Impact of Elasticity on the Transmission Behaviour of Thin Ring Gears

Prof. Dr.-Ing. Carsten Schulz
Benjamin Kiess, M.Eng.
Impact of Elasticity on the Transmission Behaviour of Thin Ring Gears

1. Research
2. Motivation
3. Modelling setup
4. Results
5. Conclusion
Impact of Elasticity on the Transmission Behaviour of Thin Ring Gears

Research Activity and Focus

1. Research

 • Holistic analysis of static and dynamic behaviour of mechatronical drivetrains
 • Strength and fatigue calculations using analytics and numerics

2. Motivation

3. Modelling setup

4. Results

5. Conclusion
Impact of Elasticity on the Transmission Behaviour of Thin Ring Gears

Research Activity and Focus

1. Research
 - Predictive Maintenance using MBS and FEM to:
 - Analyse current system status (real and virtual condition monitoring)
 - Calculate durability on demand (offline) and realtime (online)
 - Active and passive control systems predicting system behavior (L-/NMPC)

2. Motivation

3. Modelling setup

4. Results

5. Conclusion
Motivation
Transmission behaviour of a gear stage

- Influenced by geometry and material
 - Stiffness of tooth body
 - Stiffness of tooth bending
 - Stiffness due to Hertzian pressure
Impact of Elasticity on the Transmission Behaviour of Thin Ring Gears

1. Research

2. Motivation

3. Modelling setup

4. Results

5. Conclusion

Different approaches for simulation of gearboxes

- Rigid gear wheels
 - No deformation of gear wheels
 - System stiffness combined in force element
Impact of Elasticity on the Transmission Behaviour of Thin Ring Gears

1. Research

2. Motivation

3. Modelling setup

4. Results

5. Conclusion

Different approaches for simulation of gearboxes

- Flexible gear wheels
 - System stiffness is combination of force element and bodies (modal)
 - Consideration of eigenmodes
 - Calculation of load distribution
Impact of Elasticity on the Transmission Behaviour of Thin Ring Gears

When should one use which approach?

1. Research
 - When does the deformation of the gear wheels affect the transmission behaviour of the system?
 - Correlation between basic gear wheel parameters and deformation?

2. Motivation
 - Analyses at typical planetary gearboxes of wind turbines having thin ring gears
 - Usage of fully flexible, parametrized FE-models
 - Automatic structured mesh generation

3. Modelling setup

4. Results

5. Conclusion
Modelling Setup

1. Research
2. Motivation
3. Modelling setup
4. Results
5. Conclusion
Usage of independent parameters for evaluation

- Ring thickness s_r depending on module m_n (parameter of geometry)
- Transmission error (parameter of system behaviour)

Usage of independent parameters for evaluation

- Ring thickness s_r depending on module m_n (parameter of geometry)
- Transmission error (parameter of system behaviour)
Definition of design parameters and their variation

- Variable parameters:
 - i_{21} Gear ratio
 - z_1 Number of teeth on ring gear
 - m_n Module
 - s_r Ring thickness

- Fix parameters:
 - $x_1 = x_2 = 0$ Shift factor
 - $\beta = 0^\circ$ Helix angle
 - $b = 10\ mm$ Tooth width
Impact of Elasticity on the Transmission Behaviour of Thin Ring Gears

1. Research

Definition of parameters and their variation

<table>
<thead>
<tr>
<th></th>
<th>i_{21}</th>
<th>-4</th>
<th>-5</th>
<th>-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_n</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>s_r</td>
<td>1,5m_n</td>
<td>2m_n</td>
<td>3m_n</td>
<td>5m_n</td>
</tr>
<tr>
<td>i_{21}</td>
<td>$z_{1,1}$</td>
<td>$z_{1,2}$</td>
<td>$z_{1,3}$</td>
<td>$z_{1,4}$</td>
</tr>
<tr>
<td>-4</td>
<td>-120</td>
<td>-112</td>
<td>-104</td>
<td>-96</td>
</tr>
<tr>
<td>-5</td>
<td>-120</td>
<td>-115</td>
<td>-110</td>
<td>-105</td>
</tr>
<tr>
<td>-6</td>
<td>-120</td>
<td>-108</td>
<td>-96</td>
<td>-84</td>
</tr>
</tbody>
</table>

2. Motivation

Number of Calculations

<table>
<thead>
<tr>
<th></th>
<th>i_{21}</th>
<th>m_n</th>
<th>s_r</th>
<th>z_1</th>
<th>Π</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>192</td>
<td></td>
</tr>
</tbody>
</table>
Results
Impact of Elasticity on the Transmission Behaviour of Thin Ring Gears

1. Research

2. Motivation

3. Modelling setup

4. Results

5. Conclusion

Deformation of ring gear depending on ring thickness

- Deformation of ring gear decreases with increasing ring thickness

\[
1.5 \cdot m_n, \quad 2 \cdot m_n, \quad 3 \cdot m_n, \quad 5 \cdot m_n
\]
Impact of Elasticity on the Transmission Behaviour of Thin Ring Gears

1. Research

2. Motivation

3. Modelling setup

4. Results

5. Conclusion

Transmission Behaviour – Transmission Error (Variation of Module m_n)

$$m_n = 2, z_1 = -105$$

$$m_n = 5, z_1 = -105$$

$$m_n = 3, z_1 = -105$$

$$m_n = 8, z_1 = -105$$
Impact of Elasticity on the Transmission Behaviour of Thin Ring Gears

Transmission Behaviour – Transmission Error (Variation of Module m_n)

1. Research
2. Motivation
3. Modelling setup
4. Results
5. Conclusion

Prof. Dr.-Ing. Carsten Schulz

Average Transmission Error [°]

$s_r = x \cdot m_n$

$m_n = 2, z_1 = -105$

$m_n = 3, z_1 = -105$

$m_n = 5, z_1 = -105$

$m_n = 8, z_1 = -105$

$s_r = x \cdot m_n$
1. Research

2. Motivation

3. Modelling setup

4. Results

5. Conclusion

Transmission Behaviour – Transmission Error (Variation of No. of T. z_1)

$m_n = 8, z_1 = -105$

$m_n = 8, z_1 = -115$

$m_n = 8, z_1 = -110$

$m_n = 8, z_1 = -120$
Impact of Elasticity on the Transmission Behaviour of Thin Ring Gears

Professor for Computer Aided Engineering
Anhalt University of Applied Sciences

1. Research

2. Motivation

3. Modelling setup

4. Results

5. Conclusion

Transmission Behaviour – Validation of Results

- Comparison between theoretic TE and experimental TE

<table>
<thead>
<tr>
<th></th>
<th>FEM</th>
<th>Weber/Banaschek (WB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission Error [°], (i = -5, z_1 = 105, z_p = 42, m_n = 8, s_r = 1.5 \cdot m_n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,1142 °</td>
<td>0,113 °</td>
<td></td>
</tr>
<tr>
<td>100 %</td>
<td>99,12 %</td>
<td></td>
</tr>
</tbody>
</table>

- Theoretic system stiffness, FE-stiffness and SIMPACK-stiffness

<table>
<thead>
<tr>
<th></th>
<th>WB</th>
<th>DIN 3990</th>
<th>FEM</th>
<th>SIMPACK (WB)</th>
<th>SIMPACK (DIN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiffness (c' \ [\text{N/mm(\mu m)}], i = -5, z_1 = 105, z_p = 42, m_n = 8, s_r = 1.5 \cdot m_n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14,52</td>
<td>15,71</td>
<td>14,67</td>
<td>14,52</td>
<td>15,31</td>
<td></td>
</tr>
<tr>
<td>100 %</td>
<td>108 %</td>
<td>101 %</td>
<td>100 %</td>
<td>105 %</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion
Conclusion

1. Research
2. Motivation
3. Modelling setup
4. Results
5. Conclusion

- Validated relation between chosen geometry and transmission error (TE)
- Convergence of TE with increasing ring thickness
- Reduction of TE with increasing m_n and increasing i_{21}

Variation of m_n

Variation of i_{12}
1. Research

2. Motivation

3. Modelling setup

4. Results

5. Conclusion

Recommendations

- Flexible Approach recommended for ring thicknesses of $s_r < 7 \cdot m_n$

| z | $|z| < 100$ | $|z| > 100$ |
|-----|-------------|-------------|
| $s_r [mm]$ | $7 \cdot m_n$ | $8 \cdot m_n$ |
Thank You!