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Abstract: Submarine hatches are complicated mechanical systems with many moving parts and
interfaces. As a mission-critical system, they currently require shock qualification with explosive
testing: the hatch must not be damaged beyond the point of operability. This approach is
expensive, complex, and can only address a small set of conditions. Abaqus is used to predict
posttest operational effectiveness in lieu of test results, but the complexity of the system makes the
process too time-consuming to positively affect the design process. As such, ATA Engineering is
developing a methodology to reduce solve times for these complex systems and hence enable
design guidance earlier in the design cycle.

The analysis approach being developed uses fast-running metamodels to replace components of
the system-level model that typically cause slow solution progress (e.g., contact regions). Detailed
regions of the system-level finite element model are analyzed first in isolated breakout models, and
machine learning algorithms are used to generate representative metamodels of those regions
using information from the breakout analysis. These metamodels are then integrated into the
system-level Abaqus model via user subroutines. The use of metamodels reduces the number of
nonlinear interactions at the system level. This means that more analyses can be run and more
damage conditions can be evaluated, enabling design changes to be introduced to the simulation
quickly. The process provides the analyst with more information, more quickly, which will

improve the overall design of the submarine hatch.
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1. Introduction

ATA Engineering (ATA) is developing a method for replacing sections of a complex kinematic
model with a fast-running metamodel by way of user elements. The goal is to improve post-shock
kinematic analysis of submarine hatches, but, when fully developed, the workflow should be
applicable to a wide field of analysis problems.

1.1. Problem Background

The US Navy has rigorous requirements for surviving shock events for its critical systems on
submarines (and other vessels). The systems must survive severe shock events and continue to
operate effectively afterward to maintain mission capabilities. For submarine hatches, this means
that the hatch must still open after sustaining damage. The Navy verifies operational integrity with
shock testing followed by operational tests; however, these tests are expensive, time-consuming,
and can only cover a limited set of shock environments.

Shipbuilders are currently using Abaqus for analysis to support the system certification: the
combination of large articulated motions, contact, and friction make Abaqus the most effective
tool currently available. Representing a system as complex as a submarine hatch, however,
requires a detailed model using millions of nodes. This model is time-consuming to both build and
run: a single simulation of post-shock operation can take a week to complete. Due to the modeling
and computational expense, analysts can only consider a few different design configurations or
damage conditions; the ability of analysis to drive design is limited.

1.2. ATA’s Solution

ATA has been working on a method for more quickly getting information about the post-damage

behavior of the submarine hatch by using machine learning algorithms to generate metamodels of
system components. These metamodels represent the nonlinear behavior of the component in the

system model, removing much of the computational expense due to friction and contact, with the

goal of reducing overall solution time.

The general workflow of this procedure is as follows (explained in later sections):
1. Create a breakout model of the component to be replaced.

2. Run simulations on the breakout model with variations in loading and other parameters
that are representative of the conditions in the system.

3. Use the data from those simulations to generate a metamodel of the component’s
behavior using machine learning.

Decide how to incorporate the user element into the system model.

5. Develop an algorithm that will correctly predict the behavior of the user element at each
time step by feeding information from the system model into the metamodel, which
generates new user element properties to be fed back into the system model.

This paper describes ongoing work; this workflow is the first step in developing a relationship
between finite element analysis (FEA) and machine learning.



2. Machine Learning Background

Machine learning is a tool that allows predictions about future behavior to be drawn from existing
data sets. It is used in everything from spam filters to self-driving cars. While the field has been
around for decades, it has flourished over the last several years as computing power has increased
and user-friendly toolkits have been developed in a variety of programming languages. We do not
go into detail on machine learning theory and practice in this paper, but we do introduce the
concepts necessary for understanding our implementation of it.

Machine learning can be broken down into three main steps: framing the problem, training an
algorithm, and evaluating the resulting metamodel. The first step—framing the problem—may be
the most important. Before you train a machine learning algorithm, you must determine what kind
of question you are asking, what kind of data you need to answer it, and how you are going to
collect that data.

In this project, we are looking to create a user element that accurately represents the behavior of a
subsystem. For structural analysis, that user element may be a stiffness matrix, so we need to
determine what affects the stiffness of the subsystem. Does it vary with loading? Over time? On
contact properties? These factors are known as features. An algorithm can only predict the effects
of the features it is given, so if an important feature is not included in the data set, the algorithm
will not make good predictions. On the other hand, the more features included, the more data
samples will be needed, which means longer run times. There are methods available for
identifying the most important features in a data set, but these are outside the scope of this paper.

Once the features of interest have been identified, a data set must be generated for training the
algorithm. In this project, breakout models are used to generate data about components. The
breakout model typically has orders of magnitude fewer nodes and elements than the system
model and runs in minutes rather than days. A set of feature values of interest is generated (e.g.,
friction coefficients between 0.05 and 0.5, bolt preloads between 0 ft-1b and 40 ft-Ib), and the
breakout model is analyzed with each combination of features. The results of those analyses
become the data set for training the metamodel. An appropriate number of data points must be
gathered to prevent overfitting of the data and accurately represent the input space (again, methods
exist for testing the suitability of the size of the data set but are outside the scope of this paper).

Once the problem has been framed, the next step is to create the metamodel using a machine
learning algorithm. There are many algorithms to choose from, ranging from fairly simple linear
regression to the multilayered neural nets of deep learning. Algorithms can also be combined in a
variety of ways to produce models that use the best parts of multiple algorithms. Most popular
algorithms are available in preprogrammed toolkits like scikit-learn; one only needs to provide an
appropriately formatted data set and select values for the algorithm’s parameters. For this paper,
four different algorithms were tested on the data, and each algorithm’s parameters were tuned to
produce optimal results.

The final step for any machine learning metamodel is verification. In the most general terms,
before training an algorithm, the data set is split into “training” and “test” sets. The metamodel is
trained using only the training data and subsequently used with the test data inputs to make
predictions that are compared to the test data outputs. The metamodel’s performance is evaluated
based on its prediction accuracy (there can be more to this process, but it is again out of the scope
of this paper). For this project, the metamodel can also be tested indirectly: the Abaqus solution



using the metamodel-powered user element can be compared to the results from the original
Abaqus model. A bad metamodel will result in a poor comparison.

There is much more to the field of machine learning than this basic framework of framing a
problem, selecting and training an algorithm, and verifying the results, but these are the basic steps
followed in this paper. Starting in section 4, we describe our implementation of this workflow on
an Abaqus assembly model representing a submarine hatch.

3. ATA’s Notional Submarine Hatch Model

To put the proposed workflow into practice, we created a notional mechanical system that
represents a simple submarine hatch (Figure 1). The system consists of a base on which the system
is mounted, a lid, and a linear actuator/linkage mechanism to open and close the lid. While this
system is much simpler than an operational submarine hatch, it includes a two-linkage mechanism
that is a common feature of such hatch systems.

linkage

actuator

Figure 1. Design of notional submarine hatch.

The design includes several different configurations that represent “damage conditions”—slight
variations in the design that are intended to mimic the damage inflicted on a submarine hatch due
to a shock event, typically making the hatch harder to open. These variations mostly arise from
different configurations of the hinge, which is shown in Figure 2. The hinge is designed with a
pivot mechanism that acts as both a pin and a bolt; preload can be applied to the pin to clamp the
lower hinge block’s clevis ears tighter to the upper block. The amount of preload applied to the pin
dictates the amount of friction force in the joint. Applying a high preload is representative of some
kind of damage or wear in the hinge. The mounting points on the hatch lid and base are also
designed with enough clearance that the hinge can be mounted out of alignment with the hatch
frame. This causes binding in the hinge that again mimics the effects of post-shock damage.
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Figure 2. Hinge design.

An Abaqus finite element model (FEM), shown in Figure 3, was constructed for this design. The
primary intent of the model is to extract kinematic behavior and linkage forces, so many regions
(like the hatch base) were coarsely modeled to reduce analysis time. The hinges were of greatest
interest for our analysis, so they were modeled in greater detail. Friction coefficients were taken
from test results. The actuator was modeled as an Abaqus connector so that relative motions could
be enforced. Multiple versions of this model corresponding to the different damage configurations
described above were analyzed; they are referred to as the baseline models to which all results
from the machine learning efforts will be compared.

The goal of the Navy’s shock testing is to determine whether the submarine hatch will still open
after taking damage, and the purpose of these FEMs is the same. The desired output from the
analysis therefore is the actuator force required to open the hatch, which may or may not exceed
the actuator hardware limits. The Abaqus analysis solution consists of a series of static steps to
preload the hinge pins, and subsequent static steps to open and then close the lid with enforced
connector velocity on the actuator connector.



Figure 3. Abaqus FEM of notional submarine hatch test article.

4. ATA’s FEM-Metamodel Workflow

As previously described, the aim of this work is to introduce machine learning into FEA to
produce a new analysis method that will reduce the solution time needed for complex mechanical
systems. The notional hatch FEM described in section 3 is not particularly complex but is being
used to demonstrate proof of concept. The following sections describe how the individual steps of
the workflow outlined in section 1.2 are used to replace the explicitly modeled hinges in that FEM
with machine-learning-generated metamodels.

4.1. Develop the Breakout Model

In the notional hatch FEM, the most complex region is at the hinges. The mesh is densest there to
properly account for contact between the pin and hinge blocks, with five pairs of contact surfaces
defined on each hinge. Because of this, and because there are two identical hinges that can be
represented with the same breakout model, the hinge was the component chosen to be replaced by
a metamodel. The rest of the hatch was deliberately modeled with no contact, with the exception
of initial contact between the hatch lid and base, so that when the hinges are replaced, the amount
of contact remaining in the model is minimal. The reduction in the number of nodes, contact
elements, and total equations can be seen in Table 1. The reduction in total equations is only
22.6%, which is not a large model reduction but enough to demonstrate the concept.



Table 1. Reduction in nodes, internal contact elements, and number of equations

due to use of user elements at hinges.

Baseline Model UEL Model % Reduction
Number of Nodes 199,441 101,373 49.2
Number of Internal Elements
Generated for Contact 43,728 6418 85.3
Number of Equations 333,594 258,238 22.6

The breakout model used to create the metamodel consists of the upper and lower hinge block, the
pin, and the spacers from the baseline FEM, as shown in Figure 4. Before we could analyze the
breakout model, we had to decide what information we needed to create the metamodel via
machine learning (i.e., we needed to frame the problem). The easiest way to implement a user
element is with a stiffness matrix, so stiffness information about the hinge was the output required
for the breakout model for this problem (for other problems, it may be appropriate to use

something other than the stiffness matrix approach).
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Figure 4. Hinge breakout FEM.
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The next step was to determine what features of the hinge affect its stiffness. These features fell
into two categories: features that vary during a single solution and features that stay constant for a
single solution but vary across different hatch designs and/or damage conditions. The latter




category includes friction coefficients and hinge bolt preload, both of which affect the stiffness of
the joint and must be properly accounted for in the breakout model but do not change during the
opening of the hatch and so do not affect the stiffness function directly.

Investigation showed that the main feature affecting the stiffness of the hinge that varies during a
solution is the moment about the pin axis applied to the upper hinge block. The data set used to
generate a metamodel therefore had one input feature—applied moment—and one output
feature—stiffness. Applied forces and moments in other directions also affect the stiffness but at a
much smaller scale (at least for the damage cases related to varying hinge preload), so they were
not included for the first pass at developing a metamodel. They will be added as features during
future testing.

4.2. Generate a Data Set

To gather data for the machine learning algorithm from the breakout model, a moment is applied
in a static step to the upper hinge block, and the resulting rotational displacement is recorded.
Stiffness is then calculated by dividing the moment by the displacement. The moment is applied as
a ramp, so a single solution produces multiple data points, each of which produces a new moment-
displacement pair and corresponding moment-stiffness pair. For this analysis, with a single input
feature and a relatively easily predicted function, around forty data points were collected (a more
complex metamodel would require more data points).

The static solution fails when the upper hinge block starts to slip; dynamic analysis was used to
verify that the applied moment at this point is in fact the slip moment. The post-slip stiffness is
estimated from the slip moment and the velocity of the block rotation (this post-slip stiffness
represents the small amount of resistance due to dynamic friction present in the moving joint). An
example data set generated in this manner is shown in Figure 5.
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Figure 5. Applied moment vs. hinge stiffness (40 ft-Ib preload).



4.3. Generate a Metamodel

The gathered data can now be used to train an algorithm to produce a metamodel. Since we only
have one input feature, the data points shown in Figure 5 are enough to represent the relationship
between moment and stiffness. As an added advantage, the data are simple enough that we can
make a plot of our metamodel’s predictions and visually inspect its accuracy.

Since these data were fairly simple, we used a collection of machine learning algorithms from
scikit-learn.org to produce metamodels that can predict the stiffness of the hinge given a moment
value. A method called cross-validation was used to iterate across the parameters of these
algorithms and select the best settings for training. The best algorithm for these data is a decision
tree, which uses if-then-else decision rules to approximate relationships between data (Scikit-learn
User Manual, 2017). The estimated relationship between moment and stiffness for the example
data from section 4.2 is shown in Figure 6.
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Figure 6. Moment-stiffness data set from breakout model (blue dots) and
metamodel’s predictions (red line).

4.4. Decide How to Incorporate the User Element into the System Model

In the next step, the placement of the user element in the system model must be chosen. A user
element can have as many nodes as the user desires, but with more nodes comes more information
to manage and a more complicated stiffness matrix to generate; it also drives up the solution time.
To keep the notional hatch model as simple as possible, it was decided that the hinge pins and
spacers would be removed from the FEM (as well as all of the contact surfaces between them). A
point was placed at the center of the pin hole and connected to the upper hinge block’s pin hole
surfaces with a kinematic constraint, and a second, coincident point was connected to the lower
hinge block’s pin hole surfaces. Figure 7 shows an illustration of this setup. The user element
definition between those two points follows. The setup for a single element is shown; the hatch



model used an element at each hinge, each with its own element type definition to allow
independent stiffness updates.

*USER ELEMENT, TYPE=U98, NODES= 2, UNSYM
1,2,3,4,5,6

*ELEMENT, TYPE=U98

99998, 21,20

*Elset, elset=user_elem

99998

*UEL PROPERTY, elset = user_elem

Spacer x 2

Upper hinge block

- Upper hinge - -

= =

Pin
hole

Twao coincident points

Figure 7. Hinge in baseline FEM (left) shows contact pairs as red lines; hinge in
new model (right) places a user element between the two coincident points
connected to the upper and lower hinge blocks.

4.5. Set Up the Workflow for the User Element

In the final step, the stiffness-predicting metamodel must be implemented via the Fortran
subroutine for user elements, which is named UEL. For this workflow, we also use a second
subroutine, named URDFIL, which makes results in the .fil file available to the user during the
solve. A diagram of the workflow is shown in Figure 8.
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Figure 8. User element workflow for a single time step.

At the end of each time step, the URDFIL subroutine reads force and displacement data at the
interface between the upper hinge block and the hatch lid and writes that data to a pair of CSV
files. The subroutine then calls a Python script that reads in the force and displacement data and
calculates the total moment on the hinge, and it then uses the metamodel to produce a
corresponding rotational stiffness value. The script creates a 12 x 12 matrix to represent the
overall stiffness of the hinge. The other diagonal terms (which are mostly independent of applied
loads and preload/friction settings) were determined from separate static analysis of the hinge
breakout model. This matrix is exported to a text file. At the beginning of the next time step, the
UEL subroutine is called and reads in the stiffness matrix, which is inserted into the Abaqus
model.

This routine originally led to undesirable oscillation of the stiffness value provided by the routine
when the simulation encountered a state of hinge slip: after slip was reached, the stiffness would
drop dramatically, which would cause the moment to drop, which made the stiffness rapidly
increase, and the solution would fail. To smooth out the slip transition, stiffness increases were
limited: now, the stiffness can no more than double in a single time step. This method damped the
oscillation of the solution.

5. Results from the Notional Hatch Model

This workflow described in the previous section has been successfully implemented on the
notional hatch model and used several times for different hinge bolt preload and friction settings.
Two metrics for success were examined. First, since the purpose of submarine hatch analysis is to
determine whether the hatch will still open in a damaged state, the maximum actuator operating
force was recorded for each user element model and compared to an appropriate version of the



baseline model. Second, timing tests were done to compare the computational effort required for
the metamodel-based user element models with baseline system models.

5.1. Actuator Force Comparisons

Table 2 shows the peak actuator forces for the baseline and user element models using several
different hinge configurations. Two different coefficient of friction profiles were used that varied
with normal pressure, labeled static and dynamic. Three different preloads on the hinge bolt were
also used, ranging from 1600 to 6400 Ib. The final column of the table shows the percent
difference in the peak actuator force between the baseline version of the model and the user
element version. Good correlation was found, ranging from at worst 13.6% to at best 4.3%.

Table 2. Peak actuator force comparisons for baseline models vs. UEL models.

Coefficient of Hinge Bolt Peak Actuator Force (Ib)

Friction Preload (Ib) Baseline Model UEL Model % Difference
dynamic 1600 525 503 -4.3
dynamic 4800 654 743 13.6
dynamic 6400 707 768 8.6
static 1600 558 509 -8.8
static 4800 728 792 8.8
static 6400 813 887 9.1

The actuator force through the entire hatch opening procedure was also compared. Some examples
of actuator force functions are shown in Figure 9. As mentioned, the actuator force does oscillate
in the user element model, and while it matches the peak force fairly well, the post-peak force
tends to be underpredicted. We currently have plans for several possible improvements to the
workflow and implementation details that are expected to improve correlation between the
modeling procedures without sacrificing performance.
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Figure 9. Actuator force vs. time for baseline (blue) and user element (green)
models. Dynamic friction 4800 Ib preload version shown left, static friction 6400 Ib
preload shown right.



5.2. Computational Effort Discussion

While the accuracy of the user element model is important, it is irrelevant if using the user element
model does not improve upon the computational performance of the baseline model. To get a
sense of the relative efficiency of the user element model, one user element model and its related
baseline model were simulated multiple times in series on ATA’s high-performance computing
cluster. These simulations were performed at different times of the day, different days of the week,
and with different cluster settings (including varying numbers of CPUs for parallel processing) in
an attempt to clarify the effects of computational resource competition. The job time summaries
were then compared among the solves.

The results showed that conditions on the cluster play a large role in the solution time for both the
user element and baseline models. If the solves were running at the same time as other jobs, the
solution times were highly variable, particularly for the user element model, making it difficult to
draw strong conclusions. However, to isolate the performance measures, some jobs were run using
all sixteen cores of a single computing node while the cluster was otherwise empty, and on these
simulations, the user element model averaged 16,200 seconds of total CPU time whereas the
baseline model used 25,300 seconds of total time—a difference of 36%. A second test using only
four cores showed a similar solve time reduction of 41%. This test indicates that under perfect
computing conditions, the user element method does reduce the solve time compared to the
baseline model. At this time, more testing and development are needed to determine whether
computational bottlenecks can be removed to further improve performance.

6. Conclusions and Future Work

ATA is developing a method for improving computational performance of complex kinematic
models by replacing detailed sections of the model with machine-learning-powered user elements.
The method has been demonstrated on a simplified notional actuated hatch model, and early
results are promising. A set of peak actuator force comparisons between user element models and
baseline models produced an average error of 8.9%, and early computational performance results
show that the user element model takes less time to run.

There is plenty of room for improvement in these results. First, additional work will be put into
improving the accuracy of the peak and post-peak actuator force results. Inclusion of more
features in the stiffness prediction (e.g., forces and moments other than just the moment about the
pin axis) should enable a more robust/accurate prediction.

This method also can and should be tested on a larger, more complex model. The notional hatch
model has 200,000 nodes, but the analysis models built for the Navy’s submarine hatches can have
millions of nodes. Work has begun on constructing a more realistic hatch FEM to evaluate how
the user element approach affects larger models.

Beyond these immediate changes, there are many possibilities for expanding on this work. The
example in this paper is quite simple: hinge behavior is being represented with reasonable
accuracy using a single two-dimensional curve. In reality, many more features affect the hinge’s
behavior—the other applied forces and moments discussed above, as well as things like the yield
state of the joint, tolerance gaps, and so on—and there is potential for including much more
information in the metamodel that represents the hinge.



Once a metamodel has been developed, it can produce information about a component much more
quickly than FEA. Metamodels could potentially be used to derive statistical information about
systems rather than just a single deterministic solution. For instance, it should be possible to
quantify the effects of changing the hinge bolt preload on the behavior of the hatch system as a
whole. On a larger model with multiple contributing metamodels, it may be possible to calculate
the relative importance of damage to different components. Machine learning is a field with great
potential, and its potential to assist FEA should be further explored.
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