Using flexible gears in order to detect the root cause of gear damage

Heidi Götz / Dr. Wolfgang Stamm
Darmstadt, 2016-11-09
Contents

1. Motivation
2. Vorecon – Variable Speed Drives
3. Multibody model
4. Results of simulations
5. Result of technical implementation
6. Summary
Motivation
Damage symptoms

Emergency stop of the Vorecon during running-in

→ Inspection was showing scuffing on all gears (sun, planets and annulus)
Motivation for multibody simulation

- Drive train has stopped
- Such a damage was never seen before
- No idea regarding the root cause

→ Need of simulation
→ Need of a dynamic multibody model
Vorecon – Variable Speed Drives
Using flexible gears in order to detect the root cause of gear damage | Heidi Götz / Dr. Wolfgang Stamm | 2016-11-09

Description

- **Variable speed hydrodynamic planetary gear**
- **Oil and Gas Industry / Chemical and Petrochemical Industry / Power Generation**
- **Boiler feed pumps, blowers, pumps, compressors**
- **Power up to 50 MW / speed up to 20,000 rpm**
- **Two planetary gears**
- **Hydrodynamic torque converter**
Using flexible gears in order to detect the root cause of gear damage

Heidi Götz / Dr. Wolfgang Stamm
2016-11-09
Animation of the SIMPACK-model
Multibody model

- Flexible sun wheel shaft
- Flexible annulus gear
- Turbine wheel of torque converter
- PGF including spline coupling at annulus gear
- Flexible coupling sleeve
- Planet carrier of PGR
- Flexible housing
- All blue parts: ball bearings
- Journal bearing

- Ball bearings
Modelling of elastic gears

SIMPACK *elastic gear pair, method A* was used: „Macroscopic elasticity“ from modal reduction, gear meshing stiffness the same as in rigid gear pair

→ New challenges (824 RBE3s; big amounts of data)
Results of simulations
Natural frequencies

Exemplary natural frequency at 270 Hz
Natural frequencies

- Many natural frequencies were found within the operating range
- Good agreement between calculation and measurement
- Resonance phenomena were not identified as root cause
Circumferential forces

Impact

$F_{\text{max}} \approx 60\text{kN}$
Dynamic factor K_V

$$K_V = \frac{\text{max. peak}}{\text{average}}$$
Dynamic factor K_V

<table>
<thead>
<tr>
<th>Operating Point</th>
<th>$K_{V \text{ max}}$</th>
<th>Meshing sun/planet</th>
<th>Meshing planet/annulus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rigid</td>
<td>Flexible</td>
<td>Rigid</td>
</tr>
<tr>
<td>1</td>
<td>1.33</td>
<td>1.22</td>
<td>1.34</td>
</tr>
<tr>
<td>2</td>
<td>1.77</td>
<td>1.32</td>
<td>1.37</td>
</tr>
<tr>
<td>3</td>
<td>1.45</td>
<td>1.59</td>
<td>1.91</td>
</tr>
<tr>
<td>4</td>
<td>1.41</td>
<td>1.48</td>
<td>1.85</td>
</tr>
<tr>
<td>5</td>
<td>1.41</td>
<td>1.41</td>
<td>1.77</td>
</tr>
<tr>
<td>6</td>
<td>1.15</td>
<td>1.22</td>
<td>1.85</td>
</tr>
<tr>
<td>7</td>
<td>1.79</td>
<td>1.13</td>
<td>1.46</td>
</tr>
<tr>
<td>8</td>
<td>1.56</td>
<td>1.20</td>
<td>1.26</td>
</tr>
<tr>
<td>9</td>
<td>1.42</td>
<td>1.52</td>
<td>1.45</td>
</tr>
</tbody>
</table>
Average of circumferential forces
Load distribution factor K_{gamma}

$K_{\text{gamma}} = \frac{\text{max. planet load}}{\text{average planet loads}}$

Average of all planet loads
Load distribution factor K_{γ}

<table>
<thead>
<tr>
<th>Operating Point</th>
<th>K_{γ} [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rigid</td>
</tr>
<tr>
<td>1</td>
<td>1.26</td>
</tr>
<tr>
<td>2</td>
<td>1.24</td>
</tr>
<tr>
<td>3</td>
<td>1.15</td>
</tr>
<tr>
<td>4</td>
<td>1.17</td>
</tr>
<tr>
<td>5</td>
<td>1.16</td>
</tr>
<tr>
<td>6</td>
<td>1.3</td>
</tr>
<tr>
<td>7</td>
<td>1.2</td>
</tr>
<tr>
<td>8</td>
<td>1.21</td>
</tr>
<tr>
<td>9</td>
<td>1.21</td>
</tr>
</tbody>
</table>
Summary

• K_v and K_{gamma} values were higher than expected from design

• With the help of flexible gears the dynamic behavior seems to be closer to reality

• **Impacts were identified as root cause**

→ Now: possible to search for a suitable corrective measure in accordance with the results
Derived corrective measure

Modifying the existing tooth profile modifications of the planet gears:

- Tip modification
- Root modification

Using flexible gears in order to detect the root cause of gear damage | Heidi Götz / Dr. Wolfgang Stamm | 2016-11-09
Results of corrective measure

- Impacts were reduced (in both meshing transitions)
- Amplitudes were reduced
- Corrective measure led to an improvement for almost all required operating points
Results of technical implementation
New borescope inspection

No scuffing anymore
Summary

• Using **flexible gears** could show us the root cause for the damage
• Differences were identified to the results with rigid gears
• Were able to determine a suitable corrective measure for a dynamic system
• Technical implementation of the corrective measure led to a **success** regarding scuffing
Contact:
Heidi Götz
Simulation Engineer
Tel. +49 7951 32-427
heidi.goetz@voith.com

Dr. Wolfgang Stamm
Centers of Competence
Tel. +49 7951 32-1711
wolfgang.stamm@voith.com