Model Based Systems Engineering in detail

DS User Conference Hanau, December 5

Gauthier FANMU4
Agenda

Introduction

Development process

Collaborative Model Based Systems Engineering

Systems Engineers journey

Take away
From mechanical Experience twins... to cyber Experience twins

Typical figures in T&M and A&D (one program)

- 2,000 – 5,000 components
- 4,000 – 15,000 functions
- 100,000 interfaces
- 0.5 – 1 M requirements

Projection
Volume & speed

Mechanical system

Mechatronics systems
Multidisciplinary field that includes a combination of mechanical, electrical, control and software

Cyber systems
Populations of software-intensive distributed systems interacting together in an unpredictable world
Why model based is essential

- Rapid system impact assessment of design modifications
- Accelerated collaboration on single source of truth
- Efficiency: eased reuse and configured architecture
- Productivity: documents generation
- Quality: interface mastering & specification consistency
- Improved communication and buy-in
Agenda

Introduction

Development Process

Collaborative Model Based Systems Engineering

Systems Engineers journey

Take away
Development Process: Automotive example

- **Concept Studies**
 - Style
 - Geometry
 - Systems

- **Preliminary Design**
 - Synthesis
 - Style
 - Product
 - Technique

- **Detailed design**
 - M2

- **Manufacturing & assembly**
 - M6

Project duration
Development Process: How

What to do?
Processes

Define activities to implement and expected results

How to do?
Methods

Defines technics & methodology to implement the activities

With what?
Tools

Improve the efficiency of tasks implementation, use of methods
Agenda

Introduction

Development Process

Collaborative Model Based Systems Engineering

Systems Engineers journey

Take away
Model Based Systems Engineering: Methodology

Solution free

Conceptual

System of Systems

Define Mobility Experience

Integrate Verify and Validate the SoS

Product

Define Needs for Vehicle Project

Integrate Verify and Validate the Vehicle

Functional & Logical

Design Function Project

Manage Change

Design Vehicle Project Architecture

Layers of abstraction

Technical

Solution

Design the Vehicle Project technical solution

Implement the Vehicle Project components

Implement

DASSAULT SYSTEMES | The 3DEXPERIENCE™ Company
Model Based Systems Engineering: Methodology

- Conceptual
- Design Vehicle Project Architecture
- Design the Vehicle Project technical solution
- Implement the Vehicle Project components
- Concept studies
- Preliminary design
- Detail design
- Integrate Verify and Validate the SoS
- Integrate Verify and Validate the Vehicle

Solution free
Technology dependent

Verify = make the product right
Validate = make the right product
Model Based Systems Engineering: Methodology

Verify = make the product right
Validate = make the right product
Model Based Systems Engineering: Roles

- System Architect
- Mobility Architect
- Function Leader
- IVV Engineer
- Project Manager
- Disciplines Architect
- Requirements Manager
- Disciplines Engineers
- Safety Lead

Strongly iterative & collaborative
Model Based Systems Engineering: Viewpoints

<table>
<thead>
<tr>
<th>Conceptual</th>
<th>Technical</th>
</tr>
</thead>
<tbody>
<tr>
<td>System of Systems</td>
<td>Solution</td>
</tr>
<tr>
<td>Functional & Logical</td>
<td>Implementation</td>
</tr>
</tbody>
</table>

- **Requirements**
- **Use cases / Behavior**
- **Structure**
- **Safety**
- **Constraints / Decisions**

Objects are displayed in multiple views to ensure consistency and completeness of system definition.

(AudiGrid example)
Agenda

Introduction

Development Process

Collaborative Model Based Systems Engineering

Systems Engineers and Designers journey

Take away
Systems Engineers and Designers journey
Agenda

Introduction

Development Process

Collaborative Model Based Systems Engineering

Systems Engineers journey

Take away
Take away

▶ Why
 ▶ Complexity of Cyber Physical Systems is growing fast
 ▶ Discipline in silos: miscommunication
 ▶ Late discovery of design inconsistencies

▶ How
 ▶ Consistent Process Method & Tools approach
 ▶ Disciplines federation: interfaces mastering
 ▶ Data federation for holistic end-to-end traceability
 ▶ Collaborative Model Based Systems Engineering with the value stream
 ▶ Accurate decision making with continuous validation of system behavior
Thank you for your attention

QUESTIONS?