Dassault Systèmes Long-term Commitment to Simulation
Agenda

- Applications areas
- Aerodynamics and Hydrodynamics
- Bearings and Gearwheels
- Multi domain Interfaces
- Electromagnetics
- Acoustics
- 3DEXPERIENCE
- Conclusion
Simpack Application Sectors

Simpack is used to **predict** and **optimize motion and loading** of any mechanical and mechatronic systems, even up into the **acoustic range**.
Simpack: Scalable Simulation for Wind Turbines

Complete turbines with/and sub-systems can be simulated for dynamic analysis and load generation. **Unlimited levels of fidelity.**

- **Aerodynamics**
- **Rotorblades**
- **Tower**
- **Hydrodynamics**
- **Foundation**
- **Nacelle**
- **Drivetrain**
- **Generator, Power Electronics, Grid and Control**
Simpack Wind

Applications

▸ Load Calculations
 ▶ Any wind turbine model, any level of detail
 ▶ Template Scripts and example model

▸ Drivetrain Resonance Analysis (GL 2010)

▸ Components and Systems
 ▶ Design, analysis, comprehension and optimization

▸ Extreme events

▸ Stress and Durability

▸ Acoustics

▸ Test-rigs, Turbine assembly, …
Aerodynamics

Methods

- Blade Element Momentum (BEM)
 - AeroDyn from NREL
 - AeroModule from ECN
 - Flex5 (customer implementation)

- Free Vortex Wake
 - AeroModule from ECN
 - S4 from DLR (customer implementation)

- CFD (Navier Stokes, Lattice Boltzmann)
 - Abaqus, XFlow, Exa PowerFLOW, 3DEXPERIENCE
 - Customer implementations
NREL AeroDyn v15

Major Improvements

- Aerodynamic loads on the tower
- Wind field graphical representation
- Aerodynamically different rotor blades
- Map meshing between structural and aerodynamic mesh
ECN Aero-Module

Wind Loading

- Two levels of fidelity, same input
 - Blade Element Momentum method (BEM) + engineering methods
 - Lifting line free vortex wake method (AWSM)
- Based on and validation
 - Many years of research and industrial projects
- Standard Simpack interface

Validation against exp: 30 deg yawed flow
ECN Aero-Module

Added Value

- Flexible switch for required balance between accuracy and computation time (different methods, same input)
- AWSM, better prediction of unsteady aerodynamics
 - Non-uniform inflow (e.g. turbulence, shear)
 - Aero-elastic instabilities (e.g. flutter)
 - Dynamic inflow (e.g. pitch step, IPC)
 - Yawed flow
- AWSM intrinsically includes
 - Tip effect
 - Curved blade axis (sweep, winglet)
 - Radial interaction

Hydrodynamics

Methods

► Morrison Equations (HydroDyn)
 ▶ Slender cylinders
 ▶ Offshore fixed and floating structures

► Linear hydrodynamics (HydroDyn)
 ▶ hydrostatic, waves/currents, added mass, radiation/diffraction

► CFD
 ▶ Detailed Loading
 ▶ Extreme events
 ▶ Turbine shadowing
 ▶ Optimization
HydroDyn (in Simpack)

Major Improvements

- Linearization
 - Including added mass from surrounding water
- User Defined Wave Spectrum via PSD
 - Input function → PSD → HydroDyn
Bearings

Rolling Bearings

- **3D Contact Description**
 - Based on inner bearing geometry
 - Analytical force description (ISO 16281)
 - Non-linear stiffness and cross-coupling
 - Flexible bearing rings

- **Full Body Model**
 - Full geometrical and inertial description
 - Advanced output values (e.g. surface stress)
Rolling Bearings – Functionality Overview

<table>
<thead>
<tr>
<th>Element</th>
<th>Characteristics</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D Spring-Damper</td>
<td>• Non-linear 1D stiffness</td>
<td>Bearing of rigid shafts with linear angular velocity or load</td>
</tr>
<tr>
<td>(FE 6, 43, 185)</td>
<td>• Clearance definition</td>
<td>Simplified NVH driveline analysis</td>
</tr>
<tr>
<td>3D Stiffness Matrix</td>
<td>• Linear 3D stiffness</td>
<td>Bearing of flexible shafts with increasing loads</td>
</tr>
<tr>
<td>(FE 41, Bearinx ®)</td>
<td>• Cross-coupled forces/torques</td>
<td>NVH without bearing excitations</td>
</tr>
<tr>
<td></td>
<td>• All displacements considered</td>
<td></td>
</tr>
<tr>
<td>3D Contact Description</td>
<td>• Non-linear 3D stiffness</td>
<td>Flexible bearing of flexible shafts with dynamic loads</td>
</tr>
<tr>
<td>(FE 88)</td>
<td>• Cross-coupled forces/torques</td>
<td>NVH incl. bearing excitations</td>
</tr>
<tr>
<td></td>
<td>• Cage rotation & flexible bearings</td>
<td></td>
</tr>
<tr>
<td>Full Body Model</td>
<td>• Full description of all bearing</td>
<td>Detailed bearing analysis</td>
</tr>
<tr>
<td>(FE 198)</td>
<td>components and contacts</td>
<td>(e.g. normal stress and cage interaction)</td>
</tr>
</tbody>
</table>
Bearings

Journal Bearings

- Easy setup
- Cylindrical or planar bearings
- Analytical HD, online HD or one- / double-sided EHD
- Fluid flow coupling of bearings
- Transient oil temperature by a global thermal balancing
- Wear calculation
Journal Bearings – Functionality Overview

<table>
<thead>
<tr>
<th>Element</th>
<th>Characteristics</th>
<th>Use</th>
</tr>
</thead>
</table>
| **Approximating Hydrodynamics (FA)** | • Analytical approach
• All forces/torques
• Mixed friction | • Fast cylindrical bearing with friction torque
• Durability calculations of holistic models |
| **Hydrodynamics (HD) or Rigid dry contact** | • Online solution
• All forces/torques/friction regimes
• Lokal design elements | • Geometry optimization (crowning, grooves etc.)
• Oil flow analysis |
| **Elasto-Hydrodynamics (EHD) or Rigid elastic contact** | • HD / Rigid dry contact +
• local deformations on one or both bodies | • Friction and wear analysis
• Micro geometry optimization |
Gear Wheels

- Basic Gear Pair
 - No meshing excitations
 - Recommended for linearization tasks

- Gear Pair 225
 - Meshing excitations
 - Profile and flank micro geometry
 - Pre Plots: check plot, load intensity, mesh contouring

- Gear Pair 225 with Flexible Bodies
- Non-standard gear profiles
Gear Wheels

Major Improvements GP 225

- Weber Banaschek
 - Clear separation of stiffnesses (body, tooth and contact)
 - Recommended for use with flexible gears and ring gears
- Extended tip contact
- Hypoid gear (according to ISO 23509)
- Contact pattern plot
Multi Domain interfaces

Control, Electronics, Hydraulics

- Simpack Control Module
- Wind Turbine Control Interface
 - Bladed 4.2 format DLL interface
- Mathworks Interfaces
 - MATLAB® release R2016b/R2017a
- FMI (e.g. with Dymola)
 - FMI 1.0 and FMI 2.0
- IPC Co-simulation
- User Routines
Electromagnetics

CST

- Generators, Motors
 - Excitation for dynamic analysis
 - Stator and rotor optimization
- Lightning Strike
 - Attachment area prediction
 - Currents on wind turbine and in cabling
- Radar
 - Reflection of signals from rotor
- Antenna Placement
Acoustics

wave6

- wave6 exploits results from Simpack and calculates noise and vibration levels

- Straightforward process
 - Propagation of the vibrations
 - Attenuation by absorbing materials
 - Noise radiation
MBS based wind turbine simulation process:
Strong multi physics integration, multi scale and data management requirements:
Multiphysics & Science

Our Technology

Vision

Structures Thermal Fluids Electromagnetics Controls Geophysics Biological Chemical...

Functional

Logical

Physical (Macroscale Continuum)

Material Sciences

Physical (Microscale and Below Non-Continuum)
3DEXPERIENCE | A new way to simulate

New ways to engineer Product, Nature & Life

ALL PHYSICS, ALL SCALES
“Confidence to simulate everything”

New shifts in engineering efficiency

ENGINEERING EFFICIENCY
“Allow engineers to be engineers”

New ways to power innovation

ENABLE INNOVATION
“Science-driven smart innovation process”

New connections across the eco-system

EXTENDED ECO-SYSTEM
“Connected and empowered workforce”
Conclusion

- Simulation of any wind turbine type, any level of fidelity
- Components, test-rigs and systems
- One model database
 - Design Load Cases
 - Optimization
 - Stress, durability
 - Acoustics
 - …
- 3DEXPERIENCE