is the central one. \text{ityp1}, \text{ityp2}, \text{ityp3} are the types of the inversions:

\begin{itemize}
  \item \text{ityp} = 10 \quad \text{atom } I \text{ is C and atom } L \text{ is O}
  \item \text{ityp} = 11 \quad \text{like ityp=10, but } L \text{ is any atom}
  \item \text{ityp} = 2 \quad \text{I} \text{ is P}
  \item \text{ityp} = 3 \quad \text{I} \text{ is As}
  \item \text{ityp} = 4 \quad \text{I} \text{ is Sb}
  \item \text{ityp} = 5 \quad \text{I} \text{ is Bi}
  \item \text{ityp} = 9 \quad \text{all other cases.}
\end{itemize}

$\omega_1, \omega_2$ and $\omega_3$ are the values of the inversion angles in degree.

The nonbond terms follow starting with the number of the non-bonded terms. In each line is one nonbond term:

$$I\ J\ d.$$ 

Here $I$ and $J$ are the atom numbers, $d$ the distance in a.u. Then the partial charges follow.

If the determination of the molecule connectivity failed, you can specify the block nxtnei12 in the file \texttt{ufftopology}. Then the program calculates the other blocks.

Based on the numbers of the next neighbours (block nxtnei12 in the file \texttt{ufftopology}) the program tries to determine the UFF type of an atom. The following rules are implemented: If the atom has three next neighbours and it is in the nitrogen group, then it has a hybridization three. If it is not in the nitrogen group, it has hybridization two. If the atom has four next neighbours and it is in the carbon group, it has hybridization three. If it is not in the carbon group, it becomes hybridization four. If the number of next neighbours is six, then it gets the hybridization six.

Since the smallest eigenvalues $\lambda_i$ of the Hessian has the greatest influence on the convergence of the geometry optimization, one can shift these values with

$$\tilde{\lambda}_i = \lambda_i \cdot (\alpha + \beta \cdot e^{-\gamma x})$$

and calculates a new Hessian with these modified eigenvalues.

### 22.2.6 Keywords for \texttt{tb}

Module \texttt{tb} which performs GFN-xTB or GFN2-xTB extended tight binding calculations reads in the keyword $\$\texttt{tb}$
$tb
charge <number>
gfn <method-number>
accuracy <number>
etemp <number>
broydamp <number>
maxiter <number>

The options are:

charge -1

sets the molecular total charge. ..., -2, -1, 0, 1, 2, ... If not specified, a neutral input is assumed: charge 0
gfn 2

choose method, GFN-xTB (1) or GFN2-xTB (2), default is 2
accuracy 1.0

accuracy for SCC calculations, lower value means higher accuracy. Default is 1.0
etemp 300

electronic temperature in Kelvin, default is 300K
broydamp 0.4

Broyden damping for charge mixing, default is 0.4
maxiter 250

maximum number of SCC iterations, default is 250

22.2.7 Keywords for woelfling

Module WOELFLING reads options from data group

$woelfling

The below values of the options are default values with the following meaning:

ninter 14

Number of interpolated structures for optimization.

ncoord 2

Number of input structures provided by user.

align 0
Align input structures by translation/rotation $0=$yes, $1=$no.

```
maxit 40
```

Maximum number of iterations.

```
dlst 3.00000000000000
```

Threshold for accuracy of LST-interpolation.

```
thr 1.00000000000000E-004
```

Threshold for mean of norms of projected gradients.

```
method q
```

Use standard optimization from initial LST-path (method q) or grow reaction path (method qg).

Furthermore,

```
riter 0
```

counts the number of completed iteration (no option).

### 22.2.8 Keywords for Modules dscf and ridft

#### $\text{denconv \ real}$

Convergency criterion for the root mean square of the density matrix. If you want to calculate an analytical MP2 gradient (program mpgrad) \textit{real} should be 1.d-7 or less.

#### $\text{dft options}$

Listing of all possible sub-keywords for $\text{dft}$ (cross-references are given).

The user normally has to choose only the functional and the grid size, see below. All other parameters have proven defaults.

#### functional \textit{name}

Specification of the functional, default is BP86, printed as functional b-p. For all possible—and useful—functionals, please refer to page 370 and for definition of the functionals the section 6.2 on page 140.

Example (default input):

```
$dft
 functional b-p
```
CHAPTER 22. KEYWORDS IN THE CONTROL FILE

gridsize integer or minteger
Specification of the spherical grid (see section 22.2.8 on page 370). Default is gridsize m3.
Example:

```$dft
 gridsize m3```

gridtype integer —not recommended for use—
Specification of the mapping of the radial grid.
Possible values for gridtype are 1,…,6, but gridtype 4 to 6 is only for the use with functional lhf (see page 373). For the definition of gridtype 1 – 3, please refer to Eq. (16), (17) and, (19) in Ref. [274]. In relativistic all-electron calculations grids with an increased number of radial points are suggested. These can be selected by appending the character a after the gridsize, e.g. gridsize 4a.
Example (default value):

```$dft
  gridtype 3```

debug integer
Flag for debugging. debug 0 means no debug output (default), debug 1 means some output, debug 2 means a lot more output. Be careful!

nkk integer
Specification of the sharpness of the partition function as proposed by Becke [275], default is nkk 3. The usage of nkk makes sense only in the range 1 ≤ nkk ≤ 6.
Example:

```$dft
 nkk 3```

ntheta integer —not recommended for use—
nphi integer

Only for user-specified Lobatto grids, i.e. gridsize 9, ntheta specifies the number of θ points and nphi specifies the number of φ points. For the fixed Lobatto grid, i.e. gridtype 8, the default value is ntheta 25 and nphi 48.
When gridsize 9 is given, you have to specify both, ntheta and nphi (see below), otherwise the program will crash. The restriction for user-defined Lobatto grids is the number of grid points, which must not exceed 2000 grid points.
Example:

```$dft
  gridsize 9
  ntheta 30
  nphi 60```
old_RbCs_xi
Original grids had not been carefully optimized for all atoms individually. This has now been done, which led to changes of $\xi$ for Rb and Cs only resulting in minor improvements. If you have ongoing projects, which have been started with the old grids, you should continue using them with the keyword old_RbCs_xi.

Example:

```
$dt
old_RbCs_xi
```

radsize integer
Specifies the number of radial grid points. Default values depend on type of atom and grid (see keyword gridsize). The formula for the radial gridsize is given as,

$$\text{number of radial grid points} = \text{ioffrad} + (\text{radsize} - 1) \times 5.$$

ioffrad is atom-dependent, the more shells of electrons, the larger ioffrad:

<table>
<thead>
<tr>
<th>elements</th>
<th>ioffrad</th>
<th>elements</th>
<th>ioffrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>for H–He</td>
<td>20</td>
<td>for K–Kr</td>
<td>40</td>
</tr>
<tr>
<td>for Li–Ne</td>
<td>25</td>
<td>for Rb–Xe</td>
<td>45</td>
</tr>
<tr>
<td>for Na–Ar</td>
<td>30</td>
<td>for Cs–Lw</td>
<td>50</td>
</tr>
</tbody>
</table>

The radial grid size increases further for finer grids:

<table>
<thead>
<tr>
<th>gridsize</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>radsize</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>14</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

If you want to converge results with respect to radial grid size, increase radsize in steps of 5, which is convenient (see equation above).

diffuse integer
Serves to increase quadrature grids; this is recommended in case of very diffuse wavefunctions. With the keyword diffuse grids are modified by changing the linear scaling factor $\xi$ of radial grid points and the radial gridsize:

```
radsize \mapsto radsize + incr
ξ \mapsto ξ * scal
```

<table>
<thead>
<tr>
<th>diffuse integer</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>incr</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>scal</td>
<td>1.5</td>
<td>2.0</td>
<td>2.8</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>

For information about the linear scaling parameter $\xi$, see Eq. (16)–(19) and Table 1 in Ref. [274].
In addition, the reduction of spherical grid points near nuclei is suppressed, i.e. `fullshell on` is set (see page 359).

Note: the keyword `radsize integer` overrules the setting of `incr`; for more information, see p. 357.

Recommendation: For diffuse cases use `gridsize m4` (or larger) in combination with `diffuse 2` and check the number of electrons; for more difficult cases use `diffuse 4`. In case of doubt, verify the calculation with a larger grid, i.e. `gridsize 7`.

The testsuite example `$TURBODIR/TURBOTEST/dscf/short/H3PO4.DSCF.DIFFUSE` provides an example of usage; this also gives reasonable values for damping and orbital shift to reach convergence in this and similar cases, see `$scfdamp` and `$scforbitalshift` (p. 363 and p. 367).

Example (Recommendation):

```
$ dft
 gridsize m4
diffuse 2
rhostart integer —for developers only—
rhostop integer

Radial grid points have a linear scaling parameter ξ, see Eq.(16)–(19) and Table 1 in Ref. [274]. With the following input,
```

```
$ dft
 rhostart 50
 rhostop 200

one performs a numerical integration for the density and the exchange correlation term for $\xi = 0.5, (0.01), 2.0$ for given MOs and functional. NOTE: only molecules with a single atom type can be used. The results serve to establish stable, optimal ξ values, see Figure 1 in Ref. [274]. Program stops after this testing.
```

**reference**

Usage of the reference grid, which is a very fine grid with very tight thresholds.

The default values for the different variables are:

```
gridsize 7
radsize 14
fullshell 1
dgrenze 16
fggrenze 16
qgrenze 16
fcut 16
```

Please refer to the corresponding sub-keywords for explanation.

If you want to use the reference grid, you have to skip the keyword `gridsize`, and type instead `reference`. Example:
22.2. FORMAT OF KEYWORDS AND COMMENTS

$\texttt{dft}$

functional b-p
reference
test-integ

Check if the selected grid is accurate enough for the employed basis-set by performing a numerical integration of the norm of all (occupied and virtual) orbitals. Useful for LHF. 373.

batchsize integer

Grid points are sorted into batches, which are then processed. This increases efficiency. This should be changed only by developers. Default is \texttt{batchsize 100}.

fullshell

Standard grids have reduced number of spherical grid points near nuclei. With the keyword \texttt{fullshell} this reduction is suppressed. Reference grid (see keyword \texttt{reference}) always has full spherical grids with 1202 points. Should be used to checked the influence of spherical grid reduction.

Example for the usage of \texttt{fullshell}:

$\texttt{dft}$

functional b-p
gridsize m4
fullshell

\texttt{symblock1 \texttt{real}} —for developers only—
\texttt{symblock2 \texttt{real}}

Values of \texttt{real} effects efficiency of the quadrature, default is \texttt{symblock1 0.001} and \texttt{symblock2 0.001}, one can try higher or smaller values.

\texttt{xparameter \texttt{integer}} —not recommended for use—

Where \texttt{xparameter} (default) can be: \texttt{sgrenze (8)}, \texttt{fgrenze (10)}, \texttt{qgrenze (12)}, \texttt{dgrenze (12)} and, \texttt{fcut (14)}. These parameters control neglect of near zeros of various quantities. With \texttt{xparameter \texttt{integer}} one changes the default. \texttt{integer} larger than defaults will increase the numerical accuracy. Tighter threshold are set automatically with keyword \texttt{$\texttt{scfconv}$} (see section 22.2.8 on page 363).

weight derivatives

Includes the derivatives of quadrature weights to get more accurate results. Default is that the derivatives of quadrature weights will be not considered, see section 22.2.13 on page 391.

gridordering

Grid points are ordered into batches of neighbouring points. This increases efficiency, since now zeros can be skipped for entire batches. \texttt{gridordering} is default for serial version, not for the parallel one. You cannot use \texttt{weight derivatives} and \texttt{gridordering} together.

Example for switching off \texttt{gridordering}:
$dft
gridordering 0
s-junc integer
p-junc integer

Within the semi-numerical integration scheme employed for local hybrid functionals, S- and P-junctions feature pre-screenings of the analytical two-center integrals with respect to shell pair overlap and shell pair conjunction through the density matrix, respectively. This allows the neglect of certain shell pairs and thus accelerates the calculation. $s\text{-junc}$ and $p\text{-junc}$ set the corresponding thresholds to $10^{-\text{integer}}$. Smaller values increase the number of neglected shell pairs and thus reduce the calculation cost, but also decrease the accuracy of the results. Note that for gradient and scf calculations the P-junctions also depend on the grid weights. If larger grids are employed seeking more accurate results, the threshold for P-junctions should thus be adjusted (increasing the value for $p\text{-junc}$ 6). The defaults settings are $s\text{-junc}$ 6 and $p\text{-junc}$ 6 for grad, rdgrad, and ridx. Too small values for $s\text{-junc}$ and $p\text{-junc}$ might result in non-converging calculations or deteriorated results. This holds particularly for excited state calculations. For escf the default values are therefore $s\text{-junc}$ 8 and $p\text{-junc}$ 8.

$electrostatic field
Specification of external electrostatic field(s). The specification may take place either by Ex, Ey, Ez or by x, y, z, |E|. See also $fldopt.

Example:

$electrostatic field
0.1000E-03 0.000 0.000

$fermi tmstrt=<300.0> tmend=<100.0> tmfac=<0.9> hlcrt=<1.0E-01> stop=<1.0E-03> nue=<N>

Requests calculation of occupation numbers at a finite temperature $T$. For an orbital with the energy $\varepsilon_i$ the occupation number $n_i \in [0,1]$ is calculated as

$$n_i = \frac{1}{2} \text{erfc} \left( \frac{\varepsilon_i - \mu}{fT} \right),$$

where $\mu$ is the Fermi level. The factor $f = 4k/\sqrt{\pi}$ is chosen to yield the same slope at the Fermi level as the Fermi distribution.

Calculation of the fractional occupation numbers starts when the current HOMO-LUMO gap drops below the value given by $hlcrt$ (default: 0.1). The initial temperature given by $tmstrt$ (default: 300 K) is reduced at each SCF cycle by the factor $tmfac$ (default: 1.0) until it reaches the value $tmend$ (default: 300 K). Note that the default values lead to occupation numbers calculated at a constant $T = 300$ K. Current occupation numbers are frozen if the energy change drops below the value given by $stop$ (default: $1\cdot10^{-3}$). This prevents oscillations at the end of the SCF procedure.
Calculation of fractional occupation numbers often requires much higher damping and orbital shifting. Please adjust the values for $scfdamp$ and $scforbitalshift$ if you encounter convergence problems.

In UHF runs this option can be used to automatically locate the lowest spin state. In order to obtain integer occupation numbers $tmend$ should be set to relatively low value, e.g. 50K.

Calculation of fractional occupation numbers should be used only for single point calculations. When used during structure optimizations it may lead to energy oscillations.

The optional $nue$ value (number of unpaired electrons) can be used to force a certain multiplicity in case of an unrestricted calculation. $nue=0$ is for singlet, $nue=1$ for doublet, etc.

The option $addTS$ adds the entropic contribution of the smearing to the total energy which is important for very high temperatures only.

Finally the option $noerf$ will use the full correct Fermi statistics rather than the term given above.

$\textbf{firstorder}$

Perform first-order SCF-calculation, i.e. perform only one SCF-iteration with the start MOs (which should be the orthogonalized MOs of two independent subsystems as is explained in detail in Chapter 19).

$\textbf{fldopt options}$

Specification of options related with external electrostatic fields. The following options are available:

1st derivative on/off
Calculate numerical 1st derivative of SCF energy with respect to electrostatic field (default: off), increment for numerical differentiation is $edelt$ (see below).

2nd derivative on/off
Calculate numerical 2nd derivative of SCF energy with respect to electrostatic field (default: off), increment for numerical differentiation is edelt.

$edelt= \text{real}$
Increment for numerical differentiation (default: 0.005).

fields on/off
Calculate SCF energy for non-zero external electrostatic fields defined in $\text{electrostatic field}$.

geofield on/off
Calculate SCF energy for one external field definition and dump disturbed MOs onto $\text{scfmo}$. This enables to evaluate properties or perform geometry optimizations in the presence of an external field.

Caution: don’t use the RI approximation for all these calculations since this will lead to non-negligible errors!!
$\text{incore } \text{integer}

By using this option the two-electron integrals are kept in RAM; \text{integer} specifies how many megabytes should be allocated. If the integrals exceed the RAM allocated the program reverts to the standard mode. Supports all methods which process two-electron integrals, i.e. SCF and DFT (including hybrid functionals); RHF and UHF. The following condition must be met:

$\text{scfdenapproxl } 1

and rhfshells 1 or 2. It is advisable to set $\text{thize}$ as small as possible (e.g. $\text{thize}$ 0.1d-08) and to remove the keyword $\text{scfdump}$. 

\textbf{Note:} this keyword does not work for parallel runs.

$\text{mo-diagram only nirreps=integer}$

If this keyword is set the energies and symmetry labels of all occupied MOs will be dumped to this data group. This may be helpful to draw mo-diagrams. If \text{only} has been set only the start MOs are dumped and the program quits.

\text{nirreps} will hold the total number of displayed orbitals after the successful run.

$\text{mom}$

This keyword enables the use of the maximum overlap method in unrestricted \text{ridft} calculations to access excited states self-consistently. [276]

$\text{moprint}$

If this keyword is present all occupied orbitals are dumped to standard output. Be careful about this option as it can create huge output files in case of many basis functions.

$\text{mo output format } \text{format}$

If this line is present, the \text{dscf} program is forced to output the MOs using the new \text{FORTRAN format} \text{format} regardless of the \text{format}-option in data group $\text{scfmo}$. Otherwise the input format will be used.

Example: $\text{mo output format}(3(2x,d15.8))$

$\text{natural orbitals}$

This data group will be written after an UHF calculation (together with $\text{natural orbital occupation}$) and contains the natural space orbitals (same syntax as $\text{scfmo}$).

$\text{natural orbital occupation}$

This data group will be written after an UHF calculation (together with $\text{natural orbitals}$) and contains the occupation of natural orbitals (syntax as any data group related with orbital occupation information, e.g. $\text{closed shells}$), e.g.

\begin{verbatim}
a 1-5 ( 2.00000000000000 )
a 6 ( 1.99949836999366 )
a 7 ( 1.99687490286069 )
\end{verbatim}
22.2. FORMAT OF KEYWORDS AND COMMENTS

\begin{verbatim}
a  8 ( 1.00000000000000 )
a  9 ( .00312509713931 )
a 10 ( .00050163000634 )
\end{verbatim}

\$prediag

counters the first SCF iteration cycle if start MOs from an EHT guess are used.
The SCF iteration procedure requires control mechanisms to ensure (fast) convergence, in \texttt{TURBOMOLE} these are based on orbital energies $\epsilon_i$ of the preceding iteration used for level shifting and damping (besides DIIS, see below). This feature cannot be used in the first iteration if EHT MOs are employed as start, since $\epsilon_i$ are not available. The keyword \$prediag provides ‘$\epsilon_i$ of the zeroth iteration’ by diagonalization of occ–occ and virt–virt part of the first Fock matrix, to allow for level shifting etc.. See \$scfdiis below.

\$restart dscf \texttt{twoint}

Try a \texttt{dscf} restart. The program will read the data group \$restartd (which must exist, also \$scfmo has to exist!) and continue the calculation at the point where it ended before. If the additional option \texttt{twoint} is appended, the program will read the two-electron integrals from the files specified in \$scfintunit, so there will be almost no loss of cpu-time.

All this information is normally provided by the previous \texttt{dscf} run if the keyword \$scfdump (see there) was given.

\$restartd \texttt{data}

Data provided by a previous \texttt{dscf} run that has been interrupted. This keyword is created when \$scfdump was given.

\$rundimensions \texttt{data}

is set by define so usually no changes are necessary. The dimensions must be greater or equal to those actually required, i.e. you can delete basis functions and keep rundimensions. This keyword is not necessary for small cases.

Example:

\begin{verbatim}
dim(fock,dens)=6072
natoms=6
nshell=34
nbf(CAO)=108
nbf(AO)=98
dim(trafo[S\text{AO}<--\text{AO}/\text{CAO}])=256
rhfshells=1
\end{verbatim}

\$scfconv \texttt{integer}

SCF convergency criterion will be $10^{-\text{integer}}$ for the energy. Gradients will only be evaluated if $\text{integer} > 6$.

\$scfdamp \texttt{start=<.500> step=<.050> min=<.100>}

Damping parameters for SCF iterations in order to reduce oscillations. The old
Fock-operator is added to the current one with weight 0.5 as start; if convergence is
good, this weight is then reduced by the step 0.05 in each successive iteration until the
minimum of 0.1 is reached. (These are the default settings of define for closed-shell
RHF). DSCF automatically tries to adjust the weight to optimize convergence but in
difficult cases it is recommended to start with a large weight, e.g. 1.5, and to set the
minimum to a larger value, e.g. 0.5.

$scfdebug options
Flags for debugging purposes. Following options are available:

vectors integer
Output level concerning molecular orbitals. integer=0 (default) means minimal
output, >1 will output all start MOs and all MOs in each iteration.

density integer
Output level concerning difference density matrices.

default integer
integer > 0 will dump a lot of information—be careful!

$scfdenapprox integer
Direct SCF procedures build the Fock matrix by exploiting information from previous
iterations for better efficiency. With this keyword information from the last integer
iterations will be used. This feature is switched on with the default value 20, even
if the keyword is absent. The user may reduce the number of iterations employed to
smaller values (e.g. 10) in cases were numerical stability could become an issue. With
the value 0 this feature is switched off; the Fock matrix is constructed from scratch
in each iteration.

$scfdiis options
Control block for convergence acceleration via Pulay’s DIIS *
Options are:

ervec=char specifies the kind of error vector to be used (two different kind of DIIS
algorithms)

char='FDS' or 'SDF' or 'FDS-SDF'
uses (FDS − SDF) as error vector.

char=none
no DIIS

char=sFDS
use $S^{-1/2}FDS^{1/2}$ — transposed

Further suboptions:

maxiter=integer
maximum number of iterations used for extrapolation.

debug=integer
debug level (default: 0)

integer=1 print applied DIIS coefficients
integer=2 print DIIS matrix and eigenvalues, too

qscal=real
scaling factor in DIIS procedure: qscal > 1 implies some damping, qscal = 1.0: straight DIIS.

thrd=real
directs the reduction of qscal to qscal = 1.0 (no damping in DIIS), done if ||errvec|| < thrd.

Defaults for $prediag (see above) and $scfdiis
errvec=FDS-SDF, maxiter=5, qscal=1.2, thrd=0.0, this implies DIIS damping in all iterations, prediag is switched off.
Recommended:
errvec=sFDs leads to the following defaults:
qscal=1.2, for SCF runs: maxiter=6 and thrd=0.3, prediag is off; for DFT runs: maxiter=5 and thrd=0.1 prediag is on. If you want to switch off prediag put $prediag none.

$scfdump
Dump SCF restart information onto data group $restartd and dump SCF MOs in each iteration onto $scfmo (scfdump = iter). Additionally, a data block $scfiterinfo will be dumped containing accumulated SCF total-, one- and two-electron energies of all previous SCF iterations. Information that will allow you to perform a restart if your calculation aborts will be dumped on data group $restartd (see also $restart).

$scfintunit options
Disc space specification for two-electron integrals. The following suboptions are available (and necessary):

unit=integer
Fortran unit number for this file. Unit numbers 30,31,… are recommended.

size=integer
Filespace in megabytes for this file. size=0 leads to a fully direct run. size is set by a statistics run, see $statistics. DSCF switches to direct mode if the file space is exhausted.

file=char
Filename. This may also be a complete path name, if you want to store the integrals in a special directory. Make sure the file is local, otherwise integrals are transmitted over the network.

Thus your data group $scfintunit may look like this:
$scfintunit
unit=30    size=35    file=twoint1
unit=31    size=35    file=/users/work/twoint2

Maximal 30 files may be specified in this way.

$scfiterlimit integer
  Maximum number of SCF iterations (default: 30).

$scfmo none file=char
  Input/output data group for SCF MOs. You can specify
  none
    To perform a calculation without a start vector (i.e. use a core Hamiltonian guess).
  file=char
    The file where the MOs are written on output (default: mos).

These two options can also be used for $uhfmo_alpha and $uhfmo_beta to use a core guess and write the molecular orbitals to file.

After running define or a TURBOMOLE calculation additional options may appear specifying the origin of the MOs:

expanded
  These MOs were obtained by projection from another basis set. They should not be used for wavefunction analysis.

scfconv=integer
  The MOs are converged SCF MOs, the convergence criterion applied was $10^{-integer}$

scfdump=integer
  The MOs are unconverged SCF MOs which were written on this data group after iteration integer. The latter three options are mutually exclusive.

format(format string)
  This specifies the FORTRAN format specification which was used for MO output. The standard format is (4d20.14). (See data group $mo output format.)

Example:
Your data group $scfmo could look like this after a successful TURBOMOLE run:

$scfmo scfconv=7 format(3(1x,d19.13))
1  a1  eigenvalue=-.524127  nsao=6
  .1234567890123d+01  -.1234567890123d+00  .1234567890123d-01
  .1234567890123d+01  -.1234567890123d+00
3  a2  eigenvalue=-.234810
...
$scforbitalorder on/off
Order SCF MOs with respect to their energies (default: on)

$scforbitalshift options
To assist convergence, either the energies of unoccupied MOs can be shifted to higher energies or, in open-shell cases, the energies of closed-shell MOs to lower energies. In general a large shift may help to get better convergence.

Options are:

noautomatic
  Automatic virtual shell shift switched off.

automatic real
  Automatic virtual shell shift switched on; the energies of virtual orbitals will be shifted if the HOMO-LUMO gap drops below real such that a gap of real is sustained. This is the default setting if the keyword is missing with real=0.1.

closedshell=real
  Option for open-shell cases. Closed shells are shifted to lower energies by real. The default shift value is closedshell=0.4.
  Note: Normally this will disable the automatic shift of energies of virtual orbitals! To override this, you should append an exclamation mark to the 'automatic' switch, i.e. specify 'automatic! real'.

individual
  Set shifts for special occupied MOs. To use this option, start the line with the symmetry label and the list of MOs within this symmetry and append the desired shift in brackets as in the following example:

  a1  1,2,4-6 (-.34)
  b1  8  (+.3)

$scftol real
Integral evaluation threshold. Integrals smaller than real will not be evaluated. Note that this threshold may affect accuracy and the convergence properties if it is chosen too large. If $scftol is absent, a default value will be taken obtained from $scfconv by real = \frac{10^{-(scfconv+1)}}{3\#bf} \text{ (#bf = number of basisfunctions)}.$

$scratch files
The scratch files allocated by dscf can be placed anywhere in your file systems instead of the working directory by referencing their pathnames in this data group. All possible scratch files are listed in the following example:
$\text{scratch files}$

\begin{align*}
\text{dscf} & \quad \text{dens} & \quad \text{path1/file1} \\
\text{dscf} & \quad \text{fock} & \quad \text{path2/file2} \\
\text{dscf} & \quad \text{dfock} & \quad \text{path3/file3} \\
\text{dscf} & \quad \text{ddens} & \quad \text{path4/file4} \\
\text{dscf} & \quad \text{statistics} & \quad \text{path7/file7} \\
\text{dscf} & \quad \text{errvec} & \quad \text{path8/file8} \\
\text{dscf} & \quad \text{oldfock} & \quad \text{path9/file9} \\
\text{dscf} & \quad \text{oneint} & \quad \text{path10/file10}
\end{align*}

The first column specifies the program type ($\text{dscf}$ stands for SCF energy calculations, i.e. the $\text{dscf}$ program), the second column the scratch file needed by this program and the third column the pathname of the file to be used as scratch file.

$\text{statistics options}$

The following options are allowed:

- $\text{off}$: Do not perform integrals statistics
- $\text{dscf}$: Perform integrals statistics for $\text{dscf}$
- $\text{mpgrad}$: see $\text{mpgrad}$
- $\text{dscf parallel}$: see PARALLEL PROCESSING

Options $\text{dscf parallel}$, $\text{grad}$, $\text{mpgrad}$ will be described in the related chapters.

If $\text{statistics dscf}$ has been given integral prescreening will be performed (which is an $n^4$-step and may therefore be time-consuming) and a table of the number of stored integrals as a function of the two parameters $\text{thize}$ and $\text{thime}$ will be dumped. Afterwards, the file-space needed for the current combination of $\text{thize}$ and $\text{thime}$ will be written to the data group ($\text{scfintunit}$) and $\text{statistics dscf}$ will be replaced by $\text{statistics off}$.

$\text{thime integer}$

Integral storage parameter, which is related to the time needed to calculate the integral. The larger integer the less integrals will be stored. The default value is integer = 5. (see also $\text{thize}, \text{statistics}$)

$\text{thize real}$

Integral storage parameter, that determines, together with $\text{thime}$, the number of integrals stored on disc. Only integrals larger than real will be stored. The default value is real = 0.100E-04.

\section*{RHF/ROHF}

$\text{closed shells}$

Specification of MO occupation for RHF, e.g.

\begin{align*}
\text{a1g} & \quad 1-4 & \quad (2) \\
\text{a2g} & \quad 1 & \quad (2)
\end{align*}
$\text{open shells type=1}$

MO occupation of open shells and number of open shells. 'type=1' here means that there is only a single open shell consisting e.g. of two MOs:

\begin{align*}
\text{b2g} & & 1 & & (1) \\
\text{b3g} & & 1 & & (1) \\
\end{align*}

$\text{rohf}$

This data group is necessary for ROHF calculations with more than one open shell. Example:

\begin{verbatim}
$\text{rohf} \\
\text{a} - \text{a} & a=0 & b=0 \\
\text{h} - \text{h} & a=1 & b=2 \\
\text{a} - \text{h} & a=1 & b=2 \\
\end{verbatim}

This example is for the 7S state of chromium ($3d^5 4s^1$) in symmetry group $I$. Note that for this option being activated, $\$\text{roothaan}$ also has to be specified in your control file, although its parameter has no meaning in this case. For more details see Section 6.3.

$\text{roothaan}$

For ROHF-calculations with only one open shell the Roothaan parameters$^\dagger$ a and b have to be specified within this data group (see also $\$\text{rohf}$). Example:

\begin{verbatim}
$\text{roothaan} \\
\text{a} = 3/4 & \text{b} = 3/2 \\
\end{verbatim}

This example is for the 3P ground state of carbon ($2p^2$) in symmetry group $I$. $\text{define}$ recognizes most cases and suggests good Roothaan parameters.

For further information on ROHF calculations (e.g. with more than one open shell), see the sample input in Section 23.6 and the tables of Roothaan parameters in Section 6.3.

Note that this keyword toggles the ROHF mode also for more than one open shell. If it is not given, the open-shell electrons are simply ignored.

**UHF**

$\text{alpha shells}$ and $\text{beta shells}$

these two data groups specify the occupation of alpha and beta spin UHF MOs (syntax as any data group related with orbital occupation information, e.g. $\$\text{closed shells}$)

Example:

\begin{verbatim}
$\text{alpha shells} \\
\text{a} & 1-8 & (1) \\
\text{b} & 1-2 & (1) \\
\end{verbatim}

$\beta$ shells
a 1-7 (1)
b 1-3 (1)

$\texttt{uhf}$
directs the program to carry out a UHF run. $\texttt{uhf}$ overwrites closed-shell occupation specification.

$\texttt{uhfmo}_\alpha$ and $\texttt{uhfmo}_\beta$
These two data groups contain the UHF MO vectors for alpha and beta spin respectively (same syntax as $\texttt{scfmo}$).

$\texttt{uhfmo}_\beta$
see $\texttt{uhfmo}_\alpha$

DFT

$\texttt{dft}$

\textit{functional b-p}
\textit{gridsize m3}

for DFT calculations one has to specify the functional and the grid (for the quadrature of the exchange correlation part). The settings above are default: both lines can be left out if the B-P86 functional and grid m3 are required. Other useful functionals supported are:

- b-lyp
- b3-lyp
- b3-lyp\textunderscore Gaussian (equivalent to the Gaussian98 keyword B3LYP with VWNIII)
- bh-lyp
- s-vwn
- s-vwn\textunderscore Gaussian (equivalent to the Gaussian98 keyword SVWN with VWNIII)
- tpss
- tpssh

Possible grids are 1–5 and m3–m5 where grid 1 is coarse (least accurate) and 5 most dense. We recommend however the use of so-called multiple grids m3–m5: SCF iterations with grid 1–3, final energy and gradient with grid 3–5. Usually m3 is fine: for large or delicate systems, try m4. For a reference calculation with a very fine grid and very tight thresholds use ‘reference’ as grid specification instead of ‘gridsize xy’.

\textbf{Note}: the functionals b3-lyp\textunderscore Gaussian and s-vwn\textunderscore Gaussian are made available only for comparability with Gaussian. The functional VWNIII is much less well founded than VWN5 and the TURBOMOLE team does not recommend the use of VWNIII.
22.2. FORMAT OF KEYWORDS AND COMMENTS

RI

Dscf does not run with the keyword $rij: you must call the RI modules Ridft and Rdgrad for energy and gradient calculations. However, it does run with the keyword $rik, but it will ignore all RI settings and do a conventional non-RI Hartree–Fock or DFT calculation.

$rij
Enforces an RI-J calculation if module ridft is used, can be used for Hartree-Fock as well as for DFT calculations with pure or hybrid functionals.

$ridft
Obsolete keyword - use $rij instead!

$rik
Enforces a RI-JK calculation if module ridft is used, can be used for Hartree-Fock as well as for DFT calculations with pure or hybrid functionals.

$ricore integer
Choose the memory core available (in megabyte) for special arrays in the RI calculation (the less memory you give the more integrals are treated directly, i.e. recomputed on the fly in every iteration)

$jbas file=auxbasis
Cross reference for the file specifying the auxiliary basis as referenced in $atoms. We strongly recommend using auxbasis sets optimized for the respective MO basis sets, e.g. use SVP (or TZVP) for the basis and the corresponding auxbasis as provided by define (default: file=auxbasis).

$ripop
Calculation of atomic charges according to the s partial wave and atomic dipole moments according to the p partial wave as resulting from the auxbasis representation of the density

RI-JK

If the keyword $rik is found in the control file, ridft performs a Hartree–Fock–SCF calculation using the RI-approximation for both Coulomb and HF-exchange (efficient for large basis sets). For this purpose needed (apart from $ricore):

$jkbas file=auxbasis
Cross reference for the file specifying the JK-auxiliary basis as referenced in $atoms. This group is created by the rijk menu in define.
CHAPTER 22. KEYWORDS IN THE CONTROL FILE

MARI-J

Multipole-Accelerated-Resolution-of-Identity-J. This method partitions the Coulomb interactions in the near- and far-field parts. The calculation of the far-field part is performed by application of the multipole expansions and the near-field part is evaluated employing the RI-J approximation. It speeds up calculation of the Coulomb term for large systems. It can only be used with the ridft module and requires setting of the $ridft keyword.

$\text{marij}$

\begin{verbatim}
  precision  1.0D-06
  lmaxmom    10
  nbinmax    8
  wsindex    0.0
  extmax     20.0
  thrmom     1.0D-18
\end{verbatim}

The following options are available:

- **precision**: specifies precision parameter for the multipole expansions. Low-precision MARI-J calculations require $1 \cdot 10^{-6}$, which is the default. For higher precision calculations it should be set to $1 \cdot 10^{-8}$–$1 \cdot 10^{-9}$.

- **lmaxmom**: maximum l-moment of multipole expansions. It should be set to a value equal at least twice the maximum angular momentum of basis functions. Default value is 10 and it should probably never be set higher than 18.

- **thrhom**: Threshold for moment summation. For highly accurate calculations it should be set to $1 \cdot 10^{-24}$.

- **nbinmax**: number of bins per atom for partitioning of electron densities. Default value is 8 and hardly ever needs to be changed.

- **wsindex**: minimum separation between bins. Only bins separated more than the sum of their extents plus wsindex are considered as far-field. Default is 0.0 and should be changed only by the experts.

- **extmax**: maximum extent for charge distributions of partitioned densities. Extents with values larger then this are set to extmax. Hardly ever needs to be changed.

Seminumeric HF-Exchange

If the keyword $\text{senex}$ is found in the control file, ridft performs a Hartree–Fock– SCF calculation using the seminumerical approximation for HF-exchange. Standard dft-grids can be used for the numerical integration. Smaller grids (-1,0) and the corresponding m-grids (m1,m2) have been defined as well. Grids of at least size m3 are recommended for heavy atoms. The gridsize can be modified just like in dft-calculations. The keyword $\text{dsenex}$ activates seminumerical gradient calculations. An example using the default grid for SCF (m1) and grid 5 for gradients (default grid: 3) looks like this:
Use the Localized Hartree–Fock (LHF) method to obtain an effective Exact-Exchange Kohn–Sham potential (module \texttt{dscf}). The LHF method is a serial implementation for spin-restricted closed-shell and spin-unrestricted ground states.

With the LHF potential Rydberg series of virtual orbitals can be obtained. To that end, diffuse orbital basis sets have to be used and special grids are required. 

\texttt{gridtype 4} is the most diffuse with special radial scaling; \texttt{gridtype 5} is for very good Rydberg orbitals; \texttt{gridtype 6} (default in \texttt{Lhfprep}) is the least diffuse, only for the first Rydberg orbitals.

Only gridsize 3–5 can be used, no multiple grids.

Use \texttt{test-integ} to check if the selected grid is accurate enough for the employed basis-set.

\textbf{How to do LHF runs}

1) Do a Hartree–Fock calculation using \texttt{dscf}.

2) Use the script \texttt{lhfprep} to prepare the \texttt{control} file (the old \texttt{control} file will be saved in \texttt{control.hf} and the molecular orbitals in \texttt{mos.hf} or in \texttt{alpha.hf} and \texttt{beta.hf} for the spin-unrestricted case). See \texttt{lhfprep -help} for options.

3) Run again \texttt{dscf}.

Otherwise the LHF functional can be selected in \texttt{define}: in this case default options are used.

Options for the LHF potential can be specified as follows (see also \texttt{lhfprep -help})

\begin{verbatim}
$\texttt{lhf}$
  off-diag on
  numerical-slater off
  pot-file save
  asymptotic dynamic=1.d-3
  homo 1b1u
  homob 1b1u  # ONLY UNRESTRICTED
  conj-grad conv=1.d-7 maxit=20 output=1 cgasy=1
\end{verbatim}
slater-dtresh 1.d-9
slater-region 7.0 0.5 10.0 0.5
corrct-region 10.0 0.5
slater-b-region 7.0 0.5 10.0 0.5 # ONLY UNRESTRICTED
corrct-b-region 10.0 0.5 # ONLY UNRESTRICTED
correlation func=lyp

off-diag off
calculation of the KLI exchange potential. By default the LHF exchange potential is computed (off-diag on).

numerical-slater on
the Slater potential is calculated numerically everywhere: this is more accurate but much more expensive. When ECP are used, turn on this option.

numerical-slater off
leads to accurate results only for first-row elements or if an uncontracted basis set or a basis set with special additional contractions is used: in other cases numerical-slater on has to be used (this is default).

asymptotic
for asymptotic treatment there are three options:

asymptotic off
No asymptotic-treatment and no use of the numerical Slater. The total exchange potential is just replaced by $-1/r$ in the asymptotic region.
This method is the fastest one but can be used only for the density-matrix convergence or if Rydberg virtual orbitals are of no interest.

asymptotic on
Full asymptotic-treatment and use of the numerical Slater in the near asymptotic-region.

asymptotic dynamic=1.d-3
Automatic switching on (off) to the special asymptotic treatment if the differential density-matrix rms is below (above) 1.d-3. This is the default.

pot-file save
the converged Slater and correction potentials for all grid points are saved in the files slater.pot and corrct.pot, respectively. Using pot-file load, the Slater potential is not calculated but read from slater.pot (the correction potential is instead recalculated). For spin unrestricted calculations the corresponding files are slaterA.pot, slaterB.pot, corrctA.pot and correctB.pot.

homo
allows the user to specify which occupied orbital will not be included in the calculation of correction potential: by default the highest occupied orbital is selected. This option is useful for those systems where the HOMO of the starting orbitals (e.g. EHT, HF) is different from the final LHF HOMO. homob is for the beta spin.
22.2. FORMAT OF KEYWORDS AND COMMENTS

**correlation func=**functional

A correlation functional can be added to the LHF potential: use **func=**lyp for LYP, or **func=vwn** for VWN5 correlation.

**For expert users**

Options for the conjugate-gradient algorithm for the computation of the correction potential: rms-convergence (**conj-grad conv=**1.d-7), maximum number of iteration (**maxit=**20), output level **output=**0-3, asymptotic continuation in each iteration (**cgasy=**1).

With **slater-dtresh=** 1.d-9 (default) the calculations of the numerical integrals for the Slater potential is performed only if it changes more than 1.d-9.

Asymptotic regions specification:

```
correct-region R_F \Delta_F
0\ldots R_F - \Delta_F : basis-set correction potential
R_F - \Delta_F \ldots R_F + \Delta_F : smooth region
R_F + \Delta_F \ldots + \infty : asymptotic correction
Defaults: R_F = 10, \Delta_F = 0.5
```

```
slater-region R_N \Delta_N R_F' \Delta_F'
0\ldots R_N - \Delta_N : basis-set Slater potential
R_N - \Delta_N \ldots R_N + \Delta_N : smoothing region
R_N + \Delta_N \ldots R_F' - \Delta_F' : numerical Slater
R_F' - \Delta_F' \ldots R_F' + \Delta_F' : smoothing region
R_F' + \Delta_F' \ldots + \infty : asymptotic Slater
Note: R_F' - \Delta_F' \leq R_F - \Delta_F
Defaults: R_N = 7, \Delta_N = 0.5, R_F' = 10, \Delta_F' = 0.5
Use correct-b-region and slater-b-region for the beta spin.
```

**Two-component SCF (GHF)**

Self-consistent two-component calculations (e.g. for spin-orbit interactions) can be carried out using the module **ridft**. The following keywords are valid:

**$soghf**

enforces two-component-SCF calculations; this option is combinable with **$rij, $rik** and **$dft**.

**$kramers**

switches on Kramers-restricted formalism

**$collinear**

switches on collinear two-component formalism (not rotational invariant)

**$gdiis**

enforces DIIS for complex Fock operator.
All-electron relativistic approaches (X2C, BSS, DKH)

Relativistic all-electron calculations can be done employing the X2C, the BSS or the DKH Hamiltonian. Implemented for modules dscf and ridft. Note that gradients are only available with X2C in the modules grad and rdgrad.

$\texttt{rx2c}$

switches on X2C calculation.

$\texttt{rbss}$

switches on BSS calculation.

$\texttt{rdkh}$ integer

switches on DKH calculation of order integer.

$\texttt{dkhparam}$ integer

selects parameterization of the DKH Hamiltonian. Valid values are 1 (=default), 2, 3, 4, and 5.

$\texttt{dkhparam 1}$: Optimum parametrization (OPT)

$\texttt{dkhparam 2}$: Exponential parametrization (EXP)

$\texttt{dkhparam 3}$: Square-root parametrization (SQR)

$\texttt{dkhparam 4}$: McWeeny parametrization (MCW)

$\texttt{dkhparam 5}$: Cayley parametrization (CAY)

Note in particular that the parametrization does not affect the Hamiltonian up to fourth order. Therefore, as long as you run calculations with DKH Hamiltonians below 5th order you may use any symbol for the parametrization as they would all yield the same results. Higher-order DKH Hamiltonians depend slightly on the chosen parameterization of the unitary transformations applied in order to decouple the Dirac Hamiltonian, but this effect can be neglected. For details on the different parametrizations of the unitary transformations see [277].

$\texttt{rlocal}$

switches on local approach. Default is DLU (see rlocpara).

$\texttt{rlocpara}$ integer

selects parameterization of the local approximation. Valid values are 0 or 1. Default is the DLU (0). 1 refers to the DLH approximation. For details on the different parametrizations see [96]. Gradients are restricted to the DLU approximation.

$\texttt{finnuc}$

switches on finite nucleus model based on a Gaussian charge distribution with parameters taken from [278].

$\texttt{snso}$

selects screened-nuclear-spin-orbit (SNSO) approach for the spin-dependent integrals in two-component calculations.
$snsopara integer
selects parametrization of SNSO. Valid values are 0 and 1. 0 refers to the original
collection of parameters originally used in low-order DKH theory [99], while 1 refers to the
modified parameters [100,101] for exact decoupling methods. Default is 0.

All of these keywords are combinable with $soghf employing the RI-J approximation.

### 22.2.9 Keywords for Point Charge Embedding

$point_charges

Specification of position and magnitude of point charges to be included in the Hamiltonian. Each point charge is defined in the format

\(<x> <y> <z> <q>\)

with \(<x>, <y>, <z>\) being the coordinates and \(<q>\) its charge, e.g.

$point_charges thr=<real> selfenergy nocheck list
2. 2. 2 5.
5. 0. 0 2.5

In addition the following optional arguments may be given:

thr=real
distance threshold for discarding redundant point charges, default value \(10^{-6}\).

selfenergy
if given, the selfenergy of the point charge array will be included in the energy
and the gradient

nocheck
switches off the check for redundant point charges and the default symmetrization. This option can significantly speed up the point charge treatment if many of them are involved - use only if the point charges are well distributed and symmetry is \(C_{1}\), e.g. when they stem from proper MM runs

list
print all point charges in the output (default is to print the point charges only if less
than 100 charges given)

### 22.2.10 Keywords for Periodic Electrostatic Embedded Cluster Method

The Periodic Electrostatic Embedded Cluster Method (PEECM) functionality provides electronic embedding of a finite, quantum mechanical cluster in a periodic, infinite array of point charges. It is implemented within HF and DFT energy and gradient TURBOMOLE modules: dscf, grad, ridft, rdgrad, and escf. Unlike embedding within a finite set of point charges
the PEEC method always yields the correct electrostatic (Madelung) potential independent
of the electrostatic moments of the point charges field. It is also significantly faster than the
traditional finite point charges embedding.

The basic PEECM settings are defined in the \$embed block. It can be redirected to an
external file using \$embed file=<file_name>.

Following keywords are used for the PEECM calculation setup:

**periodic**

Specifies the number of periodic directions. Allowed values for **number** are 3 for a bulk
three-dimensional system, 2 for a two-dimensional surface slab, and 1 for a one-dimensional
system. Default value is 3.

**cell**

Unit cell parameters in a form of six real values |a|, |b|, |c|, α, β, γ, where |a|, |b|, |c| are
lengths of the appropriate cell vectors, α is the angle between vectors b and c, β is the angle
between vectors a and c, and γ is the angle between vectors a and b. Default are atomic
units and degrees. You can specify unit cell parameters in Å and degrees using **cell ang**.

**content**

  - label x y z

end

Content of the unit cell, where **label** is the label of the point charge Content of the unit cell,
where **label** is the label of the point charge type and x y z are corresponding Cartesian
or fractional crystal coordinates. Defaults are Cartesian coordinates and atomic units. You
can specify Cartesian coordinates in Å using **content ang** and fractional coordinates using
**content frac**. Note that Cartesian coordinates assume that the cell vector a is aligned
along the x axis, and the vector b on the xy plane.

**cluster**

  - label x y z

end

Atomic coordinates of the piece of the crystal to be replaced by the QM cluster and sur-
rounding isolation shell (ECPs and explicit point charges), where **label** is the point charge
label and x y z are corresponding Cartesian or fractional crystal coordinates. Defaults are
Cartesian coordinates and atomic units. You can specify Cartesian coordinates in Å using
**cluster ang** and fractional coordinates using **cluster frac**.

**charges**

  - label charge

end
Values of point charges (for each atom-type), where \texttt{label} is the point charge label and \texttt{charge} specifies charge in atomic units.

\begin{verbatim}
ch_list
  label charge
end
\end{verbatim}

Values of point charges (for each atom), where \texttt{label} is the point charge label and \texttt{charge} specifies charge in atomic units.

Note that \texttt{charges} and \texttt{ch_list} are mutually exclusive. An integer number $n$ can also be appended to \texttt{charges} or \texttt{ch_list} to set the tolerance for charge neutrality violation to $10^{-n}$ (default $n = 5$).

Additionally, the following keywords control the accuracy of PEECM calculation:

\begin{itemize}
  \item \texttt{lmmaxmom} \\
    Maximum order of the multipole expansions in periodic fast multipole method (PFMM). \texttt{Default value is 25.}
  \item \texttt{potval} \\
    Electrostatic potential at the lattice points resulting from periodic point charges field will be output if this keyword is present. Default is not to output.
  \item \texttt{wsicl} \\
    Well-separateness criterion for PFMM. Default is 3.0.
  \item \texttt{epsilon} \\
    Minimum accuracy for lattice sums in PFMM. Default is 1.0d-8.
\end{itemize}

### 22.2.11 Keywords for COSMO

The Conductor-like Screening Model (COSMO) is a continuum solvation model, where the solute molecule forms a cavity within the dielectric continuum of permittivity epsilon that represents the solvent. A brief description of the method is given in chapter 18.2. The model is currently implemented for SCF energy and gradient calculations (\texttt{dscf/ridft} and \texttt{grad/rdgrad}), MP2 energy calculations (\texttt{rimp2} and \texttt{mpgrad}) and MP2 gradients (\texttt{rimp2}), and response calculations with \texttt{escf}. The \texttt{ricc2} implementation is described in section 18.2.

For simple HF or DFT single point calculations or optimizations with standard settings, we recommend to add the \texttt{$cosmo} keyword to the \texttt{control} file and to skip the rest of this section.

Please note: due to improvements in the A matrix and cavity setup the COSMO energies and gradients may differ from older versions (5.7 and older). The \texttt{use_old_amat} option can be used to calculate energies (not gradients) using the old cavity algorithm of TURBOMOLE.
5.7.
The basic COSMO settings are defined in the \$cosmo and the \$cosmo_atoms block.
Example with default values:

\$cosmo
  epsilon=\text{infinity}
  nppa= 1082
  nspa= 92
  disex= 10.0000
  rsolv= 1.30
  routf= 0.85
  cavity closed
  ampran= 0.1D-04
  phsran= 0.0
  refind= 1.3
# the following options are not used by default
allocate_nps= 140
use_old_amat
use_contcav
no_oc

\textit{epsilon=real}
defines a finite permittivity used for scaling of the screening charges. If the option \textit{ion} is added to the same input line, the scaling factor for ions $f(\varepsilon) = \frac{\varepsilon-1}{\varepsilon+1}$ with $x = 0$ will be used. Alternatively the $x$ value can be set by adding \textit{ion=x} with $x$ as a real value.

\textit{allocate_nps=integer}

skips the COSMO segment statistics run and allocates memory for the given number of segments.

\textit{no_oc}

skips the outlying charge correction.

All other parameters affect the generation of the surface and the construction of the $A$ matrix:

\textit{nppa= integer}

number of basis grid points per atom
(allowed values: $i = 10 \times 3^k \times 4^l + 2 = 12, 32, 42, 92...$)

\textit{nspa= integer}

number of segments per atom
(allowed values: $i = 10 \times 3^k \times 4^l + 2 = 12, 32, 42, 92...$)

\textit{disex= real}

distance threshold for $A$ matrix elements (Ångstrom)
22.2. FORMAT OF KEYWORDS AND COMMENTS

**rsolv** = *real*

distance to outer solvent sphere for cavity construction (Ångstrom)

**routf** = *real*

factor for outer cavity construction in the outlying charge correction

**cavity closed**

pave intersection seams with segments

**cavity open**

leave untidy seams between atoms

**ampran** = *real*

amplitude of the cavity de-symmetrization

**phsran** = *real*

phase of the cavity de-symmetrization

**refind** = *real*

refractive index used for the calculation of vertical excitations and num. frequencies (the default 1.3 will be used if not set explicitly)

**use_old_amat**

uses A matrix setup of TURBOMOLE 5.7

**use_contcav**

in case of disjunct cavities only the largest contiguous cavity will be used and the smaller one(s) neglected. This makes sense if an unwanted inner cavity has been constructed e.g. in the case of fullerenes. Default is to use all cavities.

**point_charges**

Allows the COSMO response to point charges. By default it is disables, so that point charges interacts only with the molecule. Note that when point charges are used together with COSMO, the COSMO surface is still constructed considering only the atoms.

If the **$cosmo** keyword is given without further specifications the default parameter are used (recommended). For the generation of the cavity, COSMO also requires the definition of atomic radii. User defined values can be provided in Ångstrom units in the data group **$cosmo_atoms**, e.g. for a water molecule:

```
$cosmo_atoms
 # radii in Angstrom units
 o 1
 radius= 1.7200
 h 2-3
 radius= 1.3000
```
CHAPTER 22. KEYWORDS IN THE CONTROL FILE

If this section is missing in the control file, the default values defined in the radii.cosmo file (located in $TURBODIR/parameter) are used. A user defined value supersedes this defaults. $cosmo and $cosmo_atoms can be set interactively with the COSMO input program cosmoprep after the usual generation of the TURBOMOLE input.

The COSMO energies and total charges are listed in the result section. E.g.:

SCREENING CHARGE:
   cosmo : -0.003925
   correction : 0.003644
   total : -0.000282

ENERGIES [a.u.]:
   Total energy =  -76.0296831863
   Total energy + OC corr. = -76.0297567835
   Dielectric energy =     -0.0118029468
   Diel. energy + OC corr. = -0.0118765440
   The following value is included for downward compatibility
   Total energy corrected = -76.0297199849

The dielectric energy of the system is already included in the total energy. OC corr denotes the outlying charge correction. The last energy entry gives the total outlying charge corrected energy in the old definition used in TURBOMOLE 5.7 and older versions. The COSMO result file, which contains the segment information, energies, and settings, can be set using:

$cosmo_out file= filename.cosmo

Isodensity Cavity: This option can be used in HF/DFT single point calculations only. The $cosmo_isodens section defines the settings for the density based cavity setup (see also chapter 18.2). If the $cosmo_isodens keyword is given without suboptions, a scaled isodensity cavity with default settings will be created. Possible options are:

$cosmo_isodens
   activates the density based cavity setup. The default values of nspa and nsph are changed to 162 and 92, respectively. This values are superseded by the user defined nspa value of the $cosmo section. By default the scaled density method is used. The atom type dependent density values are read from the radii.cosmo file (located in $TURBODIR/parameter).

dx=real
   spacing of the marching tetrahedron grid in Å (default: 0.3Å).

all_dens=real
   use one isodensity value for all atom types (value in a.u.)

The outlying charge correction will be performed with a radii based outer cavity. Therfore, and for the smoothing of the density changes in the intersection areas of the scaled density method, radii are needed as for the standard COSMO cavity. Please note: The isodensity
cavity will be constructed only once at the beginning of the SCF calculation. The density constructed from the initial mos will be used (file mos or alpha/beta in case of unrestricted calculations). Because the mos of an initial guess do not provide a good density for the cavity construction, it is necessary to provide mos of a converged SCF calculation (e.g. a COSMO calculation with standard cavity). We recommend the following three steps: perform a standard COSMO calculation, add the isodensity options afterwards, and start the calculation a second time.

**Radii based Isosurface Cavity:** The $cosmo_isorad section defines the radii defined isosurface cavity construction. The option uses the algorithm of the isodensity cavity construction but the objective function used depends on the cosmo radii instead of the electron density. The default values of nspa and nsph are changed to 162 and 92, respectively. This values are superseded by the user defined nspa value of the $cosmo section. The resulting surface exhibits smoother intersection seams and the segment areas are less diverse than the ones of the standard radii bases cavity construction.

$cosmo_isorad

dx=real

spacing of the marching tetrahedron grid in Å (default: 0.3Å).

**COSMO in MP2 Calculations:** The iterative COSMO PTED scheme (see chapter 18.2) can be used with the mp2cosmo script. Options are explained in the help message (mp2cosmo -h). Both MP2 modules rimp2 and mpgrad can be utilized. The control file can be prepared by a normal COSMO SCF input followed by a rimp2 or mpgrad input. The PTE gradients can be switched on by using the

$cosmo_correlated

keyword (rimp2 only). Again a normal SCF COSMO input followed by a rimp2 input has to be generated. The $cosmo_correlated keyword forces dscf to keep the COSMO information needed for the following MP2 calculation and toggles on the COSMO gradient contribution.

**COSMO in Numerical Frequency Calculations:** NumForce can handle two types of COSMO frequency calculations. The first uses the normal relaxed COSMO energy and gradient. It can be performed with a standard dscf or ridft COSMO input without further settings. This is the right method to calculate a Hessian for optimizations. The second type, which uses the approach described in chapter 18.2, is implemented for ridft only. The input is the same as in the first case but NumForce has to be called with the -cosmo option. If no solvent refractive index refind=REAL is given in the $cosmo section of the control file the program uses the default (1.3).
COSMO in vertical excitations and polarizabilities: Cosmo is implemented in `escf` and will be switched on automatically by the `Cosmo` keywords of the underlying SCF calculation. The refractive index, used for the fast term screening of the vertical excitations, needs to be defined in the cosmo section of control file (`refind=REAL`).

DCCOSMO-RS: The DCOSMO-RS model (see chapter 18.2) has been implemented for restricted and unrestricted DFT and HF energy calculations and gradients (programs: `dscf/ridft` and `grad/rdgrad`). In addition to the Cosmo settings defined at the beginning of this section, the `$dcosmo_rs` keyword has to be set.

```
$dcosmo_rs file=filename.pot
```

activates the DCOSMO-RS method. The file defined in this option contains the DCOSMO-RS \(\sigma\)-potential and related data (examples can be found in the default potentials in the `$TURBODIR/parameter` directory).

If the potential file cannot be found in the local directory of the calculation, it will be searched in the `$TURBODIR/parameter` directory. The following \(\sigma\)-potential files for pure solvents at 25\(\degree\)C are implemented in the current Turbomole distribution (see parameter subdirectory):

- Water: `h2o_25.pot`
- Ethanol: `ethanol_25.pot`
- Methanol: `methanol_25.pot`
- Tetrahydrofurane: `thf_25.pot`
- Acetone: `propanone_25.pot`
- Chloroform: `chcl3_25.pot`
- Tetrachloromethane: `ccl4_25.pot`
- Acetonitrile: `acetonitrile_25.pot`
- Nitromethane: `nitromethane_25.pot`
- Dimethylsulfoxide: `dimethylsulfoxide_25.pot`
- Diethylether: `diethylether_25.pot`
- Hexane: `hexane_25.pot`
- Cyclohexane: `cyclohexane_25.pot`
- Benzene: `benzene_25.pot`
- Toluene: `toluene_25.pot`
- Aniline: `aniline_25.pot`

The DCOSMO-RS energies and total charges are listed in the Cosmo section of the output:

```
SCREENING CHARGE:

 cosmo : -0.012321
 correction : 0.011808
 total : -0.000513

(correction on the COSMO level)

ENERGIES [a.u.]:

 Total energy = -76.4841708454
 Outlying charge corr. (COSMO) = -0.0006542315
```
Outlying charge corr. (DCOSMO-RS) = -0.0011042856
Combinatorial contribution of the solute = -0.0017627889
(at inf. dil. in the mixture/pure solvent. Not included in the total energy above)

The outlying charge correction cannot be defined straightforward like in the normal COSMO model. Therefore, the output shows two corrections that can be added to the total energy. The first one is the correction on the COSMO level (COSMO) and the second is the difference of the DCOSMO-RS dielectric energy calculated from the corrected and the uncorrected COSMO charges, respectively (DCOSMO-RS). The charges are corrected on the COSMO level only. The total energy includes the \( E_{\text{diel,RS}} \) defined in section 18.2. Additionally the combinatorial contribution at infinite dilution of the COSMO-RS model is given in the output. The use of this energy makes sense if the molecule under consideration is different than the used solvent or not component of the solvent mixture, respectively. To be consistent one should only compare energies containing the same contributions, i.e. the same outlying charge correction and with or without combinatorial contribution. Please note: the COSMO-RS contribution of the DCOSMO-RS energy depends on the reference state and the COSMO-RS parameterization (used in the calculation of the chosen COSMO-RS potential). Therefore, the DCOSMO-RS energies should not be used in a comparison with the gas phase energy, i.e. the calculation of solvation energies.

### 22.2.12 Keywords for Module riper

riper shares most of the relevant keywords of the dscf and ridft modules. The $dft$ data group (see 22.2.8) and auxiliary basis sets defined using the keyword $jbas$ are always required.

For periodic calculations two additional keywords are necessary:

$periodic n$
Specifies the number of periodic directions: \( n = 3 \) for a 3D periodic bulk solid, \( n = 2 \) for a 2D periodic surface slab and \( n = 1 \) for a 1D periodic system. The default value is 0 for a molecular system.

$cell$
Specifies the unit cell parameters. The number of cell parameters depends on the periodicity of the system:

For 3D periodic systems six unit cell parameters \(|a|, |b|, |c|, \alpha, \beta, \gamma\) need to be provided. Here, \(|a|, |b|\) and \(|c|\) are lengths of the appropriate cell vectors, \(\alpha\) is the angle between vectors \(b\) and \(c\), \(\beta\) is the angle between vectors \(a\) and \(c\), and \(\gamma\) is the angle between vectors \(a\) and \(b\). riper assumes that the cell vectors \(a\) and \(b\) are aligned along the \(x\) axis and on the \(xy\) plane, respectively.

For 2D periodic systems three surface cell parameters \(|a|, |b|\) and \(\gamma\) have to be provided. Here, \(|a|\) and \(|b|\) are lengths of the appropriate cell vectors and \(\gamma\) is the angle between \(a\) and \(b\). riper assumes that the cell vectors \(a\) and \(b\) are aligned along the \(x\) axis and on the \(xy\) plane, respectively.
For 1D periodic systems only one parameter specifying the length of the unit cell has to be provided. riper assumes that periodic direction is along the \( x \) axis.

\textbf{\$lattice}\n
Alternatively, lattice vectors can be provided. The number of cell parameters depends on the periodicity of the system:

- For 3D periodic systems three (three-dimensional) lattice vectors need to be provided.
- For 2D periodic systems two (two-dimensional) lattice vectors have to be provided. riper assumes that the lattice vectors are aligned on the \( xy \) plane.
- For 1D periodic systems only one parameter specifying the length of the lattice vector has to be provided. riper assumes that periodic direction is along the \( x \) axis.

Optionally, for periodic systems a \( \mathbf{k} \) points mesh can be specified:

\textbf{\$kpoints}\n
\begin{verbatim}
 nkpoints \( n_1 \) \( n_2 \) \( n_3 \)
\end{verbatim}

Specifies components along each reciprocal lattice vector of a \( \Gamma \) centered mesh of \( \mathbf{k} \) points. In 3D periodic systems each \( \mathbf{k} \) point is defined by its components \( k_1 \), \( k_2 \) and \( k_3 \) along the reciprocal lattice vectors \( \mathbf{b}_1 \), \( \mathbf{b}_2 \) and \( \mathbf{b}_3 \) as

\[ \mathbf{k} = k_1 \mathbf{b}_1 + k_2 \mathbf{b}_2 + k_3 \mathbf{b}_3. \] (22.1)

For 2D periodic systems \( k_3 = 0 \). In case of 1D periodicity \( k_3 = 0 \) and \( k_2 = 0 \). The three components \( k_j \) (\( j = 1, 2, 3 \)) of \( \mathbf{k} \) are given as

\[ k_j = \frac{i}{n_j} \text{ with } i = -\frac{n_j - 1}{2}, -\frac{n_j - 1}{2} + 1, \ldots, \frac{n_j - 1}{2} - 1, \frac{n_j - 1}{2}. \] (22.2)

with \( n_j \) (\( j = 1, 2, 3 \)) as integer numbers. For 3D periodic systems \( n_1 \), \( n_2 \) and \( n_3 \) have to be specified. The component \( n_3 \) can be omitted for 2D periodic systems. In case of 1D periodicity only the \( n_1 \) has to be specified.

In addition, the options \texttt{kptlines} and \texttt{recipr} within the \$kpoints group can be used to obtain band structure plots:

\begin{verbatim}
 kptlines \n recipr
\end{verbatim}

\texttt{kptlines} \hspace{1em} Specifies the number of reciprocal space lines for band structure plots.

\texttt{recipr} \hspace{1em} Specifies lines in the reciprocal space using three real numbers defining the start point of the line and three real numbers defining its end point. Finally, the number of \( \mathbf{k} \) points along the line is given as an integer number.

In the following example band energies are calculated along four lines, as specified by the keyword \texttt{kptlines 4}. Each line definition starts in a new line with the keyword \texttt{recipr}, followed by three real numbers defining the start point of the line and three real numbers defining its end point. Finally, the number of \( \mathbf{k} \) points along the line is given as an integer number. Thus, the first line starts at the point (0.500 0.500 0.500), ends at (0.000 0.000 0.000) and contains 40 \( \mathbf{k} \) points.
22.2. FORMAT OF KEYWORDS AND COMMENTS

$kpoints
  kptlines 4
  recipr 0.500 0.500 0.500 0.000 0.000 0.000 40
  recipr 0.000 0.000 0.000 0.500 0.500 0.000 40
  recipr 0.500 0.500 0.000 0.746 0.373 0.373 40
  recipr 0.746 0.373 0.373 0.000 0.000 0.000 40

The calculated band structure is written to the file $bands.xyz$. Each line of the file contains five real numbers: the coordinates $k_1$, $k_2$ and $k_3$ of the $k$ point, its length $|k|$ and the corresponding band energy $\epsilon_{nk}$.

Keywords within the section $riper$ can be used to control precision and parameters of algorithms implemented in riper. If the $riper$ group is absent, the following default values are used:

$riper
  # general keywords
  thrints 1.0d-12
  lenonly off
  lchgprj on (for periodic systems)
  lchgprj off (for molecular systems)
  northol 5
  pqmatdiag off
  pqsingtol 1.0d-8
  # CFMM control options
  lmaxmom 20
  nctrgt 10 (for periodic systems)
  nctrgt 1 (for molecular systems)
  wsicl 3.0
  epsbext 1.0d-9
  locmult on (for periodic systems)
  locmult off (for molecular systems)
  locmomadd 2
  # LMIDF control options
  lpcg on
  lcfmmpcg on
  lmxmomp cg 20
  pcgtol 1.0d-9
  pcgtyp sp
  # Gaussian smearing options
  sigma 0.0d0
  desnue 0.0d0

The following options are available:
# general keywords

**thrints**
Threshold for integrals neglect and for differential overlap when screening basis functions pairs. Probably never needs to be changed.

**lenonly**
Flag for energy calculation only, no gradients.

**lchgprj**
If set to on charge projection of the auxiliary electron density [131] is performed for molecular systems during calculation of the Coulomb term. The charge projection constraints the charge of auxiliary density exactly to the number of electrons in the system. It is required for periodic systems, otherwise the Coulomb energy would be infinitely large. For molecular systems charge projection leads to a slight increase of the RI fitting error. It may be useful in some cases but we have so far not identified any.

**northol**
Forces orthonormalization of orbital coefficients every northol SCF iteration.

**pqmatdiag**
If set to on full diagonalization of the Coulomb metric matrix [131] is performed and used to solve density fitting equations. When diffuse auxiliary basis functions are used the default Cholesky decomposition of the Coulomb metric matrix may fail due to small negative eigenvalues. In this case the slower method based on a full diagonalization of the metric matrix is necessary.

**pqsingtol**
If pqmatdiag is used pqsingtol sets threshold for neglect of small eigenvalues of the Coulomb metric matrix.

# CFMM control options

**lmaxmom**
Maximum l-moment of multipole expansions used for calculation of the Coulomb term. The default value hardly ever needs to be changed.

**nctrgt**
Target number of charge distributions per lowest level box of the octree [127]. The default value hardly ever needs to be changed.

**wsicl**
Sets the well-separateness criterion [127]. Octree boxes with centers separated more than sum of their lengths times $0.5 \times \text{wsicl}$ are considered as well-separated. The default hardly ever needs to be changed. wsicl makes sense only for values $\geq 2.0$. For $\text{wsicl} \leq 3.0$ increasing lmaxmom may be necessary for reasonable accuracy.

**epsbext**
Precision parameter used to determine basis function extents [127].

**locmult**
If set to on, an additional acceleration method employing local multipole expansions is used. For periodic systems this leads to a significant speedup of calculations, especially for small unit cells and/or diffuse basis functions. Default value is off and on for molecular and periodic systems, respectively.

**locmomadd**
For locmult set to on the order of local multipole expansions is increased by locmomadd. The default value probably never needs to be changed.
22.2. FORMAT OF KEYWORDS AND COMMENTS

# LMIDF control options

lpcg
If set to on the low-memory iterative density fitting (LMIDF) scheme is used for solving the RI equations [130] using the preconditioned conjugate gradient (PCG) method. It is implemented for molecular systems only. Default value is off.

lcfmmpcg
If lpcg is used, lcfmmpcg specifies whether the CFMM is applied for evaluation of the matrix-vector products needed for the PCG solver. Not employing CFMM speeds up the calculations but significantly increases memory demand since the full Coulomb metric matrix has to be stored. Default value is on.

lmxmompcg
Maximum $l$-moment of multipole expansions for calculations of Coulomb interactions within the PCG algorithm. It should be set to the same or larger value than lmaxmom.

pcgtol
Sets the threshold parameter controlling accuracy of the PCG solver (see [130] for details). Default value is $1 \cdot 10^{-9}$. For lower-precision calculations it can be set to $1 \cdot 10^{-8}$ but values larger than $1 \cdot 10^{-7}$ are not allowed as these lead to large errors in Coulomb energies and occasionally to SCF convergence problems.

pcgtyp char
char = at, ss or sp
Specifies the type of preconditioner used in the PCG algorithm. Three types of preconditioners are implemented and are defined explicitly in Sec. 7. The sp preconditioner is a default one performing consistently the best among the preconditioners considered. The at preconditioner is less efficient in decreasing the number of CG iterations needed for convergence. However, it has negligible memory requirements and more favorable scaling properties, albeit with a large prefactor. The ss preconditioner represents a middle ground between the sp and at preconditioners both in terms of the efficiency and memory requirements.

# Gaussian smearing options

sigma
Width of the Gaussian smearing in hartree. See ref. [132] for more information. Note, that [132] uses eV as the unit for the width of the Gaussian smearing.

desnue
Specifying desnue along with sigma forces occupancy leading to the number of unpaired electrons equal to desnue.

Keywords within the section $\text{pointvalper}$ can be used to evaluate quantities (electron density/molecular orbitals) for visualization on grid points:

$\text{pointvalper} \ fmt=plt$

dens
orbs 2
k 3 2 1 a 1 i
k 0 0 0 b 2 r
nimg 2 2 1
npts 100 100 100
eps 5.0
ngrdpbx 50
full

The following options are available:

fmt Specifies output format. Currently .plt, .cub, .xyz and .upt extensions are supported (see 7.3.8).
dens If present, total (and spin for UHF) density is calculated.
orbs Specifies the number of plotted orbitals. For further details see subsection 7.3.8.
nimg Number of unit cell images n1, n2 and n3 in the periodic directions a, b and c, respectively, for which plot data is generated.
npts Number of grid points n1, n2 and n3 along each periodic direction. If not specified, value 100 is used for each n.
eps Specifies the distance real in bohr around the system for which plot grid is generated in aperiodic directions. Default value is 5 bohr.
ngrdpbx Number of grid points stored in one octree box during density calculations. Default value is 50. For very large systems or high resolution it may be necessary to increase this parameter to avoid memory allocation problems.
full Only valid for plt output format. This format uses orthogonal grids. Therefore, for non-orthogonal unit cells grid data is generated for a rectangular box that contains the supercell (unit cell and its periodic images). By default, the values at grid points outside of the supercell are set to zero. For strongly non-orthogonal systems this may lead to large files. The option full switches off the zeroing of values on grid points outside the supercell.

To calculate a simulated density of states (DOS) keyword $dosper is necessary:

$dosper width=real emin=real emax=real scal=real npt=integer

The following options are available:
width  The width of each Gaussian, default value is 0.01 a.u.
emin, enmax  Lower/upper bounds for energy in DOS calculation.
scal  Scaling factor for DOS (total and s-, p-, ... contributions).
npt  Resolution (number of points).

22.2.13 Keywords for Modules grad and rdgrad

Many of the dscf and ridft keywords are also used by grad and rdgrad.

$drvopt

This keyword and corresponding options are required in gradient calculations only in special circumstances. Just $drvopt is fine, no options needed to compute derivatives of the energy with respect to nuclear coordinates within the method specified: SCF, DFT, RIDFT.

If running a DFT gradient calculation, it is possible to include the derivatives of the quadrature weights, to get more accurate results. In normal cases however those effects are marginal. An exception is numerical calculation of frequencies by NumForce, where it is strongly recommended to use the weight derivatives option. The biggest deviations from the uncorrected results are to be expected if doing gradient calculations for elements heavier than Kr using all electron basis sets and very small grids. To use the weight derivatives option, add

weight derivatives

in $dft.
The option

point charges

in $drvopt switches on the evaluation of derivatives with respect to coordinates of point charges. The gradients are written to the file $point_charge_gradients old gradients will be overwritten.

22.2.14 Keywords for Module aoforce

This module calculates analytically harmonic vibrational frequencies within the HF- or (RI)DFT-methods for closed-shell and spin-unrestricted open-shell-systems. Broken occupation numbers would lead to results without any physical meaning. Note, that RI is only used partially, which means that the resulting Hessian is only a (very good) approximation to exact second derivatives of the RIDFT-energy expression. Apart from a standard force constant calculation which predicts all (allowed and forbidden) vibrational transitions, it is also possible to specify certain irreps for which the calculation has to be done exclusively or to select only a small number of lowest eigenvalues (and eigenvectors) that are generated at reduced computational cost.
General keywords

$\text{drvopt}$

is the keyword for non-default options of gradient and second derivative calculations. Possibilities in case of the module $\text{aoforce}$ are:

- frequency analysis only
- analysis only
to read a complete Hessian from the input file $\text{hessian}$ and perform only the frequency analysis

- analysis [only] intcoord [print printlevel]
to perform an analysis of normal modes in terms of internal coordinates. Details about this option and the effect of the printlevel (default is 0) are given in Section 15. The effect of the keyword only is the same as described above.

$\text{maxcor}$ 50

fixes the amount of core memory to be used for dynamically allocated arrays (here 50 MiB), about 70% of available memory should be fine, because $\text{maxcor}$ specifies only the memory used to store derivatives of density and Fock matrices as well as right hand side vectors for the CPHF equations. For further details see subsection 22.2.2.

$\text{forceconv}$ 7

sets the convergence criterion for the CPHF-equations to a residual norm of $1.0 \times 10^{-7}$. Normally the default value of $1.0 \times 10^{-5}$ already provides an accuracy of vibrational frequencies of $0.01 \text{cm}^{-1}$ with respect to the values obtained for the convergence limit.

$\text{forceiterlimit}$ 10

fixes the maximum number of Davidson iterations for the solution of the CPHF-equations to a value of ten. Normal calculations should not need more than eight iterations, but as a precaution the default value is 25.

$\text{nosalc}$

forces the program in case of molecules with $C_1$ symmetry not to use $3N - 6(5)$ symmetry adapted but all $3N$ cartesian nuclear displacement vectors. This option may lead to a moderate speed-up for molecules notably larger than 1000 basis functions and 100 atoms.

$\text{noproj}$

forces the program not to project out translations and rotations when forming a basis of symmetry adapted molecular displacements. This option may be needed if a Hessian is required, that contains translation- and rotation-contributions, e.g. for coupling the system with low cost methods. Output of the unprojected hessian is done on $\text{nprhessian}$; format is the same as for conventional $\text{hessian}$. Output of the corresponding eigenvalues and eigenvectors is done analogously on $\text{nprvibrational spectrum}$ and $\text{nprvibrational normal modes}$. 
$nomw
causes the program to diagonalize a not mass weighted hessian. Output is on
$nprhessian, $nprvibrational spectrum and $nprvibrational normal modes,
because projection of rotations is not possible in this case.

$isosub
This keyword allows to trace back the effects of isotopic substitution on vibra-
tional frequencies. The atom(s) for which isotopic substitution is to be investigated
are specified in subsequent lines of the form (atom index) (mass in special isotope), e.g.

```
isosub
3 2.001
5 13
```
The interpolation then takes place between the mass(es) specified in $atoms (or
the default mass(es), if none specified) and the mass(es) in $isosub. Take care of
symmetry equivalent atoms, otherwise symmetry analysis will fail. This feature can
not be used in a lowest eigenvalue search (keyword $les).

$isopts 6
Sets the number of points for interpolation between the two isotopes compared by
the $isosub option to six. Default value is 21.

Keywords for the treatment of only selected nuclear displacement vectors:

$ironly
CPHF-iteration is done only for distortions, that are IR active.

$ramanonly
CPHF-iteration is done only for distortions, that are Raman active.

$vcd
Calculation of VCD rotational strenghts after preceding mpshiftrun.

$les
This causes a lowest Hessian eigenvalue search to be performed instead of a complete
force constant calculation. The lowest eigenvalue search consists of the calculation
of a guess-Hessian and macro-iterations to find the solution vector(s) for the lowest
eigenvalue(s). In each macro-iteration the CPHF-equations are solved for the present
search vector(s). $les all 1 means that one lowest eigenvalue for each irrep will be
determined, other numbers of lowest eigenvalues per irrep are admissible too.
Different numbers of lowest eigenvalues for different irreps are requested by e.g.

```
$les
a1 3
a2 all
b2 1
```
The convergence criterion of the Davidson iterations for the solution of the CPHF-equations as well as the maximal residual norm for the lowest Hessian eigenvalue in the macro-iteration are specified by $\$forceconv$ as explained above.

The maximum number of macro-iterations is specified by $\$lesiterlim$ with the default $x$=25. The maximum number of iterations for each solution of the CPHF-equations is again determined by $\$forceiterlim$ as shown above.

The convergence of the macro-iterations is strongly influenced by the size of the starting search-subspace. Generally all guess-Hessian eigenvectors corresponding to imaginary frequencies and at least two real ones are used as starting search-subspace. However it proved to be necessary to use even more vectors in the case of guess-Hessians with very large conditioning numbers.

$\$hesscond 8.0d-5$

means that all eigenvalues with the quotient (eigenvalue)/(max. eigenvalue) lower than 0.00008 are added to the starting search-subspace. Default is 1.0d-4.

$\$hotfcht$

Triggers the generation of input files for hotFCHT (program to calculate Franck-Condon-factors by R. Berger and co-workers). See 15.5.

$\$sijuai_out$

Save the derivative of the density matrix for subsequent use in the module evib. See 16.

Force constant calculations on the DFT level prove to be numerically reliable only with large integration grids or if one includes the effects of quadrature weights. This is done by default—to prevent this, insert

\texttt{\textbf{no weight derivatives}}

in $\$dft$.

\section{22.2.15 Keywords for Module evib}

$\$dfdxi textout$

can be used to generate text output of the matrix elements of the derivative of the Fock-operator. For bigger systems this can however generate very large output files. See 16.

\section{22.2.16 Keywords for Module escf}

\textbf{TDHF and TDDFT calculations}

to perform an \texttt{escf} calculation converged molecular orbitals from a HF, DFT or RIDFT calculation are needed. The HF, DFT or RIDFT method is chosen according to the $\$dft$ or $\$ridft$ keywords, specified above. It is recommended to use well-converged orbitals, specifying $\$scfconv$ 7 and $\$denconv$ 1d-7 for the ground-state calculation. The input
for an escf calculation can be conveniently generated using the ex menu in define, see Section 4.

In an escf run one of the following properties can be calculated: (please note the 'or' in the text, do only one thing at a time.)

1. RPA and time-dependent DFT singlet or triplet or spin-unrestricted excitation energies (HF+RI(DFT))

$scfinstab rpas  
or
$scfinstab rpat  
or
$scfinstab urpa

2. TDA (for HF: CI singles) singlet or triplet or spin-unrestricted or spin-flip excitation energies (HF+RI(DFT))

$scfinstab ciss   
or
$scfinstab cist   
or
$scfinstab ucis   
or
$scfinstab spinflip

3. Two-component TDDFT/TDA excitation energies of Kramers-restricted closed-shell systems

$scfinstab soghf  
or
$scfinstab tdasoghf

4. Eigenvalues of singlet or triplet or non-real stability matrices (HF+RI(DFT), RHF)

$scfinstab singlet  
or
$scfinstab triplet  
or
$scfinstab non-real

5. Static polarizability and rotatory dispersion tensors (HF+(RI)DFT, RHF+UHF)

$scfinstab polly

6. Dynamic polarizability and rotatory dispersion tensors (HF+(RI)DFT, RHF+ UHF)

$scfinstab dynpol unit

list of frequencies

where unit can be eV, nm, rcm; default is a.u. (Hartree). For example, to calculate dynamic polarizabilities at 590 nm and 400 i nm (i is the imaginary unit):
The number and symmetry labels of the excited states to be calculated is controlled by the data group `$soes`. Example:

```plaintext
$soes
b1g 17
eu 23
t2g all
```

will yield the 17 lowest excitations in IRREP b1g, the 23 lowest excitations in IRREP eu, and all excitations in IRREP t2g. Specify `$soes all n`; to calculate the n first excitations in all IRREPS. If n is not specified, all excitations in all IRREPS will be obtained.

7. Two-photon absorption

```plaintext
$scfinstab twophoton rpas or
$scfinstab twophoton urpa or
$scfinstab twophoton ciss or
$scfinstab twophoton ucis
```

8. Nuclear spin-spin coupling constants

```plaintext
$ncoupling
thr=0.1
fromfile
```

In the final output, all SSCCs smaller than the threshold (in Hertz, default: 0.1) will not be printed. If the option `fromfile` is set, SSCCs from the data group `$coupling_reduced` (default: file `coupling.reduced`) from a previous calculation are used. This option can be used to obtain SSCC for a different isotope without redoing the calculation. It is furthermore recommended to set `$rpaconv` to at least 6.

During an `escc` run, a system-independent formatted logfile will be constructed for each IRREP. It can be re-used in subsequent calculations (restart or extension of eigenspace or of `$rpaconv`). An `escc` run can be interrupted by typing “touch stop” in the working directory.
22.2. FORMAT OF KEYWORDS AND COMMENTS

**general keywords**

$rpacor \; n$

The maximum amount of core memory to be allocated for the storage of trial vectors is restricted to $n$ MB. If the memory needed exceeds the threshold given by $rpacor$, a multiple pass algorithm will be used. However, especially for large cases, this will increase computation time significantly. The default is 200 MB.

$spectrum \; unit$

The calculated excitation energies and corresponding oscillator strengths are appended to a file named 'spectrum'. Possible values of unit are eV, nm and cm$^{-1}$ or rcm. If no unit is specified, excitation energies are given in a.u.

$cdspectrum \; unit$

The calculated excitation energies and corresponding rotatory strengths are appended to a file named 'cdspectrum'. unit can have the same values as in $spectrum$.

$start \; vector \; generation \; e$

Flag for generation of UHF start MOs in a triplet instability calculation. The option will become effective only if there are triplet instabilities in the totally symmetric IRREP. The optional real number $e$ specifies the approximate second order energy change in a.u. (default: 0.1).

$velocity \; gauge$

Enables calculation of dipole polarizability/rotatory dispersion in the velocity gauge. Active only for pure DFT (no HF exchange).

$sum \; rules \; unit \; list \; of \; frequencies$

Enable calculation of oscillator and rotatory strength sum rules at frequencies specified by list of frequencies in unit (see $scfinstab \; dynpol$). Note that the sums will be taken only over the states specified in $soes$.

$rpaconv \; n$

The vectors are considered as converged if the Euclidean residual norm is less than $10^{-n}$. Larger values of $n$ lead to higher accuracy. The default is a residual norm less than $10^{-5}$. For SSCCs, it is recommended to increase $n$ to at least 6.

$escfiterlimit \; n$

Sets the upper limit for the number of Davidson Iterations to $n$. Default is $n = 25$.

**GW Keywords**

$gw$

The main keyword that switches on a GW calculation using full spectral representations. This keyword will perform a standard $G_0W_0$ calculation with default values for the other flags.
$\texttt{rigw}$

The main keyword that switches on a $GW$ calculation using analytic continuation of the self-energy from imaginary to real space.

There are several options which can be added to the $\texttt{gw}$ or $\texttt{rigw}$ keyword. The recommended settings for a quick $G_0W_0$ run are:

Full quasiparticle spectrum using spectral representations:

$\texttt{gw}$

  rpa
  eta 0.001

HOMO-LUMO gap using analytic continuation:

$\texttt{rigw}$

  rpa
  ips+1
gap

Calculate quasiparticle correction for orbital 3-6 using contour deformation and iterative solution of the QP equation:

$\texttt{rigw}$

  rpa
  eta 0.001
  contour start=3 end=6
  qpeiter 10

Alternatively the orbital range in contour deformation may be set in the same way as for analytic continuation by simply adding the contour keyword: $\texttt{evGW}$ for the HOMO-3 - LUMO+3 gap using contour deformation:

$\texttt{rigw}$

  rpa
  ips+4
gap
  evgw
  contour

With the optional entries:

  rpa
22.2. FORMAT OF KEYWORDS AND COMMENTS

Default: false (not set). If added as option pure rpa response function is calculated. If not added, the TDDFT response function is calculated and used to screen the coulomb interaction. In combination with $rigw this keyword is mandatory, with $gw it should also always be set and only be deactivated by experts. The gw menu in define always sets this as default.

\textbf{qpeiter <integer>}

Default: 0. Switches between linearized quasiparticle equation for 0 and iterate quasiparticle equation for > 0. eta is changed from 0.2 to the supplied value to obtain smooth convergence during the iteration. Only with $gw.

\textbf{gw0}

Default: false (not set). A GW\(_0\) calculation is performed instead of G\(_0\)W\(_0\). The number of GW\(_0\) iterations performed is set by qpeiter.

\textbf{evgw}

Default: false (not set). An eigenvalue-only selfconsistent GW calculation is performed instead of G\(_0\)W\(_0\).

\textbf{scgw}

Default: false (not set). A quasiparticle selfconsistent GW calculation is performed instead of G\(_0\)W\(_0\). Only with $gw and not compatible with two-component calculations.

\textbf{offpq <real>}

Default: 0.03. Infinitesimal complex energy shift in Fock-matrix contribution of self-energy in scGW calculation. Only in combination with scgw keyword, ignored otherwise.

\textbf{fdamp <real>}

Default: 0.3. Damping of new Fock-matrix in scGW calculation. Only in combination with scgw keyword, ignored otherwise.

\textbf{unlimitz}

Default: false (not set). In linearized G\(_0\)W\(_0\) the linearization Factor Z is allowed to take any value instead of values between 0.5 - 1.0. Ignored if calculation is not a linearized G\(_0\)W\(_0\) calculation.
fixz

Default: false (not set). In linearized $G_0W_0$ the linearization Factor $Z$ is fixed to 1.0. Ignored if calculation is not a linearized $G_0W_0$ calculation.

csf <integer>

Default: false (not set). Calculate self-energy on an energy grid for the specified orbital. Results are saved on file.

nl <integer>

Default: n$_{occ} + 5$. Number of orbitals to calculate gw for. It is set to the number of occupied orbitals + 5 if set smaller than the number of occupied orbitals.

eta <real>

Default: 0.001. Infinitesimal complex energy shift. Negative value switches to calculating at that value but extrapolating to 0 in linear approximation.

output <filename>

Default: qpenergies.dat. Output filename for the quasiparticle energies.

For $\texttt{rigw}$ there are some special keywords that control the cost and efficiency of the module. The defaults chosen by $\texttt{define}$ (or $\texttt{esf}$ itself) are suitable for most systems. They were selected rather to be rather tight to yield reliable results without much knowledge of the system.

gap

Default: not set. Only the HOMO and LUMO quasiparticle states are calculated, all other orbitals are shifted by the HOMO-LUMO gap. In conjunction with the "$\texttt{ips+<integer>}$" keyword the N highest occupied and N lowest unoccupied states are calculated, making $\texttt{rigw}$ calculations feasible for many systems.

ips+ <integer>

Default: not set. When $\texttt{rigw}$ is set then the the quasiparticle states of all occupied + the N lowest virtual orbitals are calculated. Only with $\texttt{rigw}$, ignored with $\texttt{gw}$.

contour start=<integer> end=<integer> spin=<integer> irrep=<integer>
Default: not set. start, end, spin and irrep are optional and may be defined in arbitrary order. start defines the starting point for the orbital range and end the ending of the orbital range to be treated with RI-CD-GW. If neither start nor end are defined then the definition from the ips+ and gap keywords is used. In open shell systems spin=1 calculates the self-energy only for alpha shells, spin=2 for alpha and beta shells. For closed shell or any 2c calculation spin=1 is always the correct option and does not need to be set by the user.

\texttt{npade \langle \text{integer} \rangle}

Default: 128. Number of Pade approximants used in the $\text{rigw}$ module for RI-AC-GW. Recommended to be the same as npoints in a dual-grid ansatz. Due to numerical instabilities not more than 256 Pade approximants should be used!

\texttt{npoints \langle \text{integer} \rangle}

Default: 128. Number of imaginary frequency integration points used in the $\text{rigw}$ module for RI-AC-GW, RI-AC-GW and RPA energies. Recommended to be the same as npade in a dual-grid ansatz in RI-AC-GW.

\texttt{rpoints \langle \text{integer} \rangle}

Default: 16. Number of pseudo Fermi-levels in RI-AC-GW calculation. Not used if "contour" keyword is present.

\texttt{rshift \langle \text{real} \rangle}

Default: 0.3 eV. Initial shift for first Fermi level when RI-AC-GW is used in eV. For insulators 0.3 is recommended, for lower gap systems (< 3-4 eV HOMO-LUMO gap) 0.2 is recommended. Not used if "contour" keyword is present.

\texttt{width \langle \text{real} \rangle}

Default: rshift. stepwidth between subsequent Fermi levels when RI-AC-GW is used in eV. Recommended to be set such that $e_{\text{HOMO}} + rshift + rpoints \times width < e_{\text{LUMO}}$. Usually values from 0.05-0.20 eV are reasonable if the given condition is fulfilled. Not used if "contour" keyword is present.

\texttt{ccgrid}

Default: false (not set). Use Clenshaw-Curtis instead of Gauss-Legendre grids. NOT recommended. If it is used npoints should be chosen much larger than the default.
BSE Keywords

\$bse

The main keyword that switches on a BSE calculation. Provided that the response function is calculated setting this keyword will perform a standard BSE calculation with default values for the other flags.

\$cbse

The main keyword that switches on a correlation augmented BSE (=cBSE) calculation. A cBSE calculation with default values for the other flags will be performed.

The following optional entries can be added to the \$bse or \$cbse keyword:

\texttt{noqpa}
\texttt{noqpw}

Default: Not set. If set, the matrices $A$ and $W$, respectively, are constructed using KS/HF orbital energies instead of GW quasi-particles energies. If $cbse$ is used noqpw is set automatically.

\texttt{file <filename>}

Default: \texttt{qpenergies.dat}. This option defines the file name of GW quasi-particle energies which are read in.

\texttt{iterative}

Default: Not set. Compute the auxiliary matrix for the static screened interaction iteratively instead of by Cholesky decomposition.

\texttt{thrconv <real>}

Default: 1.0d-12. Threshold for convergence in case of the iterative computation of the static screened interaction.

\texttt{iterlim <integer>}

Default: 100. Maximum number of iterations in case of the iterative computation of the static screened interaction.

\$keep_fxc

Default: not set. Appears \texttt{outside} of the $bse$ datagroup. It adds the correlation part of the underlying XC Kernel to the BSE response. Automatically set if $cbse$ is set.
22.2.17 Keywords for Module rirpa

The keyword $rirpa$ allows to specify the following options,

npoints \( n \)
- Number of frequency quadrature points, \( n \) (default is 60).

maxitergrid \( n \)
- Maximum number of nested Clenshaw–Curtis quadrature iterations. During each iteration, the number of quadrature points doubles. The default is 1; namely, nested quadrature rule is turned off.

gridtol \( \epsilon \)
- Convergence criterion for the energy difference between successive nested quadrature iterations. Because of the exponentially convergent Clenshaw–Curtis rule, the quadrature error should be on the order of \( \epsilon^2 \) once the nested rule converges. The default is \( 1d-4 \).

doriakx
- Performs perturbative corrections to RPA such as AXK, ACSOSEX, or bare second-order exchange; see [202]. The implementation is full parallelized using OpenMP.

acsosex
- By default, the doriakx option triggers an RI-AXK calculation. Adding the acsosex option triggers an RI-ACSOSEX calculation instead.

acsox
- Triggers an bare second-order exchange correction instead of RI-AXK.

o4riaxk
- employs the AO based \( O(N^4 \ln N) \) RI-AXK algorithm instead of the default MO based \( O(N^5 \ln N) \) algorithm. The AO based algorithm only becomes more efficient than the MO based algorithm for very large systems with small basis sets.

axktol \( \epsilon \)
- Basis shell quadruple screening threshold for the AO based RI-AXK algorithm. \( \epsilon \) is defined according to equation (27) in [202]. The default value of \( \epsilon \) is \( 10^{-scfconv} \).

nohxx
- HF energy calculation is skipped, (HXX = Hartree + eXact (Fock) eXchange). The HXX energy computation in the rirpa module is not parallelized for now. For parallel RI-RPA or RI-AXK energy calculations on large systems, it is recommended to use the nohxx option for rirpa, and then compute the HXX energy separately using the parallel version of ridft or dscf (by removing the $dft$ keyword block and setting $scfiterlimit 1$ in the control file).

rpaprof
- Generates profiling output.
22.2.18 Keywords for Module egrad

`egrad` uses the same general keywords as `escf` and `grad`, see Sections 22.2.13 and 22.2.16.

The state to be optimized is by default the highest excited state specified in `$soes`. Note that only one IRREP can be treated at the same time in contrast to `escf` calculations. When the desired excited state is nearly degenerate with another state of the same symmetry it may be necessary to include higher states in the initial calculation of the excitation energy and vector in order to avoid root flipping. This is accomplished by means of the additional keyword

`$exopt n`

which explicitly enforces that `n`-th excited state is optimized. `n` must not be larger than the number of states specified in `$soes`.

`$nacme`

flag to compute Cartesian non-adiabatic coupling vectors between the excited state of interest and the ground state [279]. This option requires the use of weight derivatives in section `dft`. It is only implemented for `C1` symmetry.

22.2.19 Keywords for Module mpgrad

If an MP2 run is to be performed after the SCF run, the SCF run has to be done with at least

1) density convergence  `$denconv 1.d-7`
2) energy convergence  `$scfconv 6`

`$maxcor n`

The data group `$maxcor` adjusts the maximum size of core memory (`n` in MB) which will be allocated during the MP2 run. Recommendation: 3/4 of the actual main memory at most. For further details see subsection 22.2.2.

`$mp2energy`

Calculation of MP2 gradient is omitted, only MP2 energy is calculated.
The data group $freeze$ specifies frozen orbitals, in the above syntax by irreducible representations. The symmetry-independent and for standard-applications recommended syntax is

\$freeze \\
a1g 1-2 \\
t1u 1

This will freeze the 5 lowest occupied and 2 highest virtual orbitals (alpha and beta count as one in UHF cases). Note that degenerate orbitals count twice ($e$ representations), thrice ($t$ representations) etc. Note: In case of gradient calculations frozen core orbitals are not regarded by mpgrad, moreover freezing of virtual orbitals is generally not supported by mpgrad.

All essential data groups for mpgrad may be generated by the preparation tool mp2prep, apart from $\maxcor$ (see above) these are the following:

\$traloop \ n \\
\text{specifies the number of loops (or 'passes') over occupied orbitals, } \ n , \ \text{performed in the mpgrad run: the more passes the smaller file space requirements—but CPU time will go up.}

\$mointunit \\
type=intermed unit=61 size=0 file=halfint \\
type=1111 unit=62 size=0 file=moint#0 \\
type=1112 unit=63 size=0 file=moint#1 \\
type=1122 unit=64 size=0 file=moint#j \\
type=1212 unit=65 size=0 file=moint#k \\
type=1212a unit=70 size=0 file=moint#a \\
type=gamma#1 unit=71 size=0 file=gamma#1 \\
type=gamma#2 unit=72 size=0 file=gamma#2 \\
type=1212u unit=73 size=0 file=moint#u \\
type=1112u unit=74 size=0 file=moint#v \\
type=gamma#1u unit=75 size=0 file=gamma#1u

The data group $\mointunit$ specifies:

- which scratch files are needed, 
- where they are located (path name) and 
- (after a statistics run, see below) an estimated file size.
CHAPTER 22. KEYWORDS IN THE CONTROL FILE

$\text{statistics mpgrad}
\begin{align*}
\text{statistics run (estimation of disc space needed) for the adjustment of the file sizes will be performed.}
\end{align*}

$\text{mp2pair}
\begin{align*}
\text{calculation of MP2 pair correlation energies.}
\end{align*}

22.2.20 Keywords for Module ricc2

Note that beside the keywords listed below the outcome of the ricc2 program also depends on the settings of most thresholds that influence the integral screening (e.g. $\text{denconv}$, $\text{scfconv}$, $\text{scftol}$) and for the solution of Z vector equation with 4-index integrals (for relaxed properties and gradients) on the settings for integrals storage in semi-direct SCF runs (i.e. $\text{thime}$, $\text{thize}$, $\text{scfintunit}$). For the explanation of these keywords see Section 22.2.8.

$\text{cbas file=auxbasis}
\begin{align*}
\text{Auxiliary basis set for RI approximation.}
\end{align*}

$\text{freeze}
\begin{align*}
\text{Freeze orbitals in the calculation of correlation and excitation energies. For details see Section 22.2.19.}
\end{align*}

$\text{printlevel 1}
\begin{align*}
\text{Print level. The default value is 1.}
\end{align*}

$\text{tmpdir /work/thisjob}
\begin{align*}
\text{Specify a directory for large intermediate files (typically three-index coulomb integrals and similar intermediates), which is different from the directory where the ricc2 program is started.}
\end{align*}

$\text{maxcor n unit reference}
\begin{align*}
\text{The data group $\text{maxcor}$ adjusts the maximum size of core memory which will be allocated during the ricc2 calculation. $\text{maxcor}$ has a large influence on computation times. It is recommended to set $\text{maxcor}$ to ca. 75–85% of the available physical core memory. For further details see subsection 22.2.2.}
\end{align*}

$\text{spectrum unit}
\begin{align*}
\text{The calculated excitation energies and corresponding oscillator strengths are appended to a file named 'spectrum'. Possible values of unit are eV, nm and cm}^{-1}
\text{or rcm. If no unit is specified, excitation energies are given in a.u.}
\end{align*}

$\text{cdspectrum unit}
\begin{align*}
\text{The calculated excitation energies and corresponding rotatory strengths are appended to a file named 'cdspectrum'. unit can have the same values as in $\text{spectrum}$.}
\end{align*}

$\text{laplace}$
22.2. FORMAT OF KEYWORDS AND COMMENTS

conv = 5

The purpose of this data group is twofold: It activates the Laplace-transformed implementation of SOS-MP2 in the rICC2 module (if the sos option has been specified in $ricc2) and it provides the options to specify the technical details for the numerical Laplace-transformation.

conv

Threshold for the numerical integration used for the Laplace transformation of orbital energy denominators. The grid points for the numerical integration are determined such that is the remaining root mean squared error (RMSE) of the Laplace transformation is $< 10^{-\text{conv}}$. By default the threshold is set to the value of conv given in $ricc2$ (see below).

$ricc2$

cs
cc
cis
mp2       d1diag
cis(d)   energy only
cis(dinf)
adc(2)
cc2
restart
norestart
hard_restart
nohard_restart
conv = 8
oconv = 7
lindep = 15
maxiter = 25
mxdiis = 10
maxred = 100
iprint = 1
fmtprop = f15.8
geoopt model=cc2 state=(a" 2)
scs    cos=1.2d0    css=0.3333d0
sos
gsonly
d1diag
intcorr

specifies the ab initio models (methods) for ground and excited states and the most important parameters and thresholds for the solution of the cluster equations, linear response equations or eigenvalue problems. If more than one model is given, the corresponding calculations are performed successively. Note: The CCS ground state
energy is identical with the SCF reference energy, CCS excitation energies are identical to CIS excitation energies. The MP2 results is equivalent to the result from the rimp2 module. cis(dinf) denotes the iterative CIS(D) variant CIS(D∞).

**mp2 d1diag**
Request the calculation of the $D_1$ diagnostic in MP2 energy calculations (ignored in MP2 gradient calculations). Note that the evaluation of the $D_1$ diagnostic increases the computational costs of the RI-MP2 energy calculation roughly by a factor of 3.

**cis(d) energy only**
If the energy only flag is given after the cis(d) keyword, it is assumed that only excitation energies are requested. This switches on some shortcuts to avoid the computation of intermediates needed e.g. for the generation of improved start vectors for CC2.

**(no)restart**
If the restart flag is set, the program will try to restart the CC2 calculations from previous solution vectors on file. If the no restart flag is set no restart will be done. Default is to do a restart for CC2 if and only if the file CCR0--1--1---0 exists. **Note:** There is no restart possibility for CCS/CIS or MP2/CIS(D).

**(no)hard_restart**
If the hard_restart flag is set, the program will try to reuse integrals and intermediates from a previous calculation. This requires that the restart.cc file has been kept, which contains check sums and some other informations needed. The hard_restart flag is switched on by default, if the restart.cc file is present.

**conv**
The conv parameter gives the convergence threshold for the ground state energy for the iterative coupled-cluster methods as $10^{-\text{conv}}$. The default value is taken from the data group $\$\text{deneps}$.

**oconv**
The oconv parameter gives an additional threshold for the residual of the cluster equations (vector function). If this parameter is given, the iterations for the cluster equations are not stopped before the norm of the residual is $< 10^{-\text{oconv}}$. By default the threshold is set to $\text{oconv} = \text{conv} - 1$, or $10 \times \text{deneps}$ if no input for conv is given.

**lindep**
If the norm of a vector is smaller than $10^{-\text{lindep}}$, the vector is assumed to be zero. This threshold is also used to test if a set of vectors is linear dependent. The default threshold is $10^{-15}$.

**maxiter**
gives the maximum number of iterations for the solution of the cluster equations, eigenvalue problems or response equations (default: 25).
22.2. FORMAT OF KEYWORDS AND COMMENTS

**mxdiis**
is the maximum number of vectors used in the DIIS procedures for ground state or excitation energies (default: 10).

**maxred**
the maximum dimension of the reduced space in the solution of linear equations (default: 100).

**iprint**
print level, by default set to 1 or (if given) the the value of the $\text{printlevel}$ data group.

**fmtprop**
Fortran print format used to print several results (in particular one-electron properties and transition moments) to standard output.

**geoopt**
specify wavefunction and electronic state for which a geometry optimization is intended. For this model the gradient will be calculated and the energy and gradient will be written onto the data groups $\text{energy}$ and $\text{grad}$. Required for geometry optimizations using the jobex script. Note, that in the present version gradients are only available for ground states at the MP2 and CC2 and for excited states at the CC2 level and not for ROHF based open-shell calculations. Not set by default. The default model is CC2, the default electronic state the ground state. To obtain gradients for the lowest excited state (of those included in the excitation energy calculation, but else of arbitrary multiplicity and symmetry) the short cut s1 can be used. x is treated as synonym for the ground state.

**scs**
the opposite–spin scaling factor cos and the same–spin scaling factor css can be chosen. If scs is set without further input, the SCS parameters cos=6/5 and css=1/3 are applied. This keyword can presently only be used in connection with MP2.

**sos**
the SOS parameters cos=1.3 and css=0.0 are applied. This keyword can presently only be used in connection with MP2.

**d1diag**
request the calculation of the $D_1$ diagnostic for the ground state wavefunction. Only needed for MP2 (see above for the alternative input option mp2 d1diag). For all other correlated methods the $D_1$ diagnostic is evaluated by default (without significant extra costs).

**intcorr**
calculates the second-order corrections to the CCSD(T) energy from the interference-corrected MP2-F12 (INT-MP2-F12) if $\text{srir12}$ is switched on. It can be combined either with the mp2 or the ccsd(t) methods. In the latter case, the
CCSD(T)-INT-F12 energy is printed. The \texttt{intcorr all} keyword writes on the output all pair energies.

\$rir12

\texttt{ansatz}
\texttt{r12model}
\texttt{comaprox}
\texttt{cabs}
\texttt{examp}
\texttt{r12orb}
\texttt{pairenergy}
\texttt{corrfac}
\texttt{cabsingles}
\texttt{f12metric}

\texttt{ansatz char}

\texttt{char=}1, 2* or 2

The \texttt{ansatz} flag determines which ansatz is used to calculate the RI-MP2-F12 ground state energy.

(Ansatz 2 is used if \texttt{ansatz} is absent.)

\texttt{r12model char}

\texttt{char=}A, A' or B

The \texttt{r12model} flag determines which approximation model is used to calculate the RI-MP2-F12 ground state energy.

(Ansatz B is used if \texttt{r12model} is absent.)

\texttt{comaprox char}

\texttt{char=}F+K or T+V

The \texttt{comaprox} flag determines the method used to approximate the commutator integrals $[T,f_{12}]$.

(Approximation T+V is used if \texttt{comaprox} is absent.)

\texttt{cabs char val}

\texttt{char=}svd or cho

The \texttt{cabs} flag determines the method used to orthogonalize the orbitals of the CABS basis. \texttt{val} is the threshold below which CABS orbitals are removed from the calculation.

(\texttt{svd} 1.0d-08 is used if \texttt{cabs} is absent.)

\texttt{examp char}

\texttt{char=}noinv, fixed or inv with flip or noflip

The \texttt{examp} flag determines which methods are used to determine the F12 amplitudes. For \texttt{inv} the amplitudes are optimized using the orbital-invariant method. For \texttt{fixed} and \texttt{noinv} only the diagonal amplitudes are non-zero and are either predetermined using the coalescence conditions (\texttt{fixed}), or optimized
22.2. FORMAT OF KEYWORDS AND COMMENTS

(noinv—not orbital invariant). If char=inv, the F12 energy contribution is computed using all three methods. For open-shell calculations noflip supresses the use of spin-flipped geminal functions.

(The fixed flip method is used if exam is absent.)

pairenergy char
  char=off or on
  If char=off (default), the print out of the standard and F12 contributions to the pair energies is suppressed. The summary of the RI-MP2-F12 correlation energies is always printed out.

corrfac char
  char=LCG or R12
  The corrfac flag determines which correlation factor is used for the geminal basis. LCG requires the data group $lcg, which contains the information regarding exponents and coefficients of the linear combination of Gaussians.

cabsingles char
  char=off or on
  The cabsingles flag determines whether or not the single excitations into the CABS basis are computed.
  The CABS singles are computed in any case if the CABS Fock matrix elements are computed anyway for the F12 calculation (i.e., for ansatz 2 or r12model B or cameaprox F+K).

r12orb char
  char=hf, rohf, boys or pipek
  The r12orb flag controls which orbitals are used for the F12 geminal basis functions. With hf the (semi)-canonical Hartree–Fock orbitals are used (default). For ROHF-based UMP2 calculations rohf orbitals can be used, which also implies that the $freeze data group options refer to ROHF rather than semi-canonical orbitals. For closed-shell species, localised orbitals can be used with either the Boys or Pipek-Mezey method. For the non-(semi)-canonical options, the r12orb noinv F12 energy correction is evaluated using active occupied orbitals transformed to the same basis as the orbitals in the geminal function.

no_f12metric

f12metric
  If no_f12metric is selected the coulomb metric is used in the density fitting scheme to calculate the four index integrals over the operators $f_{12}, f_{12}g_{12}, f_{12}^2$ and $f_{12}r_{12}$. If f12metric is selected the operator’s own metric is used. The default for the ricc2 program is no_f12metric, while the pnoccad program can only be used with f12metric, where it is therefore the default.

$excitations

  irrep=au multiplicity=1 nexc=4 npre=6 nstart=8
irrep=bg  multiplicity=3  nexc=2  npre=4  nstart=5
spectrum states=all  operators=diplen,dipvel
tmexc  istates=all  fstates=all  operators=diplen,dipvel
exprop  states=all  operators=qudlen
twophoton  states=all  operators=(diplen,diplen)  freq=0.1d0
momdrv  states=all  operators=(diplen,soc)  freq=0.0d0
xgrad  states=(ag{3} 1)
conv  = 6
thrdiis  = 2
preopt  = 3
leftopt
bothsides
oldnorm

In this data group you have to give additional input for calculations on excited states:

irrep
the irreducible representation.

multiplicity
spin multiplicity (1 for singlet, 3 for triplet); default: singlet, not needed for UHF.

nexc
the number of excited states to be calculated within this irrep and for this multiplicity.

npre
the number of roots used in preoptimization steps (default: npre = nexc).

nstart
the number of start vectors generated or read from file (default: nstart = npre).

spectrum
This flag switches on the calculation of oscillator strengths for excited state—ground state transitions. Setting the parameter states=all is mandatory for the calculation of transition properties in the present version. The operators flag can be followed by a list of operators (see below) for which the transition properties will be calculated. Default is to compute the oscillator strengths for all components of the dipole operator.

tmexc
This flag switches on the calculation of oscillator strengths for excited state—excited state transitions. Specifying the initial and final states via istates=all and fstates=all is mandatory for the calculation of transition properties in the present version. The operators flag can be followed by a list of operators (see below) for which the transition properties will be calculated. Default is to compute the oscillator strengths for all components of the dipole operator.

twophoton
request the calculation of two-photon transition moments between ground and
excited states. It recognizes the optional suboptions `states` for specifying the states for which the two-photon transition moments should be computed, `operators` for specifying a list of pairs of one-electron transition operators, and `freq` for a list of frequencies for one of the photons. If these suboptions are specified, two-photon transition moments are computed per default for all requested singlet states, dipole operators (in the length representation) and photon energies which are equal 1/2 of the transition energies.

`momdrv`
request the calculation of derivatives of transition moments between ground and excited states. It recognizes the optional suboptions `states` for specifying the states for which the two-photon transition moments should be computed, `operators` for specifying a list of pairs of one-electron transition operators. For phosphorescence lifetimes `operators` should be set to `(diplen,soc)` and `freq` to 0.0d0.

`exprop`
requests the calculation of first-order properties for excited states. For the `states` option see `spectrum` option above; for details for the `operators` input see below.

`xgrad`
request calculation of the gradient for the total energy of an excited state. If no state is specified, the gradient will be calculated for the lowest excited state included in the calculation of excitation energies. The simultaneous calculation of gradients for several state is possible.

`conv` convergence threshold for norm of residual vectors in eigenvalue problems is set to $10^{-\text{conv}}$. If not given, a default value is used, which is chosen as \(\max(10^{-\text{conv}}, 10^{-\text{oconv}}, 10^{-6})\), where `conv` refers to the values given in the data group `$\text{ricc2}$`.

`preopt` convergence threshold used for preoptimization of CC2 eigenvectors is set to $10^{-\text{preopt}}$ (default: 3).

`thrdiss` threshold ($10^{-\text{thrdiss}}$) for residual norm below which DIIS extrapolation is switched on in the modified Davidson algorithm for the non-linear CC2 eigenvalue problem (default: 2).

`leftopt` If the flag `leftopt` is set the left eigenvectors are computed (default is to compute the right eigenvectors, for test purposes only).

`bothsides` The `bothsides` flag enforces the calculation of both, the left and the right eigenvectors (for test purposes only).

`oldnorm` The `oldnorm` flag switches the program to the old normalization of the eigen-
vectors and \( \%T_1 \) and \( \%T_2 \) diagnostics which were identical with those used in the CC response code of the Dalton program.

\$\text{response} \$

\begin{verbatim}
  fop unrelaxed_only operators=diplen
  sop operators=(diplen,diplen) freq=0.077d0
  gradient
  conv = 6
  zconv = 6
  semicano
  nosemicano
  thrsemi = 3
\end{verbatim}

In this data group you have to give additional input for the calculation of ground state properties and the solution of response equations:

**fop** This flag switches on the calculation of ground state first-order properties (expectation values). The operators flag can be followed by a list of operators (see below) for which the first-order properties will be calculated. Default is to compute the components of the dipole and the quadrupole moment. The option \textit{unrelaxed\_only} suppress the calculation of orbital-relaxed first-order properties, which require solution the CPHF-like Z-vector equations. Default is the calculation of unrelaxed and orbital-relaxed first-order properties. The \textit{unrelaxed\_only} option will be ignored, if the calculation of gradients is requested (see \textit{gradient} option below and \textit{geoopt} in data group \$\text{ricc2}\$).

**sop** requests the calculation of ground state second-order properties as e.g. dipole polarizabilities. The operators flag has to be followed by a comma separated pair of operators. (If more pairs are needed they have to be given with additional s\textit{op} commands.) Default is to compute all symmetry-allowed elements of the dipole-dipole polarizability. With the freq flag on can specify a frequency (default is to compute static polarizabilities). The \textit{relaxed} flag switched from the unrelaxed approach, which is used by default, to the orbital-relaxed approach. Note that the orbital-relaxed approach can not only be used in the static limit (\textit{freq}=0.0d0). For further restrictions for the computation of second-order properties check Chapter 10.5.

**gradient** require calculation of geometric gradients. In difference to the \textit{geoopt} keyword in the data group \$\text{ricc2}\$ this can be used to compute gradients for several methods within a loop over models; but gradients and energies will not be written to the data groups \$\text{grad}\$ and \$\text{energy}\$ as needed for geometry optimizations. Note, that in the present version gradients are only available for MP2 and CC2 and only for a closed-shell RHF reference.

**conv** convergence threshold for norm of residual vectors in linear response equations is set to \( 10^{-\text{conv}} \). If not given in the \$\text{response} \$ data group, a default value is
used, which is chosen as $\max(10^{-\text{conv}}, 10^{-\text{oconv}}, 10^{-6})$, where $\text{conv}$ and $\text{oconv}$ refer to the values given in the data group $\$\text{ricc2}$.

**zconv**

convergence threshold for the norm of the residual vector in the solution of the $Z$ vector equations will be set to $10^{-z\text{conv}}$.

**semicano**

use semi-canonical formulation for the calculation of (transition) one-electron densities. Switched on by default. The semi-canonical formulation is usually computationally more efficient than the non-canonical formulation. Exceptions are systems with many nearly degenerate pairs of occupied orbitals, which have to be treated in a non-canonical way anyway. (See also explanation for $\text{thrsemi}$ below).

**nosemicano**

use non-canonical formulation for the calculation of (transition) one-electron densities. Default is to use the semi-canonical formulation.

**thrsemi**

the threshold for the selection of nearly degenerate pairs of occupied orbitals which (if contributing to the density) have to be treated in a non-canonical fashion will be set to $10^{-\text{thrsemi}}$. If set to tight the semi-canonical algorithm will become inefficient, if the threshold is too large the algorithm will become numerical unstable

**zpreopt**

threshold for preoptimizing the so-called $Z$ vector (i.e. the lagrangian multipliers for orbital coefficients) with a preceding RI-CPHF calculation with the cbas auxiliary basis. The RI-CPHF equations will be converged to a residual error $< 10^{-z\text{preopt}}$. Default is $z\text{preopt}=4$. This preoptimization can reduce significantly the computational costs for the solution of the $Z$ vector equations for large basis sets, in particular if they contain diffuse basis functions. For calculations on large molecules with small or medium sized basis sets the preoptimization becomes inefficient compared to the large effects of integral screening for the conventional CPHF equations and should be disabled. This option is automatically disabled for $\text{ricc2}$ calculations based on foregoing RI-JK Hartree-Fock calculation.

**nozpreopt**

disable the preoptimization of the $Z$ vector by a preceding RI-CPHF calculation with the cbas basis set. (Note that the preoptimization is automatically deactivated if the $\text{ricc2}$ calculation is based on a foregoing RI-JK Hartree-Fock calculation.)

Common options for keywords in the data groups $\$\text{ricc2}$, $\$\text{response}$, and $\$\text{excitations}$:
operators=diplen,dipvel

input of operator labels for first-order properties, transition moments, etc. Currently implemented operators/labels are

**overlap**

overlapping (charge) operator: the integrals evaluated in the AO basis are $\langle \mu | \nu \rangle$

**diplen**

dipole operator in length gauge: $\langle \mu | r^O_i | \nu \rangle$ with $i = x, y, z$; the index $O$ indicates dependency on the origin (for expectation values of charged molecules), which in the present version is fixed to $(0,0,0)$ (all three components, individual components can be specified with the labels $xdiplen$, $ydiplen$, $zdiplen$).

**dipvel**

dipole operator in velocity gauge: $\langle \mu | \nabla_i | \nu \rangle$ (all three components, individual components can be specified with the labels $xdipvel$, $ydipvel$, $zdipvel$).

**qudlen**

quadrupole operator $\langle \mu | r^O_i r^O_j | \nu \rangle$ (all six components, individual components can be specified with the labels $xxqudlen$, $xyqudlen$, $xzqudlen$, $yyqudlen$, $yzqudlen$, $zzqudlen$). If all six components are present, the program will automatically give the electronic second moment tensor (which involves only the electronic contributions) $M_{ij}$, the isotropic second moment $\alpha = \frac{1}{3} \text{tr} M$ and the anisotropy

$$\beta = \sqrt{\frac{1}{2} \sum_{i=x}^{z} (M_{ii} - M_{i+1,i+1})^2 + 3 \sum_{i=x}^{z} M_{i,i+1}^2}.$$  

Furthermore the traceless quadrupole moment

$$\Theta_{ij} = \frac{1}{2} (3r_ir_j - r^2 \delta_{ij})$$

(including nuclear contributions) is given.

**angmom**

angular momentum $\langle \mu | L^O_i | \nu \rangle$ (all three components, individual components can be specified with the labels $xangmom$, $yangmom$, $zangmom$).

**nef**

electronic force on nuclei $\langle \mu | Z_I^O r^I_i | \nu \rangle$, where $Z_I$ is the charge of the nucleus $I$ and $r^I_i$ is the position vector of the electron relative to the nucleus (all three components for all nuclei: the labels are $xnef001$, $ynef001$, $znef001$, $xnef002$, etc. where the number depends on the order in the coord file).

states=all

specification of states for which transition moments or first-order properties are to be calculated. The default is all, i.e. the calculations will be done for all excited states for which excitation energies have been calculated. Alternatively, one can select a subset of these listed in parentheses, e.g. states=(ag{3} 1,3-5; blu{1} 1-3; b2u4). This
will select the triplet $a_g$ states no. 1, 3, 4, 5 and the singlet $b_{1u}$ states no. 1, 2, 3 and the singlet (which is default if no $\Omega$ is found) $b_{2u}$ state no. 4.

**istates=all fstates=all**

The specification of initial and final states for transition properties between excited states is mandatory. The syntax is analog to the *states* option, i.e. either all or a list of of states is required.

**$D2$-diagnostic**

Calculate the double-substitution-based diagnostics $D_2$.

**$cc2$-natocc**

Write MP2/CC2 natural occupation numbers and natural orbitals to a file.

**$cgrad$ 1000**

Calculate the error functional $\delta_{RI}$ for the RI approximation of $(ai|bj)$ integrals

$$\delta_{RI} = \frac{1}{4} \frac{|\langle ab||ij\rangle_{exact} - \langle ab||ij\rangle_{RI}|^2}{\epsilon_a - \epsilon_i + \epsilon_b - \epsilon_j}$$

and its gradients with respect to exponents and coefficients of the auxiliary basis set as specified in the data group $\$cbas$. The results are written to $\$egrad$ scaled by the factor given with the keyword $\$cgrad$ and can be used to optimize auxiliary basis sets for RI-MP2 and RI-CC2 calculations (see Section 1.5).

### 22.2.21 Keywords for Module ccsdf12

The ccsdf12 program uses a subset of the data groups of the ricc2 program. For F12 calculations it uses in addition the data groups $\$rir12$, $\$lcg$, $\$cabs$, and $\$jkbas$. See the respective sections for further details.

The ccsdf12 program recognizes in the $\$ricc2$ data group the following options to specify wavefunction methods:

**$ricc2$**

+ ccsd
+ mp3
+ mp4
+ ccsd(t)

The options mp3, mp4, and ccsd request, respectively, MP3, MP4 and CCSD calculations. The option ccsd(t) request a CCSD calculation with the perturbative triples correction, CCSD(T), and as a side result also the CCSD[T] energy will be printed.

In the data group $\$rir12$ it recognizes ccsdapprox as additional option:

**ccsdapprox label**

defines the approximation to CCSD-F12 which will be used if the MP2-F12 calculation
is followed by a CCSD or CCSD(T) calculation. The available approximation and corresponding labels are

\[
\begin{align*}
\text{CCSD}(F12) & \quad \text{ccsd}(f12) \\
\text{CCSD}(F12^*) & \quad \text{ccsd}(f12^*) \\
\text{CCSD}[F12] & \quad \text{ccsd}[f12] \\
\text{CCSD-F12b} & \quad \text{ccsd-f12b} \\
\text{CCSD}(2^*)_{F12} & \quad \text{ccsd}(2)_-/f12 \\
\text{CCSD}(2)_{F12} & \quad \text{ccsd}(2)_-/f12
\end{align*}
\]

It is recommended that these approximations are only used in combination with ansatz 2 and the SP approach (i.e. geminal coefficients fixed by the cusp conditions). For CCSD-F12b calculations also the CCSD-F12a energies are calculated as a byproduct. By default a CCSD(F12) calculation is carried out, but it is recommended that whenever appropriate the computationally more efficient CCSD(F12*) approximation is used.

### 22.2.22 Keywords for Module pnoccsd

Note that beside the keywords listed below the outcome of the pnoccsd program also depends on the settings of most thresholds that influence the integral screening (e.g. $\$\text{denconv}$, $\$\text{scfconv}$, $\$\text{scftol}$). For the explanation of these keywords see Section 22.2.8.

$\$\text{cbas file=auxbasis}$

Auxiliary basis set for RI approximation.

$\$\text{freeze}$

Freeze orbitals in the calculation of correlation and excitation energies. For details see Section 22.2.19.

$\$\text{printlevel 1}$

Print level. The default value is 1.

$\$\text{tmpdir /work/thisjob}$

Specify a directory for large intermediate files (typically three-index coulomb integrals and similar intermediates), which is different from the directory where the program is started.

$\$\text{maxcor n unit reference}$

The data group $\$\text{maxcor}$ adjusts the maximum size of core memory which will be allocated during the pnoccsd run. $\$\text{maxcor}$ has a large influence on computation times. It is recommended to set $\$\text{maxcor}$ to ca. 75–85% of the available physical core memory. For further details see subsection 22.2.2.

$\$\text{laplace conv = 1}$

conv = 1
22.2. FORMAT OF KEYWORDS AND COMMENTS

Only needed for the (T) perturbative triples correction; for other methods only for test purposes. It sets the accuracy for the numerical Laplace-transformation to $10^{-\text{conv}}$ used for the (T) correction and the iterative OSV generation. For the (T0) correction and methods without triples his threshold is only used for the approximate doubles amplitudes from which the OSVs are computed when the iterative algorithm is enabled. The default value is $10^{-1}$ for the OSV generation and $10^{-2}$ for the (T) correction. If specified the input value will currently be used in both cases.

$\text{pnocc}$

```
pnocc

\text{mp2}

\text{localize ibo}

\text{prepno davidson}

\text{mxrdim 800}

\text{tolpno= 1.00E-7}

\text{tolosv= 1.00E-8}

\text{tolri= 1.21E-3}

\text{tolpair= 4.64E-6}

\text{opnos on}

\text{tolcapno= 1.00E-9 3.16E-8}

\text{tolosc= 1.00E-10 3.15E-9}

\text{tolopno= 1.00E-9}

\text{toloso= 1.00E-10}

\text{conv = 7}

\text{oconv = 3}

\text{lindep = 12}

\text{maxiter = 25}

\text{mxdiis = 10}

\text{maxred = 100}

\text{scs cos=1.2d0 css=0.3333d0}

\text{sos}
```

\text{mp2} specifies the \emph{ab initio} model (method). The current release version is restricted to MP2 which is also the default model.

\text{localize} specifies the localization method; possible choices are \text{boys} for Foster-Boys, \text{pm} for Pipek-Mezey, \text{ibo} for intrinsic bond orbitals (IBOs) and \text{none} for canonical (deprecated, only meant for testing) orbitals. Default are (since V7.3) IBOs, which are recommended if e.g. for aromatic systems the seperation of $\sigma$- and $\pi$-type orbitals is important. (Pipek-Mezey orbitals become very delocal with diffuse basis sets.)

\text{prepno} switch between to algorithms for the generation of OSV coefficients. Possible choices are \text{full} for an $O(N^4)$ scaling direct diagonalization (cmp. [280]) and \text{davidson} for an $O(N^3)$ scaling iterative diagonalization (cmp. [20]). \text{davidson} is the default choice and recommended.
MXRDIM the maximal dimension of trial vectors in the iterative OSV generation (PREPNO DAVIDSON). For PNO-MP2 the default is 800. The dimension is bounded by the number of active virtual orbitals and except for small systems a much smaller value as the number of virutals is sufficient. Smaller dimensions increase the performance, but than the iterative scheme might not converge and the program must be restarted with an adjusted dimension. For PNO-MP2-F12 the Default is 4000 since a larger reduced space is required to construct the OSX (cmp. [280]). Usually there is no need to touch this parameter.

tolpno specifies the PNO truncation threshold. Default value: $10^{-7}$.

tolosv specifies the OSV truncation threshold. If no given TOLOSV is set to $0.1 \times \text{tolpno}$, which is the recommended value.

tolri specifies the threshold for selecting orbital and pair-specific auxiliary basis sets for the local RI approximation. If not given TOLRI is set to $10^{7/12} \times \sqrt{\text{tolpno}}$, which is the recommended value.

tolpair specifies the energy threshold for selecting the significant pairs. If not given TOLPAIR is set to $(0.1 \times \text{tolpno})^{2/3}$

opnos enables (ON) or disables (OFF) for F12 calculations the use of OPNOs for the occupied orbital spaces in the projectors for the three-electron integrals. Default: ON

tolcapno sets for F12 calculations the truncation thresholds for the complementary auxiliary PNOs for the virtual spaces (CAPNOs) in the projectors for the three-electron integrals. If not specified, default values are calculated from the threshold TOLPNO.

tolosc sets for F12 calculations the truncation thresholds for the orbital specific complementary auxiliary virtuals from which the CAPNOs are generated. If not specified, default values are chosen as $0.1 \times \text{tolcapno}$ thresholds, which is the recommended choice.

tolopno sets for F12 calculations the truncation thresholds for the selection of PNOs for the occupied orbital spaces (OPNOs) in the projectors for the three-electron integrals. If not specified, default values are calculated from the threshold TOLPNO.

toloso set for F12 calculations the truncation thresholds for the orbital specific auxiliary occupied orbitals from which the OPNOs are generated. If not specified, default values are chosen as $0.1 \times \text{tolopno}$ threshold, which is the recommended choice.

**conv** The **conv** parameter gives the convergence threshold for the ground state energy as $10^{-\text{conv}}$. The default threshold is $10^{-7}$.

**oconv** The **oconv** parameter gives an additional threshold for the residual of the ground state equations as $< 10^{-\text{oconv}}$. The default threshold is $10^{-3}$.

**lindep** If the norm of a vector is smaller than $10^{-\text{lindep}}$, the vector is assumed to be zero. This threshold is also used to test if a set of pre-PNOs is linear dependent. The default threshold is $10^{-12}$. 
maxiter gives the maximum number of iterations for the solution of the cluster equations, eigenvalue problems or response equations (default: 25).

mxdiis is the maximum number of vectors used in the DIIS procedures for the ground state equations (default: 10).

maxred not used in the current release.

scs the opposite–spin scaling factor \( \cos \) and the same–spin scaling factor \( \css \) can be chosen. If \( \text{scs} \) is set without further input, the SCS parameters \( \cos=6/5 \) and \( \css=1/3 \) are applied.

sos the SOS parameters \( \cos=1.3 \) and \( \css=0.0 \) are applied.

$\text{rir12}$ for the description of this data group see Sec. 22.2.20.

### 22.2.23 Keywords for Module relax

$\text{optimize options}$

define what kind of nonlinear parameters are to be optimized by relax and specify some control variables for parameter update.

Available options are:

- **internal on/off**
  optimize molecular structures in the space of internal coordinates using definitions of internal coordinates given in $\text{intdef}$ as described in Section 4.1 (default: on).

- **redundant on/off**
  optimize molecular structures in redundant internal coordinates using definitions of redundant internal coordinates given in $\text{redundant}$. For an optimization in redundant internal coordinates option internal has to be switched on too, and option cartesian has to be switched off (default: on).

- **cartesian on/off**
  optimize molecular structures in the space of (symmetry-distinct) cartesian coordinates (default: off).

- **basis on/off suboptions**
  optimize basis set exponents (default=off).

  Available suboptions are:

  - **logarithm**
    exponents of uncontracted basis functions will be optimized after conversion into their logarithms (this improves the condition of the approximate force constant matrix obtained by variable metric methods and the behavior of the optimization procedure); scale factors of contracted basis functions will not be affected by the logarithm suboption.
scale

ALL basis set exponents will be optimized as scale factors (i.e. contracted blocks and single functions will be treated in the same way); if both suboptions (scale and logarithm) are given the logarithms of the scale factors will be optimized.

global on/off

optimize a global scaling factor for all basis set exponents (default: off).

NOTES:  
- basis and global have to be used exclusively!
- if $optimize$ has been specified but $forceapprox$ is absent, the option $forceinit$ on is switched on by default.
- specification of the option $interconversion$ on will override $optimize$!

$coordinateupdate$ options

define some variables controlling the update of coordinates.

Available options are:

dqmax real

maximum allowed total change for update of coordinates. The maximum change of individual coordinate will be limited to \( dq_{max}/2 \) and the collective change \( dq \) will be damped by \( dq_{max}/\langle dq \rangle \) if \( \langle dq \rangle \geq dq_{max} \)

(default: 0.3)

interpolate on/off

calculate geometry update by inter/extrapolation of geometries of the last two cycles (the interpolate option is always switched on by default, but it is only active ANY time if steepest descent update has been chosen, i.e. $forceupdate$ method=none; otherwise it will only be activated if the DIIS update for the geometry is expected to fail)

statistics on/integer/off

provide a statistics output in each optimization cycle by displaying all (the last integer, default setting by define is 5) subsequent coordinates, gradient and energy values (default: on).

$gdiishistory$ file=char

the presence of this keyword forces relax to provide informational output about the usage of DIIS for the update of the molecular geometry.

$interconversion$ options default=off

special input related to the transformation of atomic coordinates between cartesian and internal coordinate spaces (default: off).

Available options are:

maxiter=n

maximum number of iterations for the iterative conversion procedure internal \( \rightarrow \) cartesian coordinates (default: 25).
22.2. FORMAT OF KEYWORDS AND COMMENTS

```
qconv
 convergence criterion for the coordinate conversion (default: 1.d-10).

on/off options
 this switch activates special tasks: transform coordinates/gradients/hessians
 between spaces of internal/cartesian coordinates using the definitions of internal
 coordinates given in $intdef:

 available suboptions are:
 cartesian -> internal coordinate gradient hessian
 cartesian <- internal coordinate

 the direction of the transformation is indicated by the direction of the arrow

 Note: specification of $interconversion on will override $optimize!
```

```
$forceupdate method options
 this data group defines both the method for updating the approximate force constant
 matrix and some control variables needed for the force constant update.

 Options for method:

 none
 no update (steepest descent)

 ms suboptions
 Murtagh–Sargent update

 dfp suboptions
 Davidon–Fletcher–Powell update

 bfgs suboptions
 Broyden–Fletcher–Goldfarb–Shanno update

 dfp-bfgs suboptions
 combined (bfgs+dfp) update

 schlegel suboptions
 Schlegel update

 ahlrichs suboptions
 Ahlrichs update (macro option)

 suboptions if method=ms, dfp, bfgs, schlegel, ahlrichs
 numgeo=integer
 number of structures used

 maxgeo=integer
 maximum number of geometries (= rank of the update procedure, for ahlrichs only)

 ingeo=integer
 minimum number of geometries needed to start update

 if method=ms, dfp, bfgs:
 maxgeo=2, mingeo=1 as default

 additional suboptions if method=ahlrichs

 modus= char fmode
 for an explanation see suboptions pulay given below e.g. ahlrichs numgeo=7 mingeo=3 maxgeo=4
 modus=<g|dg> dynamic
```
NOTES: if the macro option ahlrichs has been chosen and 
n= numgeo, ncycl=’number of geometries available’

- if ncycl < n: geometry update by inter/extrapolation
  using the last two geometries
- if ncycl ≥ n: diagonal update for the hessian by
  least mean squares fit; pulay update for the geometry
  (using specified modus, fmode (see pulay below))
- if (ncycl ≥ max(5, n + 3) and max(|g|) < 0.01 and
  \( \bar{g} < 0.001 \)) or \( H_{ij} \neq 0 \forall i \neq j \): diagonal update is
  replaced by multidimensional BFGS (rank n) update
  for the hessian

pulay suboptions

try to find an optimal linear combination of the coordinates of the numpul previous
optimization cycles as specified by modus (see below).

Available suboptions are:

numpul=int integer
  number of geometries to be utilized

maxpul=int integer
  maximum number of geometries

minpul=int integer
  minimum number of geometries needed to start update

modus=char fmode
  char=\langle g | g \rangle or \langle g | dq \rangle or \langle dq | dq \rangle defines the quantity to be minimized (dq
  = internal coordinate change).
  fmode specifies the force constants to be used (only if char=\langle g | dq \rangle or \langle dq | dq \rangle)
  fmode=static: use static force constants
  fmode=dynamic: use updated force constants

fail=real
  real defines the threshold for the quantity \( g \ast dq/|g| \ast |dq| \) which defines the
  angle between gradient vector and coordinate change (default: 0.1). If pulay is
  used in connection with a multidimensional BFGS update for the hessian
  than the default is real=0.0. If \( \frac{g \ast dq}{|g| \ast |dq|} > -real \) the pulay update for the geometry
  is expected to fail and will be ignored. For example:
  pulay numpul=4 maxpul=4 minpul=3 modus=\langle dq | dq \rangle static fail=0.2

options for $forceupdate

diagonal
update only the diagonal force constants (update for off-diagonals will be sup-
pressed) (only active if method=ms, dfp, bfgs)
offdamp \texttt{real} \\
This allows to damp off-diagonal force constants by $1/\texttt{real}$ (compare \texttt{offreset}, which discards off-diagonals completely). Only values $>1.0$ will be accepted. This option is active only within one \texttt{relax} run and will be disabled automatically by \texttt{relax}. This is useful in difficult cases, where the non-diagonal update has lead to too large non-diagonal elements of the hessian.

\textbf{offreset} \\
reset off-diagonal force constants to zero. This option will be active for the current optimization cycle only, i.e. it will be removed by \texttt{relax} after having discarded off-diagonals!

\textbf{allow=}\texttt{real} \\
optimization cycle specification of a maximum energy change allowed (given in mHartree) which will be accepted using the actual approximate force constant matrix from \texttt{$forceapprox$}; if this energy change will be exceeded, the force constants will be scaled appropriately \\
(The default: 0.0 means NO action)

\textbf{scale=}\texttt{real} \\
scaling factor for the input hessian (default: 1.0).

\textbf{threig=}\texttt{real} \\
lower bound for eigenvalues of the approximate hessian (default: 0.005); if any eigenvalue drops below \texttt{threig}, it will be shifted to a reasonable value defined by:

\textbf{reseig=}\texttt{real}default: texttt0.005.

\textbf{thrbig=}\texttt{real} \\
upper bound for eigenvalues of the hessian; if any eigenvalue exceeds \texttt{thrbig}, it will limited to this value (default: 1000.0).

\textbf{damping=}\texttt{real} \\
damp the variable metric update for the hessian by $1/(1+\texttt{real})$ (default: 0.0).

\texttt{$forceinit$ option} \\
specify initialization of the (approximate) force constant matrix. \\
Available options are:

\textbf{on/off} \\
this activates or deactivates initialization; if \texttt{on} has been set, \texttt{relax} will provide an initial force constant matrix as specified by one of the possible initialization options as described below and will store this matrix in data group \texttt{$forceapprox$}; after initialization \texttt{relax} resets \texttt{$forceinit$} to \texttt{off}!

\textbf{diag=}\texttt{suboptions} \\
provide a diagonal force constant matrix with: \\
available suboptions are:
real
   this will lead to an assignment of diagonal elements (default: 1.0)).

default
   this will lead to an assignment of initial force constant diagonals depending on the coordinate type.

individual
   Provide individual defined force constant diagonals for
   • internal coordinates (supplied in \$intdef \ldots fdiag=..)
   • a global scale factor ( \$global \ldots fdiag=..)
This does not work for basis set optimization. For the correct syntax of 'fdiag=..' see descriptions of \$intdef, \$global

carthess
   read a cartesian (e.g. analytical) hessian from \$hessian and use it as a start force constant matrix; if \$optimize internal has been set: use its transform in internal coordinate space. If large molecules are to be optimized, it may be necessary (large core memory requirements!) to deactivate the numerical evaluation of the derivative of the B-matrix with respect to cartesian coordinates, which is needed to transform \( H(\text{cart}) \rightarrow H(\text{int}) \) exactly by specifying no dbdx.

\$last SCF energy change = real
\$last MP2 energy change = real
   These keywords depend on the optimization task to be processed and are updated by the corresponding program (i.g. SCF energy).

\$m-matrix options
   This data block contains non-default specifications for the \( m \)-matrix diagonals. This is of use if some cartesian atomic coordinates shall be kept fixed during optimization. Available options are:
   
\text{integer real real real}
   atomic index followed by diagonal elements of the \( m \)-matrix for this atom

\$scratch files
   The scratch file \texttt{ftmp} allocated by \texttt{relax} can be placed anywhere in your file systems instead of the working directory by referencing its pathname in this data group as follows:

\$scratch files
   \texttt{relax ftmp path/file}

   The first column specifies the program, the second column the scratch file and the third column the pathname of the file to be used as scratch file.
Input Data Blocks Needed by Relax

$intdef$ or $redundant
- Definitions of internal coordinates and, optionally, values of internal coordinates (val=..., given in a.u. or degrees) or force constant diagonal elements (fdiag=...).

$grad
- Cartesian coordinates and gradients calculated in subsequent optimization cycles. Entries are accumulated by one of the gradient programs (grad, mpgrad, rimp2, ricc2, egrad, etc.).

$egrad
- Basis set exponents scale factors and their gradients as calculated in subsequent optimization cycles. Entries are accumulated by one of the gradient programs.

$globgrad
- Global scale factors and gradients as calculated in subsequent optimization cycles. Entries are accumulated by the grad or aoforce program.

$corrgrad
- Allows to augment internal SCF gradients by approximate increments obtained from treatments (e.g. correlation or relativistic) on higher level. See the example below.

$corrgrad

<table>
<thead>
<tr>
<th>#</th>
<th>coordinate</th>
<th>increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.0600</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>-0.0850</td>
</tr>
</tbody>
</table>

$forceapprox options
- Approximate force constant matrix (as needed for geometry optimization tasks). The storage format may be specified by the available options:

format=format
- the default format is format=(8f10.5), but other 10-digit f10.x formats (e.g. x=4,6,..) are possible and will be used, after being manually specified within $forceapprox. See the example below:

$forceapprox format=(8f10.4)

<table>
<thead>
<tr>
<th></th>
<th>0.9124</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.0108</td>
<td>0.3347</td>
</tr>
<tr>
<td>0.2101</td>
<td>0.0299</td>
</tr>
<tr>
<td>0.0076</td>
<td>0.1088</td>
</tr>
</tbody>
</table>

$hessian (projected)
- this data block contains the analytical cartesian force constant matrix (with translational and rotational combinations projected out) as output by the aoforce program
and may be used to supply a high quality force constant matrix $forceapprox$ for geometry optimizations (specifying $forceinit$ on carthess, or $interconversion$ cartesian $\rightarrow$ internal hessian).

**RELAX Output Data Groups**

$coord$
- either updated cartesian coordinates if a successful coordinate update has been performed, or cartesian coordinates for input internal coordinates if only a conversion from internal to cartesian coordinates has been performed.

$basis$
- updated basis set exponents, basis sets contraction coefficients or scaling factors, if $optimize basis$ on has been specified.

$global$
- updated global scaling factor for all basis set exponents, if $optimize global$ on has been specified.

$forceapprox$
- an approximate force constant matrix to be used in quasi-Newton type geometry optimizations; this matrix will be improved in subsequent optimization cycles if one of the variable-metric methods ($forceupdate$) has been chosen. See 5.3.13 and 22.2.23.

$forcestatic$
- a static (i.e. never updated) approximate force constant matrix to be used in DIIS-type geometry optimizations. It will be initialized by relax specifying: $forceupdate$ pulay ...modus=$dq|dq$ static.

The next data groups are output by relax (depending on the optimization subject) in order to control the convergence of optimization procedures driven by the shell script jobex.

$maximum norm of cartesian gradient = real$

$maximum norm of internal gradient = real$

$maximum norm of basis set gradient = real$

real is the absolute value of the maximum component of the corresponding gradient.

**Other Input/Output data used by RELAX**

In order to save the effort for conversion of accumulated geometry and gradient data (as needed for the force constant update or the DIIS update of the geometry) to the optimization space, within which the geometry has to be optimized, one may specify the keyword
Then the `relax` program accumulates all subsequent coordinates and gradient as used in optimization in this data group (or a referenced file). This overrides the input of old coordinate and gradient data from data blocks `$grad`, `$egrad`, ... as accumulated by the `grad` program.

**22.2.24 Keywords for Module statpt**

$statpt

```plaintext
itrvec 0
hssupdate bfgs
hssfreq 0
keeptmode
hssidiag 0.5
radmax 0.3
radmin 1.0d-4
tradius 0.3
threchange 1.0d-6
thrmxdispl 1.0d-3
thrmxgrad 1.0d-3
thrmxsdispl 5.0d-4
thrrmsgrad 5.0d-4
```

Only non-default values are written in the `control` file except:

$statpt

```plaintext
itrvec 0
```

Following options are available:

**itrvec**

Index of the Hessian eigenvector to follow for transition structure search (transition vector). Eigenpairs are sorted in ascending order, i.e. with increasing eigenvalues and start with index 1. The eigenpairs corresponding to translations and rotations are shifted to the end. For minimization the value 0 has to be specified.

**hssupdate**

Method of hessian update. For minimization default is `BFGS`, for TS search default is `Powell` and `none` is for no update.

**hssfreq**

Recompute the full Hessian every N’th step during a transition state search. The default is zero and the Hessian is read in or computed in the first step only. If the
standard Hessian update methods fail, it can help to use this keyword. Warning: This will make the calculation much more time demanding!

**keeptmode**
Freezing transition vector index.

**hssidiag**
diagonal hessian elements for diagonal Hessian guess (default: 0.5).

**radmax**
Maximum allowed value for trust radius (default: 0.3).

**radmin**
Minimum allowed value for trust radius (default: 1.0d-4).

**tradius**
Initial value for trust radius (default tradius: radmax = 0.3).

**Convergence criteria**

**threchange** threshold for energy change (default: 1.0d-6).

**thrmxdispl** threshold for maximal displacement element (default: 1.0d-3).

**thrmxgrad** threshold for maximal gradient element (default: 1.0d-3).

**thrrmsdispl** threshold for RMS of displacement (RMS = root mean square) (default = 5.0d-4)

**thrrmsgrad** threshold for RMS of gradient (default: 5.0d-4).

All values are in atomic units.

### 22.2.25 Keywords for Module moloch

$\textit{properties}$ specifies the global tasks for program moloch by virtue of the following options

$\textit{properties}$

- **trace** off
- **moments** active
- **potential** off
- **cowan-griffin** off
- **localization** off
- **population analyses** off
- **plot** off
- **firstorder** off
- **fit** off
22.2. FORMAT OF KEYWORDS AND COMMENTS

a missing option or a option followed by the flag off will not be taken into account. The flag active may be omitted. For most of these options (with the only exceptions of trace and cowan-griffin), there are additional data groups allowing for more detailed specifications, as explained below.

**moments**

if moment is active you need

```plaintext
$moments
0th 1st 2nd 3rd
point .0 .0 .0
```

to compute the 0th, 1st, 2nd and 3rd moment at the reference point 0 0 0.

**potential**

if potential is active you need

```plaintext
$points #1
pot fld fldgrd shld
point .0 .0 .0
```

to compute the electrostatic potential (pot) and/or electrostatic field (fld) and/or electrostatic field gradient (fldgrd) and/or the zeroth order contribution to the diamagnetic shielding (shld) at reference point 0 0 0.

**localization**

if localization is active you need $boys to perform a boys-localization of orbitals with orbital energies $\geq$ threshold=-2 Hartrees; localize with respect to locxyz=x, y and z and write resulting orbitals to lmofile='lmo'. At the most sweeps=10000 orbital rotations are performed. Non-defaults may be specified using the following suboptions:

```plaintext
lmo= filename
locxyz dir1 dir2 dir3
threshold real
sweeps integer
```

**population analyses**

if population analyses is active you need

```plaintext
$mulliken
spdf molap netto irpspd irpmol mommul
```

to perform a Mulliken population analysis. The options specify the output data:

```plaintext
spdf print molecular orbital contributions to atomic s, p, d,...-populations
molap print molecular orbital contributions to overlap populations
```
netto  print atomic netto populations

irpspd  print contributions of (irreducible) representations to atomic $s,p,d,...$-populations

irpmol  print contributions of (irreducible) representations to overlap populations or

$l$öwdin

to perform a L"{o}wdin population analysis (options are invalid here). A L"{o}wdin population analysis is based on decomposing $\sqrt{SD\sqrt{S}}$ instead of $DS$ in case of a Mulliken PA.

or

$p$aboon

momao maodump maofile=mao all
to perform a population analysis based on occupation numbers (the options are not necessary and produce some output data concerning the modified atomic orbitals):

momao  print MO contributions to occupation numbers of modified atomic orbitals (MAOs).

maodump  print all MAOs on standard output

maofile=mao all  print all MAOs to file mao.

This kind of population analysis basically aims at so-called shared electron numbers (SEN) between two or more atoms. By default 2-, 3- and 4-center contributions to the total density are plotted if they are larger than 0.01 electrons. Thresholds may be individually chosen, as well as the possibility to compute SENs for molecular orbitals:

$\$shared electron numbers

orbitals

2-center  threshold =  real

3-center  threshold =  real

4-center  threshold =  real

Results of this kind of PA depend on the choice of MAOs. By default, all MAOs with eigenvalues of the atomic density matrices larger than 0.1 will be taken into account. This is a reasonable minimal basis set for most molecules. If modified atomic orbitals shall not be selected according to this criterion, the data group $\$mao selection has to be specified

$\$mao selection  threshold = real;

The default criterion for the selection of MAOs is the occupation number, for which a global threshold can be specified within the same line as the keyword $\$maoselection. If the global criterion or threshold is not desirable for some atoms, lines of the following syntax have to be added for each atom type of these.
atom  symb list  nmao=i  method=meth  threshold=r

The parameters in this definition have the following meaning:

symb  atom symbol
list  list of all atoms for which this definition should apply. The syntax for this list
is as usual in TURBOMOLE, e.g. 2,3,8-10,12
nmao=i  means number of MAOs to be included
method=meth  means selection criterion for MAOs. meth can be occ (default), eig, or man
string, where occ denotes selection of MAOs by occupation numbers, eig selection by eigenvalues and man allows manual selection. In the latter case the
string (max. 8 characters) appended to man serves as nickname for the definition of the MAOs to be chosen. This nickname is expected to appear as the
leftmost word in a line somewhere within data group $mao selection and is
followed by the indices of the modified atomic orbitals which are to be selected.
threshold=r  means the threshold to be applied for the selection criteria occ or eig (default: 0.1).

Example:

$mao selection  threshold= 0.09
atom c 1,3-5  nmao= 5  method= eig  threshold= 0.1
atom o 2  nmao= 3  method= man olabel
olabel  3-5

plot
option plot is out of fashion; to plot quantities on a grid, rather use $pointval in
connection with dscf, ridft, rimp2 or egrad, as described below. If nevertheless
plot is active you need

$grid  #1
mo 4a1g
origin   .000000   .000000   .000000
vector1  1.000000   .000000   .000000
vector2  .000000  1.000000   .000000
grid1 range  -5.000000   5.000000  points  100
grid2 range  -5.000000   5.000000  points  100
outfile = 4a1g

to obtain two-dimensional plot data of mo 4a1g (the plane is specified by origin and
two vectors with grid range and number of grid points) which is written to file 4a1g.
Several plots may be obtained (#1, #2 etc.) at the same time. Use tool 'konto' to visualize the plot.

**Note:** This is the old-fashioned way to plot MOs and densities. A new—and easier—one is to use $pointval$, as described below.

```plaintext
fit
if fit is active you need

$vdw_fit
shell number_of_gridpoints distance_from_vdW_surface
refine value_of_potential
shell Each line refers to all atoms, the line specifies a spherical layer of grid points around the atoms. The number of points and their distance from the van der Waals surface [Bohr] are given (the default is 1.0).
refine one line only, smoothing of the layers of grid points around the molecule: the real number is used to define isopotential surfaces on which the points of the layers have to lie.

$vdw_radii
element_symbol van_d_waals_radius

One line per element has to be specified, it contains the name of the element and the van der Waals radius in [Bohr].
```

### 22.2.26 Keywords for wave function analysis and generation of plotting data

Properties of RHF, UHF and (two-component) GHF wave functions as well as those of SCF+MP2 densities or such from excited state DFT-calculations can be directly analyzed within the respective programs (dscf, ridft, mpgrad, rimp2 and egrad). In case of spin-unrestricted calculations results are given for total densities \(D^α + D^β\) and spin densities \(D^α - D^β\). If not explicitly noted otherwise, in the following "D" is the SCF density, D(SCF), in case of dscf and ridft, the MP2-corrected density, D(SCF)+D(MP2), for mpgrad and rimp2 and the entire density of the excited state in case of egrad. For modules dscf and ridft the analysis of properties may be directly started by calling dscf -proper (or ridft -proper). In case of mpgrad and rimp2 this is possible only, if the MP2 density has already been generated, i.e. after a complete run of mpgrad or rimp2.

Functionalities of analyses are driven by the following keywords.

```plaintext
$mvd
leads to calculation of relativistic corrections for the SCF total density in case of dscf and ridft, for the SCF+MP2 density in case of rimp2 and mpgrad and for that of the calculated excited state in case of egrad. Quantities calculated are expectation values \(<\hat{p}^2>, <\hat{p}^4>\) and the Darwin term \(\sum 1/Z_A \cdot \rho(R_A)\).
```
$moments$ yields calculation of electrostatic moments arising from nuclear charges and total electron densities. Also without setting this keyword moments up to quadrupole are calculated, with respect to reference point (0,0,0). Supported extensions:

$moments <i>
\begin{align*}
x1 & \ y1 \ z1 \\
x2 & \ y2 \ z2 \\
& \ & \ & \\
\end{align*}$

By integer $i$; the maximum order of moments is specified, maximum and default is $i=3$ (octopole moments), real numbers $x, y, z$ allow for the specification of one or more reference points.

$pop$ drives the options for population analyses. By default a Mulliken PA in the basis of cartesian atomic orbitals (CAOs) is performed for the total density ($D^a + D^b$) leading to Mulliken (brutto) charges and, in case of spin-unrestricted calculations also for the spin density ($D^a - D^b$) leading to Mulliken (brutto) numbers for unpaired electrons. Besides total numbers also contributions from $s, p, \ldots$ functions are listed separately.

Two-component wavefunctions (only module ridft and only if $soghf$ is set): In two-component calculations instead of $S_z |(S_x, S_y, S_z)|$ is written to the output. Additionally a vector-file named spinvec.txt is written, which includes the resulting spinvector for each atom in the system (also the direction).

The following modifications and extensions are supported, if the respective commands are written in the same line as $pop$:

\texttt{lall} Additional information about $p_x, p_y, p_z$ (and analogous for $d$ and $f$ functions) is displayed (lengthy output).

\texttt{atoms list of atoms}

Contributions are plotted only if arising from atoms selected by list.

\texttt{thrpl=real}

Contributions smaller than $\texttt{thrpl}$ are not displayed (default: 0.01).

\texttt{overlap} Mulliken atomic overlap matrix is displayed.

\texttt{netto} Mulliken netto populations (diagonal elements of Mulliken overlap matrix) are calculated.

\texttt{mosum list of MOs}

Summed Mulliken contributions for a group of molecular orbitals defined by numbers referring to the numbering obtained e.g. from the tool \texttt{eiger}. Note that occupancy of MOs is ignored, i.e. all orbitals are treated as occupied.

\texttt{mo list of MOs}

Mulliken contributions for single MOs defined by numbers (independent of
whether they are occupied or not). If this option is valid, one may additionally set

\texttt{dos width=real points=integer}

to calculate a (simulated) density of states by broadening the discrete energy levels with Gaussians and superimposing them. The width of each Gaussian may be set by input (default: 0.01 a.u.). The resolution (number of points) may be chosen automatically (default values are usually sufficient to generate a satisfactory plot) or specified by hand. The output files (\texttt{dos} in case of RHF wave functions, and \texttt{dos_a+b}, \texttt{dos_a-b}, \texttt{dos_alpha}, \texttt{dos_beta}; for UHF cases) contain energies (first column), resulting DOS for the respective energy (second column) as well as \(s\)-, \(p\)-, \(d\)-contributions for the respective energy (following columns).

Example:

\texttt{$pop mo 23-33 dos atoms 2,3,7-8$

leads to Mulliken PA (CAO-basis) for each of the eleven MOs 23-33, regarding only contributions from atoms 2-3 and 7-8 (results are written to standard output) and generation of file(s) with the respective simulated density of states.}

\texttt{$pop nbo$

to perform a natural population analyses [247]. The possible options (specified in the same line) are

\begin{itemize}
\item \texttt{AO} must be provided, the CAO case is not implemented.
\item \texttt{tw=real} Threshold \(t_w\) to circumvent numerical difficulties in computing \(O_w\) (default: \(tw=1.d-6\)).
\item \texttt{idbgl=integer} Debug level (default: \(idbgl=0\)).
\item \texttt{ab} For UHF cases: Print alpha and beta density results.
\item \texttt{short} Print only natural electron configuration and summary.
\end{itemize}

Example:

\texttt{$pop nbo AO ab short atoms 1,2,6$

leads to a natural population analysis (AO-basis) with printing the results of alpha and beta densities (only the electron configuration and the summary) for the atoms 1, 2 and 6.}

To change the NMB set for atoms, one has to add a \texttt{$nbonmb\-block} in the control file. Example:

\texttt{$nbonmb$

\begin{verbatim}
  ni s:4 p:2 d:1
  o s:2 p:1
\end{verbatim}
leads to a NMB set for Ni of 4 s-, 2 p- and 1d-functions and for O of 2 s- and 1 p-functions.

$pop$ paboon
to perform a population analyses based on occupation numbers $[248]$ yielding "shared electron numbers (SENs)" and multicenter contributions. For this method always the total density is used, i.e. the sum of alpha and beta densities in case of UHF, the SCF+MP2-density in case of MP2 and the GHF total density for (two-component-)GHF.
The results of such an analysis may depend on the choice of the number of modified atomic orbitals ("MAOs"), which can be specified by an additional line; without further specification their number is calculated by the method "mix", see below. Note: One should carefully read the information concerning MAOs given in the output before looking at the numbers for atomic charges and shared electron numbers.

$mao$ selection options
to specify how MAOs are selected per atom.
Available options are:
a) for the way of sorting MAOs of each atom:
   eig
   MAOs are sorted according to their eigenvalue (those with largest EW finally are chosen). This is the default.
   occ
   MAOs are sorted according to their occupation; note that the number of all occupation is NOT the number of electrons in the system. This option is kept rather for historical reasons.
b) for the determination of the number of MAOs:
   fix
   A fixed number of MAOs is taken for each atom; usually this is the number of shells up to the complete valence shell, e.g. 5 for B-Ne, 6 for Na-Mg, etc. Exceptions are Elements Sc (Y, La), Ti (Zr, Hf), V (Nb, Ta) for which not all five d-shells are included, but only 2, 3 or 4, respectively. This modification leads to better agreement with partial charges calculated by an ESP-fit.
   thr $<$real$>$
   All MAOs with an eigenvalue larger than $<$real$>$ are chosen; default is $<$real$>$=0.1. This and the following two options are not valid in connection with occ.
   max
   Maximum of numbers calculated from fix and thr=0.1 is taken.
   mix
   2:1 mixture of fix and thr=0.1. This choice gives best agreement (statistical) with charges from an ESP-fit. It is the default choice.
c) for additional information about MAOs:

info

Eigenvalues and occupations for each MAO are written to output.

dump

Entire information about each MAO is written to output. Lengthy.

Further for each atom the number of MAOs and the sorting mode can be specified individually in lines below this keyword. Example:

atom 1,3-4 eig 7

leads to choice of the 7 MAOs with largest eigenvalue at atoms 1, 3-4.

$localize

enables the generation of localized molecular orbitals (LMOs) using Boys localization. By default, all occupied orbitals are included, localized orbitals are written (by default in the AO basis) to file(s) lmo in case of RHF and lalp and lbet in case of UHF orbitals. Note, that LMOs usually break the molecular symmetry; so, even for symmetric cases the AO (not the SAO) basis is used for the output. The localized orbitals are sorted with respect to the corresponding diagonal element of the Fock matrix in the LMO basis. In order to characterize these orbitals, dominant contributions of (canonical) MOs are written to standard output as well as results of a Mulliken PA for each LMO (for plotting of LMOs see option $pointval).

The keyword allows for following options (to be written in the same line):

mo list of MOs

Include only selected MOs (e.g. valence MOs) in localization procedure (numbering as available from Eiger).

sweeps=integer

maximum number of orbital rotations to get LMOs; default value is 10000 (sometimes not enough, in particular for highly delocalised systems).

thrcnt=real

lower threshold for displaying MO and Mulliken contributions (default: 0.1).

CAO

LMOs are written to file in the CAO basis (instead of AO).

pipmez or pm or pipek-mezey

Pipek-Mezey localization is used.

boys

Foster-Boys localization is used.

ibo

Intrinsic Bond Orbitals are used.

center

Compute LMO centers, i.e. the diagonal matrix elements of the position operator $\vec{r}_i = \langle i|\vec{r}|i\rangle$
22.2. FORMAT OF KEYWORDS AND COMMENTS

spread

Compute LMO spreads defined as
\[ \sigma_i = \sqrt{\langle i | (\vec{r} - \vec{r}_i)^2 | i \rangle} = \sqrt{\langle i | \vec{r}^2 | i \rangle - \vec{r}_i^2}, \]
where \( \vec{r}_i \) is the LMO center

spatial_sorting

sort LMOs such that LMOs with spatially close centers are also close in index space, by default the LMOs are sorted according to the orbital energy expectation values

timing

print timings for localization procedures

$wfn$

triggers the generations of a wfn file. It can be used in dscf/ridft single-point calculations or in ricc2/egrad gradient calculations.

$esp_fit$

fits point charges at the positions of nuclei to electrostatic potential arising from electric charge distribution (also possible for two-component calculations, for UHF cases also for spin density). For this purpose the ("real") electrostatic potential is calculated at spherical shells of grid points around the atoms. By default, Bragg-Slater radii, \( r_{BS} \), are taken as shell radii, for each atom the number of points is given by \( 1000 \cdot r_{BS}^2 \), the total number of points is the sum of points for each atom reduced by the number of points of overlapping spheres. Non-default shells (one or more) can be specified as follows:

$esp_fit shell i1 s1$

$esp_fit shell i2 s2$

...

Integer numbers \( i \) define the number of points for the respective shell, real numbers \( s \) constants added to radii (default corresponds to one shell with \( s=1.0 \)).

A parameterization very close to that by Kollman (U.C. Singh, P.A. Kollman, J. Comput. Chem. 5(2), 129-145 (1984)) may be obtained by

$esp_fit kollman$

Here five shells are placed around each atom with \( r=1.4^k r_{vdW} + k \), \( k=0 \text{pm}, 20 \text{pm}, 40 \text{pm}, 60 \text{pm}, 80 \text{pm} \), and \( r_{vdW} \) are the van-der-Waals radii of the atoms.

$pointval$

drives the calculation of space-dependent molecular quantities at 3D grids, planes, lines or single points. Without further specifications the values of densities are plotted on a three-dimensional grid adapted to the molecular size. Data are deposited to output files (suffix .plt) that can be visualized directly with the gOpenMol program. In case of RHF-dscf/ridft calculations you get the total density on file \( \text{td.plt} \), for UHF-dscf/ridft calculations one gets both values for the total density \( (D^\alpha + D^\beta) \)
on \texttt{td.plt} and the "spin density" \((D^\alpha - D^\beta)\) on \texttt{sd.plt}. For \texttt{mpgrad/rmp2} calculations one gets in the RHF case the total density \((D(SCF + MP2))\) on \texttt{td.plt} and the MP2 contribution on \texttt{mp2d.plt} and in the UHF case one obtains the total density \((D^\alpha(SCF + MP2) + D^\beta(SCF + MP2))\) on \texttt{td.plt}, the "spin density" \((D^\alpha(SCF + MP2) - D^\beta(SCF + MP2))\) on \texttt{td.plt}, and the respective MP2 contributions on files \texttt{mp2d.plt} and \texttt{mp2sd.plt}. For \texttt{egrad} it is similar, just replace in the filenames \texttt{mp2} by \texttt{e}.

Integration of density (if absolute value greater than \texttt{eps}) within a sphere (origin \(x, y, z\), radius \(r\)) is performed for

\begin{verbatim}
$pointval integrate x y z r eps
\end{verbatim}

By default the origin is at \((0,0,0)\), the radius is chosen large enough to include the whole 3D box and all contributions are regarded (\texttt{eps=0}).

Data different from total and spin densities are generated by following (combinable) settings (to be written in the same line as statement \texttt{$pointval$}):

- **pot** leads to calculation of electrostatic potential arising from electron densities, nuclei and—if present—constant electric fields and point charges. The densities used for calculation of potentials are the same as above; the respective filenames are generated from those of densities by replacement of the "d" (for density) by a "p" (for potential). By "pot eonly" only the electronic contribution to the electrostatic potential is calculated.

- **fld** calculation of electric field. Note, that for 3D default output format (.plt, see below) only norm is displayed. Densities used are the same as above, filenames are generated from those of densities by replacement of "d" (for density) by "f" (for field).

- **mo** list of MO numbers
calculation of amplitudes of MOs specified by numbers referring to the numbering obtained e.g. from the tool \texttt{eiger} in the same format. The respective filenames are self-explanatory and displayed in the output. Note, that also in MP2 and excited state calculations the HF/DFT ground state orbitals are plotted (and not natural MP2/excited orbitals).

  \textit{Two-component cases:} The density of the spinors specified by numbers referring to the numbering obtained e.g. from the file \texttt{EIGS} are visualized. By setting the keyword \texttt{minco} also the amplitudes of the spinor-parts are calculated, whose weights (the probability of finding the electron in this part) lie above the threshold.

- **lmo** list of LMO numbers
calculation of amplitudes of LMOs (previously generated by \texttt{$localize$}) ordered by the corresponding diagonal element of the Fock matrix in the LMO basis.
nmo  list of NMO numbers
    calculation of amplitudes of NMOs (previously generated by
    $natural orbitals file=natural and
    $natural orbital occupation file=natural

dens has to be set, if additionally to one of the above quantities also the density is
    to be computed.

xc  calculation of the Kohn-Sham exchange-correlation potential. It is only valid
    for DFT calculations and it works for all exchange-correlation functionals, in-
    cluding LHF. Note that for hybrid functionals, only the Kohn-Sham part of
    the potential will be computed (the HF part is a non-local-operator and can’t
    be plotted). For GGA functional the full potential will be computed (local and
    non-local terms)

For line plots the output file is tx.vec. For UHF calculations the output files
    are tx.vec (alpha-spin potential) and sx.vec (beta-spin potential).

For a line plot the file has three columns: 1: total potential 2: local term ( or
    Slater-potential for LHF) 3: non-local terms or Correction term for LHF

Output formats may be specified by e.g. fmt=xyz if written to the same line as
    $pointval. Supported are:

    xyz  in case of scalars (density, (L)MO amplitudes, electrostatic potential) this for-
         mat is: \((x,y,z,f(x,y,z))\). In case of vectors components of the vector and its
         norm are displayed. This format is valid for all types of grid (3D, plane, line,
         points, see below), it is the default format in case of calculation of values at
         single points. Output file suffix is .xyz.

    plt only for 3D, default in this case. Data are written to binary files that can
         be directly read by gOpenMol. Note, that this output is restricted to scalar
         quantities; thus in case of vectors (E-field) only the norm is plotted. Output
         file suffix is .plt.

    map only for 3D. Data are written to ASCII files that can be imported by e.g.
         gOpenMol. Note, that this output is restricted to scalar quantities; thus in
         case of vectors (E-field) only the norm is plotted. Output file suffix is .map.

    txt a format compatible with gOpenMol for visualization of vectors \(v\). The format
         is \(x,y,z,v_x,v_y,v_z\).

    vec for planes and lines (default in these cases). In case of a line specified by \(\alpha \cdot \vec{v}\)
         (see below) output is \(\alpha, f(x,y,z)\) for scalars, for vectors components and norm
         are displayed. vectors. Analogously, in case of planes it is \(\alpha,\beta, f(x,y,z)\). The
         output (file suffix .vec) may be visualized by plotting programs suited for two-
         dimensional plots. A command file (termed gnuset) to get a contour plot by
         gnuplot is automatically generated.

    cub only for 3D, writes out data in Cube format which can be imported by many
         external visualization programs.
For 3D grids non-default boundarys, basis vector directions, origin and resolutions may be specified as follows:

\$pointval
  grid1 vector 0 3 0 range -2,2 points 200
  grid2 vector 0 0 -7 range -1,4 points 300
  grid3 vector 1 0 0 range -1,1 points 300
  origin 1 1 1

Grid vectors (automatically normalized) now are \((0,1,0),(0,0,-1),(1,0,0)\), the grid is centered at \((1,1,1)\), and e.g. for the first direction 200 points are distributed between -2 and 2.

In particular for 2D plots it is often useful to shift and rotate the grid plane such that some particular atoms are located in the plot plane. This can be achieved with the \textit{orient} option, which accepts as additional input a list of atoms, e.g. the atoms 4-5 and 9 in the following example:

\$pointval
  grid1 vector 0 3 0 range -2,2 points 200
  grid2 vector 0 0 -7 range -1,4 points 300
  orient 4-5,9
  rotate 25 3

This will shift the origin of the plot into the center of mass of the specified set of atoms and align the grid axes with their principal axes: If two or more atoms are specified which lie on one line grid axis 1 is rotated into this line. If the specified subset consists of three atoms located in a plane the grid axis 1 and 2 are rotated into this plane. If more than three atoms are specified the grid axis 1 and 2 are rotated into a plane which fitted to the position of all specified atoms. With the \textit{rotate} option the grid can be rotated around a grid axis. It accepts as input the rotation angle the index \((1/2/3)\) of the grid axis around which the grid will be rotated.

Grids of lower dimensionality may be specified (in the same line as \$pointval) by typing either \textit{geo=plane} or \textit{geo=line} or \textit{geo=point} The way to use is best explained by some examples:

\$pointval geo=plane
  grid1 vector 0 1 0 range -2,2 points 200
  grid2 vector 0 0 1 range -1,4 points 300
  origin 1 1 1

Values are calculated at a plane spanned by vectors \((0,1,0)\) and \((0,0,1)\) centered at \((1,1,1)\).

\$pointval geo=line
  grid1 vector 0 1 0 range -2,2 points 50
  origin 0 0 1
Values are calculated at a line in direction (0,1,0) centered at (0,0,1). Output format as above.

\[ \texttt{$pointval \ geo=point} \]

\begin{verbatim}
7 5 3
0 0 7
\end{verbatim}

Values are calculated at the two points (7.0,5.0,3.0) and (0.0,0.0,7.0).

Plane-averaged density can be computed by

\[ \texttt{$pointval \ dens \ averagez \ fmt=vec} \]

\begin{verbatim}
grid1 \ vector \ 1 \ 0 \ 0 \ range \ -10,10 \ points \ 100
grid2 \ vector \ 0 \ 1 \ 0 \ range \ -10,10 \ points \ 100
grid3 \ vector \ 0 \ 0 \ 1 \ range \ -20,20 \ points \ 200
origin \ 0 \ 0 \ 0
\end{verbatim}

The generated file \texttt{td.vec} will contain the quantity

\[ \rho(z) = \int \int dx \, dy \, \rho(x, y, z) \]  \hspace{1cm} (22.3)

### 22.2.27 Keywords for Module \texttt{frog}

The \textit{ab initio} molecular dynamics (MD) program \texttt{frog} needs a command file named \texttt{mdmaster}. The interactive \texttt{Mdp} program manages the generation of \texttt{mdmaster} and associated files. It is always a good idea to let \texttt{Mdp} check over \texttt{mdmaster} before starting an MD run. \texttt{Mdp} has online-help for all menus.

In this implementation of \textit{ab initio} MD, time is divided into steps of equal duration \( \Delta t \). Every step, the energy and its gradient are calculated and these are used by the \texttt{frog} to work out the new coordinates for the next step along the dynamical trajectory. Both the accuracy of the trajectory and the total computation time thus depend crucially on the time step chosen in \texttt{Mdp}. A bad choice of timestep will result in integration errors and cause fluctuations and drift in the total energy. As a general rule of thumb, a timestep \( \Delta t \) should be chosen which is no longer than one tenth of the shortest vibrational period of the system to be simulated.

Note that \texttt{Mdp} will transform velocities so that the total linear and angular momentum is zero. (Actually, for the Leapfrog algorithm, initial velocities are \( \Delta t/2 \) before the starting time).

The following keywords are vital for \texttt{frog}:

\[ \texttt{$nsteps \ 75} \]

Number of MD time steps to be carried out. \texttt{$nsteps} is decreased by 1 every time \texttt{frog} is run and JOBEX -md stops when \texttt{$nsteps} reaches 0.
$natoms 9
Number of atoms in system.

$current file=mdlog.aa
The file containing the current position, velocity, time and timestep, that is, the input configuration. During an MD run the $current information is generally kept at the end of the $log file.

$log file=mdlog.ZZ
The file to which the trajectory should be logged, i.e. the output: t=time (a.u.); atomic positions x,y,z (Bohr) and symbols at t; timestep (au) $\Delta t$; atomic symbols and velocities x,y,z (au) at $t - (\Delta t/2)$; kinetic energy (H) interpolated at t, $ab initio$ potential energy (H) calculated at t, and pressure recorded at the barrier surface (atomic units, 1 au = 29.421 TPa) during the corresponding timestep; $ab initio$ potential energy gradients x,y,z (H/Bohr) at t. This file can be manipulated with log2? tools after the MD run (Section 1.5).

$turbomole file=control
Where to look for TURBOMOLE keywords $grad etc.

$md_status
The status of the MD run is a record of the action carried out during the previous MD step, along with the duration of that step. The format matches that of $md_action below.

Canonical dynamics is supported using the Nosé-Hoover thermostat. This option can be enabled in Mdprep or by the following syntax:

$md_status
  canonical T=500 t=100
  from t= -25.0000000000 until t= 0.00000000000

Here, T specifies the temperature of the thermostat in K (500 K in the example) and t specifies the thermostat relaxation time in a.u. (100 a.u. in the example). It is advisable to choose the thermostat relaxation 2-10 times larger than the time step. Note that user-defined actions are presently not supported in canonical dynamics mode.

These are optional keywords:

$seed -123
Integer random number seed

$title
Arbitrary title
To determine the trends in kinetic energy and total energy (average values and overall drifts) it is necessary to read the history of energy statistics over the recent MD steps. The number of MD steps recorded so far in each log file are therefore kept in the $log_history entry: this is updated by the program each step. The length of records needed for reliable statistics and the number of steps over which changes are made to kinetic energy (response) are specified in $ke_control.

$barrier angstroms

$barrier specifies a virtual cavity for simulating condensed phases. The optional flag, angstroms, can be used to indicate that data will be entered in Ångströms rather than Bohr.

type can be one of orth, elps, or none, for orthorhombic, ellipsoidal, or no barrier (the default) respectively.

limits are the +x,y,z sizes of the cavity. In this case, an ellipsoid with a major axis of 20 Å along y, semi-major of 15 Å on z, and minor of 10 Å on x.

constant is the Hooke’s Law force constant in atomic units of force (H/Bohr) per length unit. Here, it is 2.0 H/Bohr/Ångström, a bastard combination of units.

springlen is the effective limit to the restorative force of the barrier. For this system, an atom at 5 Å into the barrier will feel the same force as at 1.0 Å.

temperature denotes the temperature of the cavity walls in Kelvin. If the system quasi-temperature is below this setpoint, particles will be accelerated on their return to the interior. Alternately, they will be retarded if the system is too warm. A temperature of 0.0 K will turn off wall temperature control, returning
molecules to the system with the same momentum as when they encountered the barrier.

$constraints \ angstroms$
  tolerance \ 0.05
  adja\percyc \ 0.25
  type \ H \ O \ 0.9 \ 1.2
  type \ F \ C \ 0.0 \ 1.7
  type \ H \ C \ -1.0 \ 1.2
  2 \ 1 \ 0.0
  3 \ 1 \ 1.54
  4 \ 1 \ -1.0

$constraints$
  specifies and/or automatically generates atomic distance constraints. The optional flag, \angstroms, can be used to indicate that data will be entered in Ångstrøms rather than Bohr.

  \tolerance is the convergence criterion for application of constraints. All distances must be within +/- \tolerance of the specified constraint. Additionally, the RMS deviation of all constrained distances must be below 2/3 of \tolerance.

  \adjpercyc is the fraction of the total distance correction to be applied on each constraint iteration.

  \type \ X \ A \ const \ rmax
  commands \frog to find the closest A atom to each atom X that is closer than \rmax and apply \const. The first \type line above examines each H atom and looks for any O atoms within 1.2 Å. The shortest distance, if any, is then fixed at 0.9 Å. Similarly, the second \type line binds each F to the closest C within 1.7 Å, but since \const=0.0, that distance is fixed at the current value. The third \type line attaches H atoms to the appropriate nearby C, but at the current average H-C distance multiplied by the absolute value of \const.

Explicitly specified constraints are listed by atom index and supersede auto-generated constraints. A positive third number fixes the constraint at that value, while zero fixes the constraint at the current distance, and a negative number unsets the constraint.

The output of \frog contains the full list of constrained atom pairs and their current constraints in explicit format.

User-defined instructions allow the user to tell \frog to change some aspect of the MD run at some point in time \texttt{t=real number}. The same format is used for \$md\_status\ above. Here is an example:
22.2. FORMAT OF KEYWORDS AND COMMENTS

$md_action
    fix total energy from t=2000.0
    anneal from t=2500.0
    free from t=3000.0

In this example, starting from the time 2000.0 a.u., velocities are to be scaled every step to keep average total energy constant. Then, from 2500.0 a.u., gradual cooling at the default rate (annealing) is to occur until the time 3000.0 a.u., when free Newtonian dynamics will resume.

Here are all the possible instructions:

$md_action
    fix temperature from t=<real>
    fix total energy from t=<real>
    These commands cause velocities to be scaled so as to keep the average kinetic energy (i.e. quasi-temperature) or the average total energy approximately constant. This is only possible once enough information about run history is available to give reliable statistics. (Keywords $log_history, $ke_control).

$md_action
    set temperature at t=<real> to x=<real> K
    set total energy at t=<real> to x=<real> H
    set kinetic energy at t=<real> to x=<real> H
    set position file=<filename> at t=<real>
    set velocity file=<filename> at t=<real>
    set velocity at t=<real> random
    set velocity at t=<real> zero
    At some time during the ab initio MD run the user can specify a new value for one of the dynamical variables. The old value is discarded. Single values are given by x=real number. Vectors must be read in frog format from file=file.

$md_action
    anneal from t=<real>
    anneal from t=<real> x=<real>
    quench from t=<real>
    quench from t=<real> x=<real> file=<file>
    relax at t=<real>
    In Simulated Annealing MD, the temperature of a run is lowered so as to find minimum-energy structures. Temperature may be lowered gradually by a small factor each step (anneal; default factor 0.905 over 100 steps) or lowered rapidly by reversing all uphill motion (quench; default factor -0.8 each step). The cooling factors may be changed from the default using x=. Another option allows the quenching part of the run to be logged to a separate file. Alternatively, a standard non-dynamical geometry optimization can be carried out in a subdirectory (relax).
$md\_action
free\ from\ t=<real>

Finally, this instruction turns off any previous action and resumes free dynamics. This is the default status of an MD run.

$surface\_hopping

This keyword allows to carry out Tully-type fewest switches surface hopping (SH) \[281\]. This option is only available in combination with TDDFT. For the TDDFT surface hopping see Tapavicza et al. 2007 \[282\]; for the current implementation see Tapavicza et al. 2011 \[283\]. In the current implementation the surface hopping algorithm only allows switches between the first excited singlet state and the ground state. However, total energies of higher excited states can be computed during the MD simulation. The proper functioning of SH has only been tested for the option

$md\_action
fix\ total\ energy\ from\ t=0.000000000

To carry out SH dynamics simulations, the keyword $surface\_hopping has to be added to the control and mdmaster file. In addition several keywords are required in the control file:

$nacme
needed\ to\ compute\ non-adiabatic\ couplings;\ this\ keyword\ requires\ the\ use\ of\ weight\ derivatives\ in\ section\ dft

$nac
keyword\ needed\ to\ collect\ Cartesian\ non-adiabatic\ coupling\ vectors\ along\ the\ trajectory

$exopt\ 1
keyword\ needed\ to\ ensure\ dynamics\ starting\ in\ S_1

$ex\_energies\ file=ex\_energies
collects\ excitation\ energies\ along\ the\ trajectory

$integral\_ex\ file=integral\_ex
collects\ time\ integration\ of\ excitation\ energies\ along\ the\ trajectory

$sh\_coeffs\ file=sh\_coeffs
collects\ amplitudes\ of\ the\ adiabatic\ states\ along\ the\ trajectory

$nac\_matrix\ file=nac\_matrix
collects\ NAC\ elements\ along\ the\ trajectory

Special caution has to be taken to control problems related to conical intersections \[284,285\]. At geometries where conical intersections between the ground and excited state are present, DFT often exhibits singlet instabilities, which leads to imaginary excitation energies in linear response TDDFT; in this case the MD run is terminated. This problem can be circumvented by the use of the Tamm-Dancoff approximation (TDA) to TDDFT (see 8). In addition an optional keyword for the md\_master file can be used:
$\texttt{gap\_threshold <real>}$

enforces a switch to the ground state in case the $S_1$-$S_0$ energy gap drops below $\texttt{<real>}$ eV. As default a switch to $S_0$ is enforced if the $S_1$ TDDFT-TDA excitation energy becomes negative.

Often times if a switch is enforced due to a negative TDA excitation energy the potential energy surface is discontinuous and limited numerical precision of the nuclear forces may lead to a loss of total energy conservation. In this case the nuclear velocities are rescaled to obtain a conserved total energy.

### 22.2.28 Keywords for Module $\texttt{mpshift}$

In order to control the program execution, you can use the following keywords within the control file:

$\texttt{csmp2}$

Switches on the calculation of the MP2 NMR shieldings. The required SCF shielding step will be performed in the same run. This flag will be set by the script $\texttt{mp2prep}$.

$\texttt{traloop n}$

specifies the number of loops (or 'passes') over occupied orbitals $n$ when doing an MP2 calculation: the more passes the smaller file space requirements—but CPU time will go up. This flag will be set by the script $\texttt{mp2prep}$.

$\texttt{mointunit}$

Scratch file settings for an MP2 calculation. Please refer to Section 22.2.19 for a description of the syntax. This flag will be set by the script $\texttt{mp2prep}$.

$\texttt{csconv real}$

Sets the convergence threshold for the shielding constant of succeeding CPHF iterations. The unit is ppm and the default value is 0.01.

$\texttt{csconvatom integer}$

This selects the atom number for convergence check after each cphf iteration. After this convergence is reached all other atoms are checked, too (default: 1).

$\texttt{thime, thize, scfintunit, scfmo}$

have the same meaning as in $\texttt{dscf}$ (see Section 22.2.8);

Since $\texttt{mpshift}$ works ‘semi-direct’ it uses the same integral storage.

$\texttt{scratch files}$

The scratch files allocated by $\texttt{mpshift}$ can be placed anywhere in your file systems instead of the working directory by referencing their pathnames in this data group. All possible scratch files are listed in the following example:

$\texttt{scratch files}$

\begin{verbatim}
mpshift csssmat path1/file1
mpshift cshssmat path2/file2
\end{verbatim}
$\texttt{trast}$, $\texttt{trand}$  traloop-number

stands for traloop start and traloop end. Each loop or pass in MP2 chemical shift calculations can be done individually by providing the keywords $\texttt{trast}$ and $\texttt{trand}$. This can be used to do a simple parallelization of the run:

Create separate inputs for each traloop. Add

\[
\texttt{trast} \ <\text{number}> \\
\texttt{trand} \ <\text{number}>
\]

in the control files, number goes from 1 to the number of $\texttt{traloops}$. Each calculation will create a restart file called restart.mpshift. To collect all steps and to do the remaining work, copy all restart files to one directory and rename them to restart.mpshift.number, add $\texttt{trast}$ -1 and $\texttt{trand}$ number_of_traloops to the control file and start mpshift.

$vcd$

$U_{ai}^{B\beta}$ will be written to file for a subsequent calculation of VCD rotational strengths by aoforce.

$nucsel$

Selection of nuclei whose NMR shielding tensor has to be computed. The nuclei can be specified by the element symbol (i.e. $\texttt{nucsel}$ "c","h") or by the corresponding number as set by the coordinates (i.e. $\texttt{nucsel}$ 1,3,5-8). Without setting $\texttt{nucsel}$, the shielding tensors of all nuclei are calculated.

$csmaxiter$

Set the maximum number of CPHF iterations, default 30.

22.2.29 Keywords for Parallel Runs

On all systems the parallel input preparation is done automatically. Details for the parallel installation are given in Section 3.2.1. The following keywords are necessary for all parallel runs:
Currently the following parallel platforms are supported:

**SMP** for systems with very fast communication; all CPUs are used for the linear algebra part. Synonyms for SMP are:
- HP V-Class, SP3-SMP and HP S/X-Class

**MPP** for systems with fast communication like Fast-Ethernet, the number of CPUs that will be taken for linear algebra part depends on the size of the matrices. Synonyms for MPP are:
- SP3 and Linuxcluster

**cluster** for systems with slow communication, the linear algebra part will be done on one single node. Synonyms for cluster are:
- HP Cluster and every platform that is not known by TURBOMOLE

**SGI** similar to SMP, but here the server task is treated differently: the MPI implementation on the SGIs would cause this task to request too much CPU time otherwise.

If you want to run mpgrad, $traloop has to be equal to or a multiple of the number of parallel workers.

For very large parallel runs it may be impossible to allocate the scratch files in the working directory. In this case the $scratch files option can be specified; an example for a dscf run is given below. The scratch directory must be accessible from all nodes.

$scratch files

```plaintext
dscf dens /home/dfs/cd00/cd03_dens
dscf fock /home/dfs/cd00/cd03_fock
dscf dfock /home/dfs/cd00/cd03_dfock
dscf ddens /home/dfs/cd00/cd03_ddens
dscf xsv /home/dfs/cd00/cd03_xsv
dscf pulay /home/dfs/cd00/cd03_pulay
dscf statistics /home/dfs/cd00/cd03_statistics
dscf errvec /home/dfs/cd00/cd03_errvec
dscf oldfock /home/dfs/cd00/cd03_oldfock
dscf oneint /home/dfs/cd00/cd03_oneint
```

For all programs employing density functional theory (DFT) (i.e. dscf/grad and ridft/rdgrad) $pardft can be specified:

$pardft

```plaintext
tasksize=1000
memdiv=0
```
The `tasksize` is the approximate number of points in one DFT task (default: 1000) and `memdiv` says whether the nodes are dedicated exclusively to your job (`memdiv=1`) or not (default: `memdiv=0`).

For `dscf` and `grad` runs you need a parallel statistics file which has to be generated in advance. The filename is specified with

```bash
$2e-ints_shell_statistics file=DSCF-par-stat
```
or

```bash
$2e-ints'_shell_statistics file=GRAD-par-stat
```
respectively.

The statistics files have to be generated with a single node `dscf` or `grad` run. For a `dscf` statistics run one uses the keywords:

```bash
$statistics dscf parallel
$2e-ints_shell_statistics file=DSCF-par-stat
$parallel_parameters
 maxtask=400
 maxdisk=0
 dynamic_fraction=0.300000
```

and for a `grad` statistics run:

```bash
$statistics grad parallel
$2e-ints'_shell_statistics file=GRAD-par-stat
$parallel_parameters
 maxtask=400
```

`maxtask` is the maximum number of two-electron integral tasks, `maxdisk` defines the maximum task size with respect to mass storage (MBytes) and `dynamic_fraction` is the fraction of two-electron integral tasks which will be allocated dynamically.

In the parallel version of `ridft`, the first client reads in the keyword `$ricore` from the `control` file and uses the given memory for the additional RI matrices and for RI-integral storage. All other clients use the same amount of memory as the first client does, although they do not need to store any of those matrices. This leads to a better usage of the available memory per node. But in the case of a big number of auxiliary basis functions, the RI matrices may become bigger than the specified `$ricore` and all clients will use as much memory as those matrices would allocate even if that amount is much larger than the given memory. To omit this behavior one can use:

```bash
$ricore_slave integer
```
specifying the number of MBs that shall be used on each client.

For parallel `jobex` runs one has to specify all the parallel keywords needed for the different parts of the geometry optimization, i.e. those for `dscf` and `grad`, or those for `ridft` and `rdgrad`, or those for `dscf` and `mpgrad`. 
Chapter 23

Sample control files

23.1 Introduction

The file control is the input file for TURBOMOLE which directly or by cross references provides
the information necessary for all kinds of runs and tasks. control is usually generated by
define, the input generator. The following sample control files cover a variety of methods
and systems. The keywords themselves are explained in Chapter 22.
23.2 \( \text{NH}_3 \) Input for a RHF Calculation

Main File control

$title
NH3 c3v SVP
$operating system unix
$symmetry c3v
$coord file=coord
$intdef file=coord
$atoms
  n 1             \  \ basis =n def-SVP
  h 2-4           \  \ basis =h def-SVP
$people AO
$basis file=basis
$rundimensions
  dim(fock,dens)=495
  natoms=4
  nshell=15
  nbf(CAO)=30
  nbf(AO)=29
  dim(trafo[SAO<-->AO/CAO])=69
  rhfshells=1
$scfmo file=mos
$closed shells
  a1 1-3          \ (2)
  e  1         \ (2)
$scfiterlimit 30
$scfconv 7
$thize .10000000E-04
$thime  5
$scfdamp start=.500 step=.050 min=.100
$scfdump
$scfintunit
  unit=30 size=0 file=twoint
$scfdiis start=0.5
$drvopt
cartesian on
  basis off
global off
  hessian on
dipole on
nuclear polarizability
$interconversion off
qconv=1.d-10
maxiter=25
$optimize
  internal on
cartesian off
global off
  basis off logarithm
$coordinateupdate
dqmax=0.3
  interpolate on
  statistics 5
$forceupdate
  ahlichs numgeo=0 mingeo=3 maxgeo=4 modus=<g|dq> dynamic fail=0.1
  threig=0.005 reseig=0.005 thrbig=3.0 scale=1.00 damping=0.0
$forceinit on
diag=default
$energy file=energy
$grad file=grad
$forceapprox file=force
$lock off
$last step define
$end

File coord

$coord
  .00000000000000 .00000000000000 .54561506935122 n
  -.87806233111566 1.52084856970468 -.18187168978374 h
  -.87806233111566 -1.52084856970468 -.18187168978374 h
  1.75612466223131 .00000000000000 -.18187168978374 h

$intdef
# definitions of internal coordinates
  1 k 1.00000000000000 stre 4 1 val= 1.90084
  2 k 1.00000000000000 bend 4 3 1 val= 106.27756
     1.00000000000000 bend 3 2 1
     1.00000000000000 bend 2 4 1
$end
File basis

$basis
*
 n def-SVP
 # n (7s4p1d) / [3s2p1d] {511/31/1}
 *
  5  s
 1712.8415853  -.53934125305E-02
 257.64812677  -.40221581118E-01
 58.458245853  -.17931144990
 16.198367905  -.46376317823
 5.0052600809  -.44171422662
 1  s
 .58731856571  1.0000000000
 1  s
 .18764592253  1.0000000000
 3  p
 13.571470233  -.40072398852E-01
 2.9257372874  -.21807045028
 .79927750754  -.51294466049
 1  p
 .21954348034  1.0000000000
 1  d
 1.0000000000  1.0000000000
 *
 h def-SVP
 # h (7s) / [3s] {511}
 *
  3  s
 13.010701000  .19682158000E-01
 1.9622572000  .13796524000
 .44453796000  .47831935000
 1  s
 .12194962000  1.0000000000
 1  p
 .80000000000  1.0000000000
 *
$end

File mos

$scfmo expanded format(4d20.14)
23.2. $NH_3$ INPUT FOR A RHF CALCULATION

\begin{verbatim}
1 a1 eigenvalue=-.15633041862301D+02 nsaos=10
 .98699003163455D+00-.47221435341751D-01 .55873125006179D-02-.48016374887169D-02
 .26746008768233D-02 .20823779196149D-03 .14270460008808D-01 .90849517503597D-02
 .58676121352806D-03 .29091871198884D-03

2 a1 eigenvalue=-.99896275238736D+00 nsaos=10
 .26412162337482D+00 .51846472345768D+00 .37623729061179D+00-.77139882704089D-02
 -.47252329287316D-02-.21494050853221D-02 .11795673774658D+00 .83316086019184D-01
 -.11229203933488D-01-.27038186251429D-02

3 a1 eigenvalue=-.57101279949392D+00 nsaos=10
 -.35584199011701D-01-.9693825881594D-01-.70254605702716D-01 .65569041318341D+00
 -.44761499963029D+00 .40094287741992D-03 .516911518343284D-01 .47722350097160D-01
 .19189122068531D-02 .56638497851180D-03

1 e eigenvalue=-.6437420924851D+00 nsaos=9
 -.49313475446075D+00 .33757893447603D+00-.76142296567409D-04-.7452464248740D-04
 -.26407572210452D+00-.22619038902975D+00-.50035170531670D-05-.12199166245418D-03
 .63021657663245D-04
\end{verbatim}
23.3 NO$_2$ input for an unrestricted DFT calculation

Main File control

$title
NO2 c2v UKS SVP
$operating system unix
$symmetry c2v
$coord file=coord
$intdef file=coord
$atoms
  n 1
      basis =n def-SVP
  o 2-3
      basis =o def-SVP
$pepole AO
$basis file=basis
$rundimensions
  dim(fock,dens)=1098
  natoms=3
  nshell=18
  nbf(CAO)=45
  nbf(AO)=42
  dim(traf0[SAO<--AO/CAO])=85
  rhfshells=2
$uhfmo_alpha none file=alpha
$uhfmo_beta none file=beta
# none : hamilton core guess will be made
# files alpha and beta will be generated by the program
$uhf
$alpha shells
  a1 1-6 ( 1 )
  a2 1 ( 1 )
  b1 1-4 ( 1 )
  b2 1 ( 1 )
$beta shells
  a1 1-5 ( 1 )
  a2 1 ( 1 )
  b1 1-4 ( 1 )
  b2 1 ( 1 )
$scfiterlimit 30
$scfconv 7
$thize .10000000E-04
23.3. NO$_2$ INPUT FOR AN UNRESTRICTED DFT CALCULATION

```
$thime 5
$scfdamp start=1.500 step=.050 min=.100
$scfdump
$scfintunit
 unit=30 size=2 file=/work/user/twoint
$scfdiis start=0.5
$scforbitalshift closedshell=.3
$drvopt
 cartesian on
 basis off
 global off
 hessian on
 dipole on
 nuclear polarizability
$interconversion off
 qconv=1.d-10
 maxiter=25
$optimize
 internal on
 cartesian off
 global off
 basis off logarithm
$coordinateupdate
 dqmax=0.3
 interpolate on
 statistics 5
$forceupdate
 ahlrichs numgeo=0 mingeo=3 maxgeo=4 modus=<g|dq> dynamic fail=0.1
 threig=0.005 reseig=0.005 thrbig=3.0 scale=1.00 damping=0.0
$forceinit on
 diag=default
$energy file=energy
$grad file=grad
$forceapprox file=force
$lock off
$dft
 functional b-p
 gridsize m3
$last step define
$end
```
File coord

$coord

.00000000000000 .00000000000000 -1.00494155217173 n
1.85766051386774 .00000000000000 .50247077608587 o
-1.85766051386774 .00000000000000 .50247077608587 o

$filedef

# definitions of internal coordinates
1 k 1.00000000000000 stre 2 1 val= 2.39232
2 d 1.00000000000000 stre 3 1 val= 2.39232
3 k 1.00000000000000 bend 2 3 1 val= 101.88429

$end

File basis

$basis

n def-SVP

# n (7s4p1d) / [3s2p1d] {511/31/1}

* 5 s
1712.8415853 -.53934125305E-02
257.64812677 -.40221581118E-01
58.458245853 -.17931144990
16.198367905 -.46376317823
5.0052600809 -.44171422662
1 s .58731856571 1.0000000000
1 s .18764592253 1.0000000000
3 p 13.571470233 -.40072398852E-01
2.9257372874 -.21807045028
.79927750754 -.51294466049
1 p .21954348034 1.0000000000
1 d 1.0000000000 1.0000000000

* o def-SVP

# o (7s4p1d) / [3s2p1d] {511/31/1}

* 5 s
23.3. *NO$_2$* INPUT FOR AN UNRESTRICTED DFT CALCULATION

\[
\begin{align*}
2266.1767785 & -0.53431809926E-02 \\
340.87010191 & -0.39890039230E-01 \\
77.363135167 & -0.17853911985 \\
21.479644940 & -0.46427684959 \\
6.6589433124 & -0.44309745172 \\
1 & s \\
0.80975975668 & 1.0000000000 \\
1 & s \\
0.25530772234 & 1.0000000000 \\
3 & p \\
17.721504317 & 0.43394573193E-01 \\
3.8635505440 & 0.23094120765 \\
1.0480920883 & 0.51375311064 \\
1 & p \\
0.27641544411 & 1.0000000000 \\
1 & d \\
1.2000000000 & 1.0000000000
\end{align*}
\]

* $\end$
23.4 TaCl₅ Input for an RI-DFT Calculation with ECPs

Main File control

$title
$operating system unix
$symmetry d3h
$coord file=coord
$intdef file=coord
$atoms
  ta 1
    jbas=ta def-SVP
    basis =ta def-SVP
    ecp =ta def-ecp
  cl 2-6
    jbas=cl def-SVP
    basis =cl def-SVP
$pople AO
$basis file=basis
$ecp file=basis
$rundimensions
  dim(fock,dens)=7662
  natoms=6
  nshell=51
  nbf(CAO)=122
  nbf(AO)=115
  dim(trafo[SAO<-->AO/CAO])=346
$scfmo none file=mos
# none : hamilton core guess will be made
# file mos will be generated by the program
$scfiterlimit 30
$scfconv 6
$thize .10000000E-04
$thime 5
$scfdamp start=.900 step=.050 min=.100
$scfdump
$scfintunit
  unit=30 size=0 file=twoint
$scfdiis start=0.5
$drvopt
  cartesian on
  basis off
  global off
hessian on
dipole on
 nuclear polarizability
$interconversion off
 qconv=1.d-10
 maxiter=25
$optimize
 internal on
cartesian off
global off
 basis off logarithm
$coordinateupdate
 dqmax=0.3
 interpolate on
 statistics 5
$forceupdate
 ahlich numgeo=0  mingeo=3  maxgeo=4  modus=<g|dq>  dynamic fail=0.1
 threig=0.005  reseig=0.005  thrbig=3.0  scale=1.00  damping=0.0
$forceinit on
 diag=default
$energy file=energy
$grad file=grad
$forceapprox file=force
$lock off
$dft
 functional b-p
 gridsize m3
$last step define
$ricore 20
$ridft
$jbas file=auxbasis
$closed shells
 a1'  1-11  ( 2 )
 a2'  1-2  ( 2 )
 e'  1-10  ( 2 )
 a2'' 1-8  ( 2 )
 e'' 1-4  ( 2 )
$end

File coord

$coord
 .00000000000000 .00000000000000 .00000000000000 ta
$intdef
# definitions of internal coordinates
  1 k 1.00000000000000 stre 1 2 val= 4.38784
  2 k 1.00000000000000 stre 1 5 val= 4.46616
$end

File basis

$basis
*
* ta def-SVP
# ta (7s6p5d) / [6s3p2d] {21111/411/41}
*
  2 s
  14.400000000 .99343296745
  12.000000000 -1.6510077975
  1 s
  5.0701477302 1.00000000000
  1 s
  .8603356487 1.00000000000
  1 s
  .37158938894 1.00000000000
  1 s
  .1074536254 1.00000000000
  1 s
  .3914277656E-01 1.00000000000
  4 p
  7.4188720000 .26979695152
  5.6984100000 -.46968874449
  1.1777211960 .50905100155
  .54478533555 .52298161137
  1 p
  .22309270117 1.00000000000
  1 p
  .43100000000E-01 1.00000000000
  4 d
  3.9738796278 -.52799310714E-01
  1.4528884813 .18558319471
**23.4. TACL₅ INPUT FOR AN RI-DFT CALCULATION WITH ECPS**

```
.61042908544 .42959071631
.24216276510 .43497228232
1 d
 .87909318337E-01 1.0000000000

cl def-SVP
cl (7s5p) / [6s2p] {211111/41}

* 5 s
10449.827566 .19708362484E-02
1571.7365221 .14754727977E-01
357.12065523 .66679112875E-01
100.85185935 .17228924084
30.812727554 .15883786100
3 s
51.923789434 -.10009298909
5.7045760975 .60841752753
2.3508376809 .54352153355
1 s
.44605124672 1.0000000000
1 s
.16848856190 1.0000000000
5 p
307.66790569 -.87801484118E-02
72.102015515 -.6356335471E-01
22.532680262 -.24016428276
7.8991765444 -.47798866557
2.8767268321 -.38515850005
1 p
.77459363955 1.0000000000
1 p
.21037699698 1.0000000000
1 d
.65000000000 1.0000000000

*
$ecp
*
ta def-ecp
*
ncore = 60 lmax = 3
#
 coefficient r^−n exponent
f
 12.0179609 2 2.0178811
```
### CHAPTER 23. SAMPLE CONTROL FILES

s-f

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1345.8806470</td>
<td>2</td>
<td>14.5464077</td>
</tr>
<tr>
<td></td>
<td>36.7668062</td>
<td>2</td>
<td>7.2732038</td>
</tr>
<tr>
<td></td>
<td>-12.0179609</td>
<td>2</td>
<td>2.0178811</td>
</tr>
</tbody>
</table>

p-f

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>378.4253015</td>
<td>2</td>
<td>9.355653</td>
</tr>
<tr>
<td></td>
<td>22.2930909</td>
<td>2</td>
<td>4.9677824</td>
</tr>
<tr>
<td></td>
<td>-12.0179609</td>
<td>2</td>
<td>2.0178811</td>
</tr>
</tbody>
</table>

d-f

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>104.8839557</td>
<td>2</td>
<td>6.3473769</td>
</tr>
<tr>
<td></td>
<td>8.7558481</td>
<td>2</td>
<td>3.1736885</td>
</tr>
<tr>
<td></td>
<td>-12.0179609</td>
<td>2</td>
<td>2.0178811</td>
</tr>
</tbody>
</table>

* $end

**File auxbasis**

$jbas$

* ta def-SVP

*  

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.521335</td>
<td></td>
<td>-.493702989D+00</td>
</tr>
<tr>
<td></td>
<td>7.555743</td>
<td></td>
<td>.259256574D+01</td>
</tr>
<tr>
<td></td>
<td>3.699576</td>
<td></td>
<td>-.523168657D+01</td>
</tr>
<tr>
<td>1 s</td>
<td>1.820141</td>
<td></td>
<td>.262393615D+01</td>
</tr>
<tr>
<td>1 s</td>
<td>0.898838</td>
<td></td>
<td>.157711902D+01</td>
</tr>
<tr>
<td>1 s</td>
<td>0.445062</td>
<td></td>
<td>.200789711D+00</td>
</tr>
<tr>
<td>1 s</td>
<td>0.220729</td>
<td></td>
<td>.185974307D+00</td>
</tr>
<tr>
<td>1 s</td>
<td>0.109530</td>
<td></td>
<td>.765184411D-01</td>
</tr>
<tr>
<td>1 p</td>
<td>1.5024958</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1 p</td>
<td>0.5629855</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1 p</td>
<td>0.2281880</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1 p</td>
<td>0.09507835</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>
2  d
  1.337006  .190072032D-01
  0.599535  -.155214344D-01
1  d
  0.280427  -.138946250D-01
1  d
  0.133078  -.895263676D-02
1  f
  1.1428211  1.0
1  f
  0.4395465  1.0
1  f
  0.1758186  1.0
3  g
  1.630421  .100251139D+00
  0.747093  .737482233D-01
  0.349040  .276219913D-01
1  g
  0.164143  .546316580D-02

* 
* 
cl def-SVP
*

  8  s
6097.080409  .198054511D+01
1203.083193  .530973450D+01
386.280948  .132352655D+02
135.337690  .107149960D+02
51.567046  -.132565114D+01
21.261034  .271180364D+01
9.420135  .754640511D+01
4.445228  .173603618D+01
1  s
  2.209399  -.140197496D+01
1  s
  1.141575  .982719736D+00
1  s
  0.604182  .464178589D+00
1  s
  0.322378  .369336889D+00
4  p
51.8499902611  .359335506D-01
17.5847835188  -.869599318D-01
6.49227239618    .721211200D-01
2.55889114714    -.634201864D-01
1  p
1.05118767781    .264152293D-01
1  p
.437994865757    -.197670692D-01
4  d
34.705550     -.548703710D-01
10.704427     -.619019402D-02
3.568067     .337450480D-01
1.249848     -.905232209D-01
1  d
0.445360     .418680075D-01
1  f
1.1872146118    1.0000000
1  g
1.3000000    1.0000000
*
$end
23.5 Basisset optimization for Nitrogen

Main File control

$title
   Basisset-optimization for nitrogen SV(P)
$operating system unix
$symmetry oh
#--- uncomment following line to clean the basis-file after optimization ----
#$dump basis set
$coord   file=coord
$user-defined bonds file=coord
$pople   AO
$basis   file=basis
$rundimensions
   dim(fock,dens)=141
   natoms=1
   nshell=6
   nbf(CAO)=15
   nbf(AO)=14
   dim(trafos[AO<-->AO/CAO])=17
   rhfshells=2
$scfmo none file=mos
$roothaan   1
   a = 1   b = 2
$scfiterlimit  60
$scfconv    10
$thize      0.10000000E-04
$thime      5
$scfdamp    start=1.500 step=0.050 min=0.100
$scfdump
$scfintunit
   unit=30   size=90   file=twoint
$scfdiis    start=0.5
$scforbitalshift closedshell=.4
$drvopt
   cartesian off
#---- optimize basis! -> basis on ----
   basis on
   global off
   hessian on
   dipole on
   nuclear polarizability
$interconversion off
qconv=1.d-7
maxiter=25
$optimize
  internal off
cartesian off
global off
#---- optimize basis! -> basis on logarithm ----
basis on logarithm
$coordinateupdate
dqmax=0.3
interpolate on
statistics 5
$forceupdate
ahlrichs numgeo=0 mingeo=3 maxgeo=4 modus=<g|dq> dynamic fail=0.6
threig=0.005 reseig=0.005 thrbig=3.0 scale=1.00 damping=0.0
$forceinit on
diag=default
$energy file=energy
$grad file=gradient
#---- optimize basis! -> $egrad file=egradient ----
$egrad file=egradient
$forceapprox file=forceapprox
$lock off
$atoms
n 1
  basis =n def-SV(P)
$closed shells
  alg 1-2 ( 2 )
$open shells type=1
t1u 1 ( 1 )
$end

File coord

$coord
  0.000000000000000 0.000000000000000 0.000000000000000 n
$user-defined bonds
$end

File basis

*
n def-SVP
# n  (7s4p1d) / [3s2p1d]  {511/31/1}
# use expopt to optimize exponents and contopt to optimize contractions
*
  5 s expopt contopt
  1712.8415853   0.53934125305E-02
  257.64812677   0.40221581118E-01
  58.458245853   0.17931144990
  16.198367905   0.46376317823
  5.0052600809   0.44171422662
  1 s expopt
  0.58731856571   1.0000000000
  1 s expopt
  0.18764592253   1.0000000000
  3 p expopt contopt
  13.571470233   0.40072398852E-01
  2.9257372874   0.21807045028
  0.79927750754   0.5129466049
  1 p expopt
  0.21954348034   1.0000000000
# 1 d
# 1.0000000000   1.0000000000
*

File mos

$scfmo scfconv=10 format(4d20.14)
# SCF energy is   -54.3329250250  a.u.  (virial theorem =  2.0000000001)
#
  1 alg  eigenvalue=-.15623888057347D+02  nsaos=3
  -.99166890864040D+00-.28420294406651D-010.91519592317893D-02
  2 alg  eigenvalue=-.92524548524703D+00  nsaos=3
  0.3050689715453D+00-.65051761026701D+00-.44610487551870D+00
  3 alg  eigenvalue=0.74881229854801D+00  nsaos=3
  0.30759302935434D+00-.16295969601691D+010.1612611147521D+01
  1 tlu  eigenvalue=-.56865046629517D+00  nsaos=2
  0.67926397018841D+000.46005039886841D+00
  2 tlu  eigenvalue=0.96169069264790D+00  nsaos=2
  -.95675659621171D+000.10794148212163D+01
$end
23.6 ROHF of Two Open Shells

Extracts from control for O$_2$ in $D_{3d}$ Symmetry

# HF-SCF/SVP

# Reference: triplet-sigma in D3d
# This is a Roothaan case (as is D-infinity-h).
#
$coord
  0.0  0.0    1.08597397921317  o
  0.0  0.0   -1.08597397921317  o
$symmetry d3d
$closed shells
  a1g  1-3        (2)
  a2u  1-2        (2)
  eu   1          (2)
$open shells type=1
  eg   1          (1)
$roothaan  1
        a = 1    b = 2
$energy   SCF    SCFKIN    SCFPOT
          1   -149.4774402753 149.4799190239 -298.9573592992

# Reference: singlet-delta in D3d
# This is a Roothaan case (as is D-infinity-h).
#
$coord
  0.0  0.0    1.08597397921317  o
  0.0  0.0   -1.08597397921317  o
$symmetry d3d
$closed shells
  a1g  1-3        (2)
  a2u  1-2        (2)
  eu   1          (2)
$open shells type=1
  eg   1          (1)
$roothaan  1
        a = 1/2   b = 0
$energy   SCF    SCFKIN    SCFPOT
          1   -149.4297623470 149.4298692899 -298.8596316369
Extracts from control for $O_2$ in $D_{2h}$ Symmetry

# HF-SCF/SVP

# Triplet-sigma in $D_{2h}$

$\text{coord}$

```
0.0 0.0 1.08597397921317 o
0.0 0.0 -1.08597397921317 o
```

$\text{symmetry d2h}$

$\text{closed shells}$

```
ag 1-3 (2)
blu 1-2 (2)
b2u 1 (2)
b3u 1 (2)
```

$\text{open shells type=1}$

```
b2g 1 (1)
b3g 1 (1)
```

$\text{roothaan}$

```
a = 1 b = 2
```

$\text{energy}$

```
 SCF SCFKIN SCFPOT
1 -149.4774402750 149.4798706643 -298.9573109393
```

# Singlet-delta in $D_{2h}$ : $xx$-$yy$ component

# where $x = b2g$ and $y = b3g$. In $D$-infinity-h, $b2g$ and $b3g$ combine to eg.

$\text{coord}$

```
0.0 0.0 1.08597397921317 o
0.0 0.0 -1.08597397921317 o
```

$\text{symmetry d2h}$

$\text{closed shells}$

```
ag 1-3 (2)
blu 1-2 (2)
b2u 1 (2)
b3u 1 (2)
```

$\text{open shells type=1}$

```
b2g 1 (1)
b3g 1 (1)
```

$\text{roothaan}$

```
a = 1 b = 2
```

$\text{rohf}$

```
1b2g-1b3g a = 0 b = 2
```
1b2g-1b2g  a = 1  b = 0
1b3g-1b3g  a = 1  b = 0
$energy   SCF       SCFKIN     SCFPOT
         1 -149.4297623516  149.4298351805  -298.8595975321

# Singlet-delta in D2h : xy+yx component
# (an example of the general type: [xy]-singlet)
# where in D2h x = b2g and y = b3g are of different symmetry.
# In D-infinity-h, b2g and b3g combine to eg; see the reference
# calculation in D3d above.
#
$coord
  0.0  0.0  1.08597397921317  o
  0.0  0.0  -1.08597397921317  o

$symmetry d2h
$closed shells
  ag  1-3  ( 2 )
  b1u  1-2  ( 2 )
  b2u  1  ( 2 )
  b3u  1  ( 2 )

$open shells type=1
  b2g  1  ( 1 )
  b3g  1  ( 1 )

$roothaan 2
$rohf
1b2g-1b3g  a = 1  b = -2
1b2g-1b2g  a = 0  b = 0
1b3g-1b3g  a = 0  b = 0
$energy   SCF       SCFKIN     SCFPOT
         1 -149.4297623501  149.4298391833  -298.8596015334
Chapter 24

The Perl-based Test Suite

Structure

24.1 General

Testing the TURBOMOLE modules for correctness and speed is the first task once the coding is completed. It is subject to automatization and thus requires a structure which is as simple and flexible as possible. In the Perl-based test suite this is implemented by a Perl script TTEST which performs all the testing and benchmarking tasks and resides in the central scripts directory of the TURBOMOLE installation. The test examples are located in subdirectories of the TURBOTEST directory, grouped according to the modules modules to be tested and a rough short/long classification. The benchmark suite shows the same directory structure and is rooted in the TURBOBENCH directory.

The central idea of the Perl-based test suite is that only the specific information about an individual test example is included in its local directory along with the input and reference files. This information is stored in the criteria file CRIT which contains the program calls, test criteria, and specific reference timings. Running the test script creates a new test subdirectory, usually called like TESTDIR.i786-pc-linux-gnu, where the TURBOMOLE programs are run and the results are summarized in the protocol file TESTPROTOKOLL.

24.2 Running the tests

Starting a single test example is simple. Change to the test example of your choice and call the TTEST script without arguments. The test is started in a subdirectory named TESTDIR.sysname, where sysname is the current platform name as returned by the Sysname
script. The tested executable, a short description, and the test summary are output to the
screen. Detailed information about the performed commands and results of all test criteria
are found in the TESTPROTOKOLL file in the test subdirectory.

The default location for the binaries and scripts used for testing is the $TURBODIR directory.
If you like to test some other, e.g., your local version of the TURBOMOLE binaries or scripts,
you can specify the loading paths by the -l or -ls options for the binaries and scripts,
respectively,

```
TTEST -l /usr/local/TURBOMOLE/bin/i786-pc-linux-gnu \
 -ls /usr/local/TURBOMOLE/scripts.
```

A specific executable can be chosen by the -x option,

```
TTEST -x /usr/local/TURBOMOLE/bin/i786-pc-linux-gnu/dscf.
```

If a test output is already present, e.g., in the TESTDIR directory, you may wish to check the
results. This is accomplished by calling TTEST in check mode,

```
TTEST --check TESTDIR,
```

which compares the results in TESTDIR with the reference and writes the results to the
CHECKPROTOKOLL file in the test directory.

Testing parts of the TURBOTEST directory structure or the entire test suite at once is per-
formed by calling the TTEST script from the appropriate place. The test script works recur-
sively, executing all test examples underneath its starting directory. This requires that the
test examples be arranged in a TURBOTEST-like directory structure,

```
progname/short|long/example (e.g., dscf/short/H2O.SCF.E1),
```

and the TURBOTEST directory contain a DEFCRIT file with general test suite settings. If
TTEST is started in the central TURBOTEST without any options, all available test examples
are executed. By giving the list of module names (for full list, check TTEST -help) as
argument to the script, the test can be restricted to these modules. The -short and -long
options allow the user to select only the short or long test examples, respectively. Some
examples of usage are given in the following table:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTEST dscf</td>
<td>called in the TURBOTEST directory, performs only the tests for Dscf module.</td>
</tr>
<tr>
<td>TTEST</td>
<td>called in the TURBOTEST/dscf directory, does the same.</td>
</tr>
<tr>
<td>TTEST -long</td>
<td>executes long examples for all modules.</td>
</tr>
<tr>
<td>TTEST ridft -short</td>
<td>performs all short examples from the ridft directory.</td>
</tr>
</tbody>
</table>
24.3. TAKING THE TIMINGS AND BENCHMARKING

Recursive testing creates some additional files in the central TURBOTEST directory. The global protocol file TESTPROTOKOLL.sysname contains short result messages for all test and a list of errors occurred. The list of failed tests is also written to the PROBLEMS.sysname file and can be rerun by calling the test script with the -r option,

    TTEST -r PROBLEMS.i786-pc-linux-gnu.

The -r may also be useful to create any user-defined selection of test examples. The full list of available examples is obtained by the TTEST -list command.

Once you are done with testing, you may wish to clean up afterwards. To do it, use the -clean and -realclean options of the TTEST script. The difference between these two is that TTEST -clean deletes only the test directories and protocols that were created for the current computer architecture as returned by Sysname. In contrast, the TTEST -realclean wipes out all test directories and protocols that get in its way.

24.3 Taking the timings and benchmarking

Benchmarking differs from testing only in that program timings are computed and compared with reference timings. Calling the script as

    TTEST --timings

performs the test, calculates the CPU and wall clock timings, and writes the raw results to the TESTTIMINGS.sysname.nodename file. Auxiliary scripts Tbtim and Tblist help to convert this data to a more readable form and produce summaries as \LaTeX tables. The Tbtim script creates a summary of benchmark results for a given computer platform from the original timings file. Tblist produces benchmark comparisons of different platforms. The corresponding timings files must be provided as arguments to the Tblist script. For more details and options, see TBTIM -help and TBLIST -help.

24.4 Modes and options of the TTEST script

The TTEST script knows several operation modes: "run", "check", "list", "clean", "realclean", and "validate", controlled by its options. The "run" mode is default and means that the test calculations are performed and the results are written to the TESTPROTOKOLL file. The "check" mode differs only in that the programs are not executed, but the existing program output is checked against the reference. The results of the check are written to the CHECKPROTOKOLL file. Calling the test script in the "list" mode simply lists the test examples that are currently available. This allows the user to save the full list to file, edit, and re-use it with the -r option. The "clean" and "realclean" options are for cleaning up the test directories and protocols. Finally, the "validate" mode is mainly of use for writing the CRIT files. It helps to verify the match patterns provided in the test criteria and shows
if it extracts the expected data for comparison with the reference. For every output file used for testing, the "validate" option produces a copy with an additional .val extension. The match strings evaluated for test criteria are highlighted in the output by <<< and >>> marks.

There is a lot of options controlling the behavior of TTEST. Testing specific versions of TURBOMOLE modules is provided by loading path options, -l for binaries, -ls for scripts, and -x for a specific executable. For benchmarking, you need the -timings option to produce the timing summaries, and the -newref option to save the current program timings as the new reference. The module specifications and -short, -long, and -r options can be used for selecting the test examples. The more specialized options are summarized in the following table. Note that most of these options can also be set in the DEFCRIT file (see below).
24.4. Modes and Options of the TTest Script

Operation modes

-**help**  
Prints out the help message and exits.

-**h**  
-**?**  

-**list**  
Lists the available test examples.

-**clean**  
Deletes the test directories and summary files for the current architecture (given by *Sysname*, see Chapter 1.5).

-**realclean**  
Deletes all test directories and protocols.

-**check dir**  
Checks the correctness of an existing program test in the directory *dir* (default: *TESTDIR.sysname*). Useful if new criteria or new references are established.

-**validate dir**  
Examines the output files in the directory *dir* (*default: TESTDIR.sysname*) and highlights the positions of the retrieved matches.

Loading path and naming options

-**loaddir dir**  
Loading path for the TURBOMOLE binaries (default: `$TURBODIR/bin/sysname`).

-**scriptdir dir**  
Loading path for the TURBOMOLE scripts (default: `$TURBODIR/scripts`).

-**testprog prog**  
Tests the given executable *prog*.

-**x prog**  

-**dir dir**  
Name for the local test directory (default: *TESTDIR.sysname*).

-**critfile file**  
Name for the local criteria file (default: *CRIT*).

-**defcritfile file**  
Name for the test suite settings file (default: *DEFCRIT*).

-**protfile file**  
Name for the local protocol file (default: *TESTPROTOKOLL*).

-**output file**  
Name for the local error output file (default: *output.err*).

-**gprotfile file**  
Name for the global protocol file (default: *TESTPROTOKOLL.sysname*).

-**checkfile file**  
Name for the check protocol file (default: *CHECKPROTOKOLL*).

-**errfile file**  
Name for the failed tests list (default: *PROBLEMS.sysname*).

-**timfile file**  
Name for the timings file (default: *TIMINGS.sysname*).

-**valfile file**  
Name for the validation file for ‘run’ criteria (default: *RUNCRIT.val*).

Execution options

-**short**  
Only short/long subdirectories of the test suite will be tested (default: **–short –long**).

-**restart file**  
The list of test examples for execution will be read in from *file* (default: *PROBLEMS.sysname*).

-**newref string**  
Produces new reference timings and writes them to the *CRIT* file. A short description of the reference platform is provided by *string*.

-**fileref**  

-**batchmode**  
Running in batch mode, no screen output.

-**errorstop**  
Stops / Does not stop after the first error. (default: **–noerrorstop**).

-**timings**  
Writes / Does not write the timings on file for further processing. (default: **–notimings**).

-**runopts**  
Sets the conditions under which the test is run (default: “sequential, parallel”).
Bibliography


Index

(non)-append mode, 72
* 55
-central, 277
-fanal, 234
-frznuclei, 276, 277
-level rirpa, 106
-relax, 105, 131
-ri, 262
-ri -level rirpa, 262
... -spndn.cao, 234
.map, 234, 441
.sys.data, 62
$2e-ints_shell_statistics, 452
$2e-ints_shell_statistics, 452
$D2-diagnostic, 417
$TURBODIR/uff/parms.in, 351
.actual step, 283
$alpha shells, 161, 192, 345, 369
$anadens, 233, 234
$atoms, 73, 203, 307, 311, 344, 371, 393
$barrier, 445
$basis, 73, 112, 116, 347, 428
$beta shells, 161, 192, 345, 369
$boys, 431
$bse, 193, 269, 270, 402
$bse file, 402
$bse iterative, 402
$bse iterlim, 402
$bse noqpa, 402
$bse noqpw, 402
$bse thrconv, 402
$cabs, 203, 218, 417
$cbas, 203, 218, 244, 254, 260, 262, 406, 417, 418
$cbse, 194, 402
$cc2_natocc, 208, 417
$cdspectrum, 195, 397, 406
$cell, 174, 176–178, 385
$cell angs, 174
$cgrad, 417
$closed shells, 75, 76, 161, 344, 362, 368, 369
$collinear, 375
$constraints, 446
$coord, 61, 63, 112, 115–117, 276, 305, 307, 310, 322, 347, 349, 351, 428
$coordinateupdate, 112, 422
.dqmax, 422
.interpolate, 422
.statistics, 422
$corrgrad, 427
$cosmo, 380–383
.allocate_nps, 380
.ampran, 380
.cavity, 380
.closed, 380
.open, 380
.disex, 380
.epsilon, 380
.nppa, 380
.nsfa, 380
.phsran, 380
.refind, 380
.routf, 380
.rsolv, 380
.use_contcav, 380
.use_old_amat, 380
$cosmo_atoms, 380–382
$cosmo_isodens, 382
$cosmo_isorad, 288, 383
$cosmo_out file=. 382
$csconv, 449
$csconvatom, 449
$csmaxiter, 284, 450
$csmp2, 283, 449
$current, 444
$curswitchdisengage, 195
$dcosmo_rs, 384
potential file definition, 384
$denconv, 42, 190, 203–205, 213, 218, 244, 251, 254, 355, 395, 406, 418
$denconv 1d-7, 263
$dfdxi textout, 280, 394
$dft, 42, 144, 174, 179, 189, 263, 273, 331, 355, 370, 373, 375, 391, 394, 403
  batchsize, 359
  functional, 355
  debug, 356
dgrenze, 359
diffuse, 357
fgrenze, 359
fullshell, 359
functional, 370
gridordering, 359
gridsize, 356, 370
gridtype, 356
nkk, 356
nphi, 356
ntheta, 356
old_RbCs_xi, 357
p-junc, 360
qgrenze, 359
radsiz, 357
reference, 358
rhostart, 358
rhostop, 358
s-junc, 360
sgrenze, 359
symblock1, 359
symblock2, 359
test-integ, 359, 373
weight derivatives, 359
$disp3, 163, 165
$disp4, 163, 165
$dkhparam, 376
$dkhparam 1, 376
$dkhparam 2, 376
$dkhparam 3, 376
$dkhparam 4, 376
$dkhparam 5, 376
$dosper, 183, 390, 391
  emax, 391
  emin, 391
  npt, 391
  scal, 391
  width, 391
$drvopt, 90, 274, 391, 392
  basis on, 116
$drvtol, 90
$dsenex, 372
$ecp, 189, 347
$egrad, 112, 116, 417, 427, 429
$electrostatic field, 189, 360, 361
$embed, 305, 306, 308, 309, 378, 379
  cell, 379
  charges, 379
  cluster, 379
  content, 379
  epsilon, 379
  lmaxmom, 379
  periodic, 379
  potval, 379
  wsicl, 379
$end, 61, 315, 343
$energy, 161, 197, 347, 409, 414
$escfiterlimit, 193, 397
$esp_fit, 439
$ex_energies, 448
$excitation, 232
$excitations, 218, 219, 225, 227, 231, 236, 237, 252, 411, 412, 415
  bothsides, 412
  conv, 412
  exprop, 231, 412
  irrep, 412
  leftopt, 412
  momdrv, 238, 412
INDEX

oldnorm, 412
preopt, 412
spectrum, 236, 412
thrdiis, 412
tmexc, 237, 412
twophoton, 237, 412
xgrad, 412
$exopt, 196, 197, 404
$fermi, 90, 360
      addTS, 360
      hlcrto, 360
      noerf, 360
      nue, 360
      stop, 360
      tmend, 360
      tmfac, 360
      tmstrt, 360
$finnuc, 161, 376
$firstorder, 361
$fldopt, 189, 360, 361
      1st derivative, 361
      2nd derivative, 361
      edelt, 361
      fields, 361
      geofield, 361
$forceapprox, 114–118, 347, 422, 425, 427, 428
      format, 427
$forceconv, 392, 394
$forceinit, 59, 425, 428
      diag, 425
      carthess, 426
      default, 426
      individual, 426
      off, 115, 425
      on, 59, 115, 118, 422, 425, 428
      carthess, 59, 119, 428
      diag, 118
$forceiterlimit, 392, 394
$forcestatic, 428
$forceupdate, 115, 423, 428
ahlrichs, 423
indgeo, 423
$gw npoints, 401
$gw offpq, 399
$gw output, 400
$gw qpeiter, 399
$gw rpa, 399
$gw scgw, 399
$gw unlimitz, 399
$ho hessian, 109
$hessian, 91, 112, 118, 119, 392, 426
$hessian (projected), 91, 427
$hotfcht, 394
$incore, 53, 346, 362
$intdef, 61, 63, 114, 115, 274, 347, 421, 423, 426, 427
$integral_ex, 448
$interconversion, 110, 422
maxiter, 422
on, 114, 422, 423
qconv, 423
$ironly, 393
$isopts, 393
$isol sub, 393
$jbas, 139, 174, 260, 262, 347, 371, 385
$jkbas, 139, 203, 218, 260, 371, 417
$ke control, 445, 447
$kpoints, 171, 176–179, 386
kptlines, 386
nkpoints, 386
recip, 386
$kramers, 160, 190, 193, 260, 375
conv, 407, 419
$last MP2 energy change, 426
$last SCF energy change, 426
$last excitation energy change, 197
$last step
relax, 346
$lattice, 174–177, 386
$lattice angs, 174
$lg, 204, 218, 244, 245, 411, 417
$les, 109, 273, 393
all, 393
$lesiter limit, 394
$lesiterlimit, 394
$lhf, 334, 374
$localize, 319, 438, 440
mo, 439
sweeps, 439
thrcnt, 439
$lockoff, 346
$loewdin, 432
$log, 444
$log_history, 445, 447
$m-matrix, 118, 426
$mao, 432
$mao selection, 437
$marij, 139, 372
extmax, 372
lmaxmom, 372
nbinnmax, 372
precision, 372
thrmom, 372
wsindex, 372
$maxcor, 49
$maxcor, 53, 89, 203, 204, 215, 218, 244, 250, 254, 260, 273, 345, 346, 392, 404–406, 418
$maximum norm of
basis set gradient, 428
cartesian gradient, 428
internal gradient, 428
$md action, 447, 448
$md status, 444, 446
$mo output format, 362, 366
$mo-diagram, 362
$mo print, 362
$mp2energy, 203, 404
$mp2pair, 406
$mulliken, 431
$mvd, 318, 434
$nac, 448
$nac matrix, 448
$nacme, 404
<table>
<thead>
<tr>
<th>Command</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$natoms, 444</td>
<td></td>
</tr>
<tr>
<td>$natural orbital</td>
<td></td>
</tr>
<tr>
<td>occupation, 347</td>
<td></td>
</tr>
<tr>
<td>$natural orbital occupation file=natural,</td>
<td>441</td>
</tr>
<tr>
<td>$natural orbitals, 347, 362</td>
<td></td>
</tr>
<tr>
<td>occupation, 362</td>
<td></td>
</tr>
<tr>
<td>$natural orbitals file=natural, 441</td>
<td></td>
</tr>
<tr>
<td>$ncoupling, 198</td>
<td></td>
</tr>
<tr>
<td>$newcoord, 272</td>
<td></td>
</tr>
<tr>
<td>$nmr, 282</td>
<td></td>
</tr>
<tr>
<td>dft, 282</td>
<td></td>
</tr>
<tr>
<td>mp2, 282</td>
<td></td>
</tr>
<tr>
<td>rhf, 282</td>
<td></td>
</tr>
<tr>
<td>shielding constants, 282</td>
<td></td>
</tr>
<tr>
<td>$nomw, 109, 393</td>
<td></td>
</tr>
<tr>
<td>$nproj, 392</td>
<td></td>
</tr>
<tr>
<td>$nosalc, 279, 392</td>
<td></td>
</tr>
<tr>
<td>$nprhessian, 392</td>
<td></td>
</tr>
<tr>
<td>$nprvibrational normal modes, 393</td>
<td></td>
</tr>
<tr>
<td>$nprvibrational spectrum, 393</td>
<td></td>
</tr>
<tr>
<td>$nsteps, 443</td>
<td></td>
</tr>
<tr>
<td>$nucsel, 284, 450</td>
<td></td>
</tr>
<tr>
<td>$oep, 332</td>
<td></td>
</tr>
<tr>
<td>$oldgrad, 429</td>
<td></td>
</tr>
<tr>
<td>$open shells, 75, 76, 345, 369</td>
<td></td>
</tr>
<tr>
<td>$operating system, 346</td>
<td></td>
</tr>
<tr>
<td>$optcell, 179</td>
<td></td>
</tr>
<tr>
<td>$optimize, 110, 111, 274, 421–423</td>
<td></td>
</tr>
<tr>
<td>basis, 111, 421</td>
<td></td>
</tr>
<tr>
<td>logarithm, 421</td>
<td></td>
</tr>
<tr>
<td>scale, 422</td>
<td></td>
</tr>
<tr>
<td>cartesian, 111, 421</td>
<td></td>
</tr>
<tr>
<td>global, 111, 422</td>
<td></td>
</tr>
<tr>
<td>internal, 111, 114, 421, 426</td>
<td></td>
</tr>
<tr>
<td>redundant, 111, 421</td>
<td></td>
</tr>
<tr>
<td>$paboon, 432</td>
<td></td>
</tr>
<tr>
<td>$parallel_parameters, 452</td>
<td></td>
</tr>
<tr>
<td>$parallel_platform, 451</td>
<td></td>
</tr>
<tr>
<td>$pardft, 452</td>
<td></td>
</tr>
<tr>
<td>$path, 346</td>
<td></td>
</tr>
<tr>
<td>$periodic, 174, 178, 179, 385</td>
<td></td>
</tr>
<tr>
<td>$periodic 1, 177</td>
<td></td>
</tr>
<tr>
<td>$periodic 2, 177</td>
<td></td>
</tr>
<tr>
<td>$periodic 3, 176, 178</td>
<td></td>
</tr>
<tr>
<td>$pnoccsd, 204, 215, 254, 255, 419</td>
<td></td>
</tr>
<tr>
<td>$pnocsd, 254</td>
<td></td>
</tr>
<tr>
<td>$point_charges, 189, 285, 314, 315, 377</td>
<td></td>
</tr>
<tr>
<td>$points, 98, 99, 103, 431</td>
<td></td>
</tr>
<tr>
<td>$pointval, 195, 234, 323, 325, 439</td>
<td></td>
</tr>
<tr>
<td>$pointvalper, 180, 181, 389, 390</td>
<td></td>
</tr>
<tr>
<td>$pop, 319, 435, 436</td>
<td></td>
</tr>
<tr>
<td>atoms, 436</td>
<td></td>
</tr>
<tr>
<td>dos, 436</td>
<td></td>
</tr>
<tr>
<td>lall, 436</td>
<td></td>
</tr>
<tr>
<td>mo, 436</td>
<td></td>
</tr>
</tbody>
</table>
netto, 436
overlap, 436
thrpl, 436
$pop nbo, 436
$pop paboon, 437
$pople, 344
$prediag, 363, 365
$printlevel, 406, 409, 418
$properties, 96, 431
$ramanonly, 393
$rbss, 161, 376
$rdkh, 161, 376
$redund_ant, 347
$redundant, 115, 274, 421, 427
$response, 414
  conv, 414
  fop, 414
  gradient, 414
  nosemicano, 414
  nozpreopt, 414
  semicano, 414
  sop, 414
  thrsemi, 414
  zconv, 414
  zpreopt, 414
$response, 214, 218, 230, 233, 239, 414, 415
$restart, 365
$restartd, 363, 365
$ricc2, 204, 207, 211, 213, 218, 219, 222,
  223, 225, 230, 233, 241, 244, 250,
  251, 407, 414, 415, 417
  adc(2), 407
  cc2, 407
  ccs, 407
  ccsd, 417
  ccsd(t), 417
  cis, 407
  cis(d), 407
  cisdinf, 407
  conv, 407
didiag, 407
fmtprop, 407
geoopt, 230, 407
gsonly, 407
hard_restart, 407
intcorr, 252, 407
iprint, 407
lindep, 407
maxiter, 407
maxred, 407
mp2, 407
mp3, 417
mp4, 417
mxdiis, 407
nohard_restart, 407
norestart, 407
occonv, 407
restart, 407
scs, 407
sos, 407
$rick, 198
$ricore, 49
$ricore, 85, 138, 139, 189, 194, 273, 346,
  371, 452
$ricore_slave, 346, 452
$ridft, 189, 194, 371, 372
$rigw contour, 401
$rigw ips+, 400
$rij, 371, 375
$rik, 138, 198, 260, 371, 375
$riper, 172, 174, 176–178, 387
  desnue, 387
epsbext, 387
1cfmmmpcg, 387
1chgprrj, 387
lenonly, 387
lmaxmom, 387
lmmommpcg, 387
locmomadd, 387
locmult, 387
1pcg, 387
nctrgt, 387
northol, 387
pcgtol, 387
pcgtyp, 387
pqmatdiag, 387
INDEX

pqsingtol, 387
dynpol, 395
sigma, 387
non-real, 395
thrints, 387
polly, 387
wsicl, 387
rpas, 395
$rripop, 371
rpat, 395
$srir12, 204, 208, 209, 212, 218, 244, 245,
singlet, 395
247, 410, 417, 421
soghf, 395
ansatz, 410
spinflip, 395
cabs, 410
tdasoghf, 395
cabsingles, 410
triplet, 395
ccsdapprox, 417
twophoton, 396
comaprox, 410
ucis, 395
corrfac, 410
urpa, 395
examp, 410
$scfintunit, 47, 53, 189, 363, 365, 366, 368,
$rirpa, 260, 262, 403
406, 449
$srr12, 204, 208, 209, 212, 218, 244, 245,
$rilocal, 161, 376
247, 410
$sfcfdump, 366
$rilocalpara, 376
$scffinite, 366
$srohf, 345, 369
$scratch
$roothaan, 345, 369
$scratch
$srrpacoav, 189, 396, 397
$scratch files, 449, 451
$rsym, 161
$scratch
$scfconv
$scfrunion, 365
$scfdiis, 363
$scfconv none, 76
$scfdenapproxl, 362, 364
$scfconv 7, 179, 263
$scfdenapproxl 0, 166
$scfmo, 76, 344, 347, 362, 363, 365, 366, 370,
$scfl2metric, 410
449
no_f12metric, 410
expanded, 366
pairenergy, 410
file, 366
r12model, 410
format, 366
r12orb, 410
none, 76, 366
$rsym, 161
$scforbitalshift, 172
$scforbitalorder, 367
$scfconv, 42, 88, 190, 363, 367, 395, 406,
$scfiterinfo, 365
$scfiterlimit, 366, 403
418
$scfiterlimit 1, 263
$scfiterlimit 1, 263
$scffmo none, 76
$scfmo, 76, 344, 347, 362, 363, 365, 366, 370,
$scfconv none, 76
$scfconv, 42, 88, 190, 363, 367, 395, 406,
$scfmo none, 76
418
settings for
$scfconv, 42, 88, 190, 363, 367, 395, 406,
$seed, 444
$senex, 53, 372
$sh_coeffs, 448
$sijuai_out, 279, 394
$snso, 162, 376
$snsopara, 162, 377
$ssoes, 189, 194, 196, 269, 396, 397, 404
$soghf, 159, 160, 162, 190, 193, 260, 322, 375, 377
$spectrum, 195, 397, 406
$spinor, 161
$start vector
generation, 192, 397
$statistics, 365, 368
dscf, 139, 346, 368
dscf parallel, 368, 452
grad parallel, 452
mpgrad, 206, 346, 368, 406
mpshift, 283
off, 346, 368
$statpt, 107, 109, 430
bfgs, 109
hssfreq, 430
hssidiag, 430
hssupdate, 430
itrvec, 108, 430
keepmode, 430
powell, 109
radmax, 430
radmin, 430
thrmax, 108
trmax-displ, 108
trmaxgrad, 108
thrmsdispl, 108
thrmsgrad, 108
radius, 107, 430
$subenergy, 166
$subsystems, 167
$sum
rules, 397
$surface_hopping, 448
$suspend off, 346
$symmetry, 189, 344
$tb, 123, 353
$thime, 137, 139, 189, 368, 406, 449
$thize, 137, 139, 189, 283, 362, 368, 406, 449
$title, 344, 444
$tmpdir, 215, 240, 406, 418
$tplot, 207
$stralooop, 203, 206, 283, 405, 449, 451
$strand, 450
$strast, 450
$turbomole, 444
$suff, 120, 349
maxcycle, 120
$suffgradient, 349, 351
$suffhessian, 349, 351
$sufftopology, 349, 351
$uhf, 345, 370
$uhfmo_alpha, 192, 347, 366, 370
$uhfmo_beta, 192, 347, 366, 370
$userdefined bonds, 347
$vcd, 276, 393, 450
$vdw_fit, 434
$velocity gauge, 397
$wfn, 439
&. 55
plt, 439
<method>-<type>-<irrep>-<number>-total.cao, 234
NUMFORCE
-frznuclei, 276
-frznuclei
NUMFORCE, 276
1d-4, 263
actual, 29
actual step
  dscf, 346
ADC(2)
  RI-, 406
adg, 29
analysis of normal modes
  internal coordinate, 274
Aoforce
  keywords, 391
aoforce2g98, 29
b-matrix, 63, 64
babel, 39
Bend, 30
bend, 29
Boys localization, 439
Broken symmetry, 79
bsse_out, 132
bsseenergy, 130
Buckingham, 318
cbasopt, 29
CC2, 27
    RI-, 406
cc2-gsdn-1a1-001-total.cao, 234
cc2-xsdn-3a2-001-total.cao, 234
cc2cosmo, 29
CCL0–m-ss-xxx, 230
CCLE0-s–m-xxx, 225
CCME0-s–m-xxx, 235
CCNE0-s–m-xxx, 237
CCNLO-s–m-xxx, 231
CCRE0-s–m-xxx, 225
CCS
    RI-, 406
CCSD, 406
CCSD(2)F12, 246
CCSD(2*)F12, 246
CCSD(F12), 246
CCSD(F12*), 246
CCSD(T), 406
CCSD-F12a, 246
CCSD-F12b, 246
CCSD-F12c, 246
CCSD[F12], 246
CCSD[T], 406
cgnce, 29
charge vector, 332
CIS, 27
    RI-, 406
CIS(D), 27
    RI-, 406
condition, 332
conjugate gradients, 110
converged, 106
coord, 39
coordinates
    frozen, 276
copo, 167
core memory, 332
cos, 241, 409, 421
COSMO
    keywords, 379
cosmo, 29, 217, 285
COSMO-
    MP2, 214
        PTE, 214
        PTED, 214
cosmoprep, 29, 382
counterpoise calculation, 72
CP-corrections, 130
CPHF, 281
css, 241, 409, 421
custom, 182
custom nks, 178
define, 263
Define, 263
degrees of freedom, 63
dens, 234, 323
desnue, 172

despue 0, 172

desnue 1, 172

DIIS, 110, 422

dist, 29

dos_a+b, 436

dos_a-b, 436

dos_alpha, 436

dos_beta, 436

DRC, 30

Dscf

dummy center, 61

edens, 234

EGRAD

eigenvalue difference, 333

Eiger, 326, 438
eiger, 30
energy, 119
environment

variable

OMP_NUM_THREADS, 51
PARA_ARCH, 51
PARNODES, 51
escf

evalgrad, 30
evib

evib, 28, 51, 279, 345, 394
export, 323
extended Hückel calculation, 75
FDE, 30
finit, 30
fld, 325
fmt=, 182
format, 325
Freeh, 44, 273
freeh, 28
FROG

frog, 27, 44, 106, 124, 443, 446, 447
fromfile, 396
frozen coordinates, 276
Fukui, 30
gallier, 30
ground states, 228
generations

excited states, 230

geometry

manipulation of, 68
Grad

keywords, 391
grad_out, 132
gradient, 233

gradients

excited states, 230
ground state, 228
grid, 323, 327
Grimme Dispersion, 163
hcore, 30
INDEX

ibos, 319
Infrared Spectra, 272
intcorr, 252
intense, 28, 275
internal coordinates
  linear combination of, 67
  manual definition of, 66
  types of, 66
intersections
  conical, 224
jmol, 30
job.<cycle>, 106
job.last, 106
job.start, 106
jobbsse, 30, 62, 130–132
Jobex, 139
  -c, 105, 131
  -dscf, 105
  -energy, 105, 131
  -ex, 105
  -gcart, 105, 131
  -grad, 105
  -gradient, 131
  -keep, 105
  -l, 105, 131
  -level, 105, 131
  -ls, 105, 131
  -md, 105
  -mdfile, 105
  -mdmaster, 105
  -mem, 131
  -opt, 131
  -relax, 105, 131
  -ri, 105, 131
  -rijk, 105
  -setup, 131
  -statpt, 105
  -trans, 105
  -trimer, 131
kdg, 30
kinetic energy, 447
lalp, 438
lbet, 438
Leapfrog Verlet algorithm, 124, 443
lenonly on, 178
lhfprep, 334, 373
lhfprep -asy, 335
lhfprep -kli, 334
lhfprep -num, 334
lmo, 438
lmos, 319, 320
log2?, 444
log2egy, 30
log2int, 30
log2rog, 31
log2x, 30
LT-SOS-RI-MP2, 53, 212
mdens, 234
mdlog, 124
mdmaster, 443
mdmaster, 124
Mdpref, 124, 443, 444
Mdpres, 443
Mdpref, 31
MECPopt, 31
MECPprep, 31
memory, 49
menu
  atomic attributes, 68, 71
  general, 82, 83
  geometry main, 58
  geometry menu, 60
  internal coordinate, 63, 64
  occupation number assignment, 76, 77
  start vectors, 73, 74
mo 10–12, 15, 325
molden, 323
molecular dynamics, 124, 443
molecular orbitals
  binary format, 74
Moloch
   keywords, 430
moloch, 96, 99, 100, 102, 103, 430
mos, 321
MP2
   COSMO, 214
   COSMO-PTE-, 214
   PTED-, 214
   RI-, 406
Mp2prep, 41, 206
mp2prep, 31, 206
MP3, 406
MP4, 406
mpgrad
   keywords, 404
mpgrad, 16, 26, 27, 42, 44, 45, 88, 89, 106,
   112, 116, 131, 199, 200, 202, 203,
   206, 207, 214, 215, 233, 317–319,
   323, 345, 346, 355, 368, 379, 383,
   405, 427, 434, 451, 452
Mpsift
   keywords, 449
mpshift, 16, 28, 41, 43, 44, 276, 281–284,
   345, 393, 450
mulliken, 319
multi-core, 51
NAO, 327
nao, 327
natural
   orbitals
      atomic, 327
      transition, 327
nbo, 319
no weight derivatives, 279, 394
nohxx, 260, 263
not_converged, 106, 132
NTO, 327
nto, 327
nto, 321
ntos, 321
NumForce, 27, 28, 31, 44, 45, 185, 197, 218,
   219, 232, 258, 262, 272, 273, 276,
   285, 383, 391
NumForce -d 0.02 -central -ri -level rirpa,
   262
odft, 51, 329, 333, 334, 336
OMP_NUM_THREADS, 51
OpenMP, 51
opro, 167
orient, 442
outp, 31
paboon, 319
panama, 31, 195
PARA_ARCH, 51
parallelization
   multi-core, 51
   OpenMP, 51
   SMP, 51
   threads, 51
parms.in, 351
PARNODES, 51
past, 31
PEECM
   keywords, 377
Plane-averaged, 443
plot coefficient, 333
plotting data
   keywords, 434
PNO-MP2
   keywords, 418
pnoccsd
   keywords, 418
pnoccsd, 16, 27, 42, 45, 49, 51, 70, 88, 200,
   345, 411, 418
population analysis, 436
pot, 325
proper, 29, 317–319, 321, 323–325, 327
properties
   excited states, 230
   ground state, 228
PTE-
   COSMO-
   MP2, 214
INDEX

- PTED-
  - COSMO-
  - MP2, 214

- \(q\), 55
- quasi–Newton, 110

- Raman, 28, 44, 275
- raman, 31
- Raman spectra, 275
- Rdgrad
  - keywords, 391
- Rdgrad, 371
- reference potential, 333

- RELAX
  - keywords, 421

- restart.cc, 408
- RI-ADC(2), 27, 406
- RI-CC2, 27, 406
  - keywords, 406
- RI-CCS, 406
- RI-CIS, 27, 406
- RI-CIS(D), 27, 406
- RI-MP2, 406
- RI-MP2-F12, 53
- ricc2
  - keywords, 406

- ricctools, 317

- RIDFT
  - keywords, 355

- Ridft, 371

- Riper
  - keywords, 385
- rirpa, 28, 51, 258–260, 263, 345
- Roothaan parameters, 79
- rotate, 442
- rpagrad, 262, 263
- rpaprof, 263

- scanprep, 31
- screw, 31, 110

- scs, 211, 241, 409, 421
- SCS-ADC(2), 27
- SCS-CC2, 27
- SCS-MP2, 240
- sdg, 31
- sigma, 172
- sigma 0.01, 172
- Simulated Annealing, 447
- SMP, 51
- soghf, 161

- sos, 241
- SOS-ADC(2), 27
- SOS-CC2, 27
- SOS-MP2, 240
- SOS-RI-MP2, 53
  - fourth-order scaling, 212
- spectra
  - Raman, 275
  - VCD, 275

- spin
  - flipping spins on atoms, 76
Stati, 139
stati, 32
Statpt
  keywords, 429
statpt, 27, 30, 44, 87, 105, 107–109, 130–133
steepest descent, 110
STOP, 106
stop, 106
structure library, 61
structure optimization, 105
substitution, 61
Sysname, 35, 475, 477
sysname, 31, 35
t2aomix, 32
t2x, 32, 322
TB
  keywords, 353
tb, 45, 122
Tblist, 477
tblist, 33
Tbtim, 477
tbtim, 32
temperature, 447
time, 124, 443
timestep, 443
tm2molden, 32, 323
Tors, 30
tors, 32
transformation
  Laplace, 212
TTEST, 475–478
TURBOMOLE, 13, 15, 17, 21, 29–36, 39–49, 51,
  54, 55, 57, 60, 71, 72, 74, 82, 84,
  105, 108, 110, 115, 123, 130, 144,
  146, 148, 149, 151, 160, 199, 206,
  214, 221, 262, 265, 272, 275, 276,
  279, 285, 287, 304, 307, 311, 318,
  322, 323, 343, 345, 363, 366, 370,
  377, 381, 382, 433, 444, 451, 453
Turbomole
  installation, 34
  modules, 26
  quotation of, 15
tools, 29
Turbotest, 36
twoint, 47
UFF
  keywords, 349
uff, 26, 59, 108, 109, 119, 120, 349, 351
uffgradient, 120
uffhessian0-0, 120
ufftopology, 120, 351, 353
  nxtn12, 351
uhfuse, 33
VCD, 276
vcd, 33
VCD spectra, 275
vector
  function, 222
velocity, 447
vibration, 31, 272
Vibrational Frequencies, 272
wave function analysis
  keywords, 434
weight derivatives, 144
wiberg, 319
woelfling, 29, 33, 133–135
woelfling-job, 29, 33
x2t, 33, 39, 57
xTB, 122
xxx.map, 233