The Living Heart Project

A Translational Research Initiative to Revolutionize Cardiovascular Science Through Realistic Simulation

What if physicians and surgeons could virtually analyze their patients’ health and plan therapies and surgeries using the same advanced simulation technology that the automotive, aerospace, energy and hi-tech industries rely on to test their product before they are built? What if medical devices could be designed and safely tested in the virtual world before ever being tested in the real world?

IF WE apply the power of realistic simulation to human modeling, we can revolutionize medical care.

The Living Heart project, launched in January 2014, unites leading cardiovascular researchers and educators with medical device manufacturers, regulatory agencies, and practicing cardiologists on a shared mission to develop and validate personalized digital human heart models and establish a unified foundation for cardiovascular in silico medicine. These models can serve as a core technology base for education and training, medical device design, testing and regulatory science—thereby creating a path for rapidly translating cutting edge innovations into improved patient care.

The Living Heart Project is driven by a growing ecosystem that is fueling the collaborative development of validated, commercially available heart models and exploring novel digital therapies through the use of proven, multiphysics simulation technology. The aim is to accelerate the synthesis of multidisciplinary knowledge to provide personalized, interventional cardiac-patient care.


Who is participating in The Living Heart Project—and how can you contribute?
 

Research

Decades of important research have already created a wealth of information on various aspects of heart function. Only recently have spectroscopic techniques advanced sufficiently to reveal the critical subtleties in geometric structure and physiological phenomena that are essential to developing a more complete understanding of the dynamics of the heart. Further complexities in heart function—particularly in congenitally defective and diseased hearts and their interaction with interventional medical devices and replacement structures—require additional research. 3D modeling of the heart, based on real-world, patient-specific input, can unite all of this data and support promising research in advanced surgical and therapeutic directions.

Current Project Members:

As a researcher, how can I support The Living Heart Project?

Academic and clinical researchers are invited to monitor, evaluate and influence the development of the heart models in a collaborative way as the project progresses. We welcome your critical input and/or guidance in your area of expertise. Suggestions for model refinement, new applications, technological implementation or contributions of model or validation data will contribute to the pursuit of realistic simulations capable of reliably replicating clinically observed behavior.

Industry

Computer simulation is increasingly being viewed as an essential design tool by cardiac device and services companies. Computer simulation helps them visualize what they cannot see, replicate in vivo conditions, more fully explore the design space, refine ideas faster, and develop novel service solutions that are more effective and safer for patients.  All of which leads to better designs and a reduction in expensive prototyping and testing, allowing companies to get products and services to market faster.

Current Project Members:

As a member of industry, how can I support The Living Heart Project?

Information-gathering for the project is taking place in a pre-competitive manner – i.e., not device-specific, but disease-specific—so that product information and patent protection is assured. Companies are invited to evaluate the model for applications in their areas of interest. We welcome your critical input, validation and guidance in your area of expertise. Suggestions for model refinement, new applications, technological implementation or contributions of model or test-validation data will contribute to the pursuit of realistic simulations capable of reliably replicating clinically observed behavior.

Clinicians

The vast amount of public and private money that is spent on CVD research is never translated into clinical reality. At the core of this challenge is the difficulty in exploring new and innovative treatment options cost-effectively while meeting regulatory requirements for safety and efficacy.

In silico techniques hold great promise in their ability to yield unprecedented insight into basic function and, when sufficiently refined and validated, offer a risk-free environment for predicting in vivo results that may be unobtainable any other way. Determining the appropriate clinical treatment for CVD can be greatly enhanced when combined with the insight and guidance revealed through accurate simulation of heart function.

Clinicians are participating in The Living Heart Project to evaluate the readiness of such simulation tools to current problems, and to help drive the development of state-of-the-art technologies and applications that will further improve patient care.

Current Project Members:

As a clinician, how can I support The Living Heart Project?

Clinical practitioner involvement in the project is critical to ensure a patient-centered focus on the development of viable technologies that will improve diagnoses and treatment plans. By collaborating with project participants, you will provide valued guidance in how best to use the power of simulation to diagnose and treat patient-specific conditions.

Clinicians are invited to monitor and evaluate the development of the model in a collaborative way as the project progresses over time. We look for your critical input and/or guidance in your area of expertise. Your suggestions—based on actual patient experience, ideas about applications to specific disease states, and/or thoughts about model enhancement or refinement derived from clinical data—will all contribute to the pursuit of realistic simulations capable of reliably replicating observed behavior.

Regulatory

Regulatory compliance is a key component of device development. The U.S. Food and Drug Administration (FDA), through initiatives such as the creation of a simulation model repository and Medical Device Design Tools (MDDTs), has stepped up efforts to more actively encourage the use of simulation. The FDA recognizes the value of simulation for device development, for cardiac services and treatments, and for virtual testing that supports the approval of device submissions. Simulation is also understood to help reduce animal testing and clinical trial costs, improve upon bench testing, and provide deeper understanding of in vivo behavior where traditional methods of assessing devices simply aren’t possible.

Through sponsorships and active participation in organizations like the Medical Device Innovation Consortium (MDIC) the FDA is exploring how to leverage simulation to advance regulatory science through various initiatives.  

Project Members:

As a regulatory agency, how can I support The Living Heart Project?

Perhaps the greatest challenge for any medical regulatory agency is accessing the safety of new devices without relying on costly and invasive human testing. Regulatory science stakeholders are invited monitor and evaluate the development of the model in a collaborative way as the project progresses over time. We welcome your critical input and/or guidance in your area of expertise. Your participation will be valuable in assessing the validity of the heart model for its mechanical and material properties, in developing test protocols, and in creating strategies for validation of the heart model for specific contexts of use.