Multi-domain simulation for the assessment of the NVH-behavior of electric vehicles with special attention to the influence of rotor eccentricity

Pascal Driche, Mark Mueller-Giebeler, Markus Jäger
Joerg Berroth, Georg Jacobs, Kay Hamayer, Michael Vorländer
Dassault Systèmes User Conference 2018
Hanau, Germany, 2018/11/05
Content

1 Motivation and objective
2 Multi-domain approach
 2.1 Today: Hot spot analysis
 2.2 Our vision: Balancing model fidelity with psychoacoustics
 2.3 On the way: Influence of rotor eccentricity
 Efficient 3D electric machine force calculation
 Efficient calculation of acoustic radiation
3 Summary and outlook
Content

1. Motivation and objective

 Multi-domain approach

 - **Today:** Hot spot analysis
 - **Our vision:** Balancing model fidelity with psychoacoustics
 - **On the way:** Influence of rotor eccentricity
 - Efficient 3D electric machine force calculation
 - Efficient calculation of acoustic radiation

2. Summary and outlook
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles

Motivation and objective

- Increasing electrification in all vehicle classes, e.g.
 - e Go
 - VW E-Golf
 - Tesla Model 3

- New challenges regarding NVH behavior
 - Tonal electric motor noise at higher frequencies
 - No broadband ICE masking

- Handling through the use of methods of virtual product development

- Further development of tools for the assessment, optimization of drivetrain variants necessary
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles

Motivation and objective

Airborne sound

Structure-borne sound

Excitation of gears and electric machine
Motivation and objective

Multi-domain approach

1. Today: Hot spot analysis
2. Our vision: Balancing model fidelity with psychoacoustics
3. On the way: Influence of rotor eccentricity
 Efficient 3D electric machine force calculation
 Efficient calculation of acoustic radiation

Summary and outlook
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles
Multi-domain-approach

- Assessment of electrical drivetrains in the vehicle interior
- Development of a multi-domain, hybrid system model
- Development tool for hot spot analysis and optimization

Driver's wish

Multi-domain hybrid system model

Simulation

Electrics Structural dynamics Acoustics

Measurement

Components Drivetrain Driving situation
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles
Structural dynamics subsystem model

Elastic housings

Elastic Multi-body-simulation model

Laminar stator with windings

Elastomeric mounts

Gear mesh excitation

Bearings

Fluid-Structure-Interaction

MSE uforce

RWTH Aachen University | Institute for Machine Elements and Systems Engineering (MSE)
Institute for Electric Machines (IEM) | Institute for Technical Acoustics (ITA)
Pascal Driehs, Mark Mueller-Glebelter, Markus Jager, Joerg Berndt, Georg Jacobs, Kay Hamayer, Michael Vorlander
Dassault Systems User Conference 2018, Hanau, Germany, 2018/11/05
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles
Structural dynamics subsystem model – Validation
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles
Structural dynamics subsystem model – Understanding and optimization
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles
Structural dynamics subsystem model – Understanding and optimization

Without elastic rotor decoupling

With elastic rotor decoupling

Comprehension & optimization on system level

Observed eigenfrequency

System

Level

Mode shape

Dissat System User Conference 2018, Hanau, Germany, 2018/11/05
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles

Ongoing work

- Control
- Sensors
- PWM
- Joint damping (housing)
 - Elastomeric mounts
 - Flexible gearwheels
 - Rotor model
- Sound radiation
 - Determining transfer paths
 - Psychoacoustic assessment
 - Listening test methods
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles

Ongoing work

Numerous model components and fidelity levels

Computation time

Now
Current development

Rotor model
Listening test methods

Result quality

Psychoacoustics

IEM
MSE
ITA

RWTH Aachen University | Institute for Machine Elements and Systems Engineering (MSE)
Institute for Electric Machines (IEM) | Institute for Technical Acoustics (ITA)
Pascal Dirich, Mark Müller-Glebel, Markus Jäger, Joerg Berrott, Georg Jacobs, Kay Hamayer, Michael Vorländer
Dassault Systèmes User Conference 2018, Hanau, Germany, 2018/11/05
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles
Impact of rotor eccentricity and interaction of system components

<table>
<thead>
<tr>
<th>Electric machine</th>
<th>Interaction of system components</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stator</td>
<td>Stator</td>
<td>ideal</td>
</tr>
<tr>
<td>Rotor</td>
<td>Rotor</td>
<td>eccentric</td>
</tr>
<tr>
<td>Bearings</td>
<td>Bearings</td>
<td>eccentric</td>
</tr>
</tbody>
</table>

- Inertia
- Stiffness
- Electromagnetic loads
- Contact
- Backlash
- (Nonlinear) stiffness
- Inertia and weight force
- Stiffness
- Imbalance and rotational speed
- F
- F
- F
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles
Psychoacoustic effect of rotor eccentricity
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles
Psychoacoustic effect of rotor eccentricity

Psychoacoustic effect differs significantly
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles
Run-up with rotor eccentricity
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles

Run-up with rotor eccentricity – Low speed area

<table>
<thead>
<tr>
<th>Main principle</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Time = 02.00025 s**
- **Diagram**
- **Rotor position [m]**
- **Rotational speed [rpm]**

Sources:
- RWTH Aachen University | Institute for Machine Elements and Systems Engineering (MSE)
- Institute for Electric Machines (IEM) | Institute for Technical Acoustics (ITA)
- Pascal Dorchel, Mark Mueller-Geleis, Markus Jager, Joerg Berroth, Georg Jacobs, Kay Hamayer, Michael Vorlander
- Dassault Systèmes User Conference 2018, Hanau, Germany, 2018/11/05
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles
Run-up with rotor eccentricity – High speed area
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles
Psychoacoustic effect of rotor eccentricity

Electric machine modell shows physically meaningful results

Validation with measurements on testrig
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles
Multi-domain-approach – Interface Electrics / Structural dynamics
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles

Electrics

Physical phenomenon

Fundamental 3D MBS model concept

MBS model with „multi-slice“-method

3D-modeling is cumbersome and resource intensive

- 2D FEM
- Use of symmetries for reduction of:
 - Computational effort
 - Size of lookup table

- Current
- Phase
- Rotation angle
- Eccentricity displ.
- Eccentricity angle

Abstraction

Precalculation

Lookup table

Transformation

Efficient 3D-modeling with 2D-precalculation
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles
Multi-domain-approach – Interface Structural dynamics / Acoustics
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles
Interface structural dynamics and acoustics – Motivation

Analytic Drivetrain
High frequency and spatial resolution
High sampling rate

Boundary-Element-Method (BEM)
Electric machine
Drivetrain

Volume of transferred data
~250 GB
~35 GB
~10 GB
~0.16 GB

Number of nodes for the acoustic mesh
~0.21 GB

Amount of data for run-up with 10 sec, with sampling rate of 20kHz

Surface velocities v(t)
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles
Interface structural dynamics and acoustics – Concept

\[\dot{x}_K(t) = \dot{x}_{Flex}(t) + \dot{x}_{Rigid}(t) \]

\[\dot{x}_K(t) = \dot{q}(t) \cdot R + \dot{x}(t) + \dot{\alpha}(t) \times R \]
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles
Interface structural dynamics and acoustics – Improvements in prediction quality
Content

1 Motivation and objective
2 Multi-domain approach
 2.1 Today: Hot spot analysis
 2.2 Our vision: Balancing model fidelity with psychoacoustics
 2.3 On the way: Influence of rotor eccentricity
 Efficient 3D electric machine force calculation
 Efficient calculation of acoustic radiation
3 Summary and outlook
Drivetrain simulation for the assessment of the NVH-behavior of electric vehicles

Summary and outlook

- Assessment of NVH-behavior of electrical drivetrains
- Development of a multi-domain, hybrid system model
- Development tool for hot spot analysis and optimization
- Efficient 3D electric machine force calculation with 2D-precalculation
- Efficient calculation of transient acoustic radiation
- Non-ideal behavior of electric machine has pronounced effect on psychoacoustics

- Balancing result quality and computation time with the analysis of different model fidelity levels using psychoacoustic metrics
Thank you for your attention.

Kontakt
Dipl.-Ing. Pascal Drichel
Team leader Noise Vibration Harshness
pascal_drichel@imse.rwth-aachen.de
Phone: 0241/80-95639

Prof. Dr.-Ing. Georg Jacobs
greg.jacobs@imse.rwth-aachen.de
Phone: 0241/80-95635

Institute for machine elements and systems engineering
Schinkelstraße 10
52062 Aachen (Germany)

Dr.-Ing. Joerg Berroth
Chief Engineer Drive Technology
joerg.berroth@imse.rwth-aachen.de
Phone: 0241/80-95609