Course objectives
Upon completion of this course you will be able to:

- Define general contact and contact pairs
- Define appropriate surfaces (rigid or deformable)
- Model frictional contact
- Model large sliding between deformable bodies
- Resolve overclosures in interference fit problems

Targeted audience
Simulation Analysts

Prerequisites
This course is recommended for engineers with experience using Abaqus/Standard

About this Course
2 days
Day 1

- Lecture 1: Introduction
- Lecture 2: Contact Workflow
 - Workshop 1: Compression of a Rubber Seal
- Lecture 3: Surface-based Contact
 - Workshop 2: Lap Joint Analysis
- Lecture 4: Contact Logic and Diagnostics Tools
 - Workshop 3: Bolted Flange Analysis
Day 2

Lecture 5: Contact Properties
 Workshop 4 Disk Forging Analysis

Lecture 6: Interference Fits
 Workshop 5 Interference Fit Analysis
 Workshop 6 Syringe Analysis (optional)

Lecture 7: Additional Features
 Workshop 7 Pipe Reel Analysis

Lecture 8: Modeling Tips
 Workshop 8 Snap Fit Analysis
 Workshop 9 Analysis of a Radial Shaft Seal
Additional Material

- Appendix 1: Node-to-Surface Formulation
- Appendix 2: Contact Elements
- Appendix 3: Dynamic Contact using Implicit Integration
SIMULIA is the Dassault Systèmes brand for Realistic Simulation solutions

- Portfolio of established, best-in-class products
 - Abaqus, Isight, Tosca, fe-safe
 - All using a common extended licensing pool
SIMULIA’s Power of the Portfolio

Abaqus
- Routine and Advanced Simulation
- Linear and Nonlinear, Static and Dynamic
- Fluid, Thermal, Electrical, Acoustics
- Extended Physics through Co-simulation
- Model Preparation and Visualization

Isight
- Process Integration
- Design Optimization
- Parametric Optimization
- Six Sigma and Design of Experiments

Tosca
- Non-Parametric Optimization
- Structural and Fluid Flow Optimization
- Topology, Sizing, Shape, Bead Optimization

fe-safe
- Durability Simulation
- Low Cycle and High Cycle Fatigue
- Weld, High Temperature, Non-metallics

Realistic Human Simulation
High Speed Crash & Impact
Noise & Vibration

Material Calibration
Workflow Automation
Design Exploration

Conceptual/Detailed Design
Weight, Stiffness, Stress
Pressure Loss Reduction

Safety Factors
Creep-Fatigue Interaction
Weld Fatigue
Join the Community!

How can you maximize the robust technology of the SIMULIA Portfolio?
Connect with peers to share knowledge and get technical insights

Go to www.3ds.com/slc to log in or join!

Let the SIMULIA Learning Community be Your Portal to 21st Century Innovation
Discover new ways to explore how to leverage realistic simulation to drive product innovation. Join the thousands of Abaqus and Isight users who are already gaining valuable knowledge from the SIMULIA Learning Community.

For more information and registration, visit 3ds.com/simulia-learning.

©2013 Dassault Systèmes. All rights reserved.
SIMULIA SERVICES
PROVIDING HIGH QUALITY SIMULATION AND TRAINING SERVICES TO ENABLE OUR CUSTOMERS TO BE MORE PRODUCTIVE AND COMPETITIVE.

Training Schedule & Registration
We offer regularly scheduled public seminars as well as training courses at customer sites. An extensive range of courses are available, ranging from basic introductions to advanced courses that cover specific analysis topics and applications. On-site courses can be customized to focus on topics of particular interest to the customer, based on the customer's prior specification. To view the worldwide course schedule and to register for a course, visit the links below.

North American
- By Location
- By Course

International
- By Location
- By Course

Live Online Training
- Full Schedule
The software described in this documentation is available only under license from Dassault Systèmes or its subsidiaries and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiaries.

© Dassault Systèmes, 2015

Printed in the United States of America.

Abaqus, the 3DS logo, and SIMULIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the Abaqus Installation and Licensing Guide.
<table>
<thead>
<tr>
<th>Topic</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 1</td>
<td>11/15</td>
<td>Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Lecture 2</td>
<td>11/15</td>
<td>Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Lecture 3</td>
<td>11/15</td>
<td>Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Lecture 4</td>
<td>11/15</td>
<td>Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Lecture 5</td>
<td>11/15</td>
<td>Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Lecture 6</td>
<td>11/15</td>
<td>Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Lecture 7</td>
<td>11/15</td>
<td>Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Lecture 8</td>
<td>11/15</td>
<td>Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>11/15</td>
<td>Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>11/15</td>
<td>Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>11/15</td>
<td>Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Workshop 1</td>
<td>11/15</td>
<td>Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Workshop 2</td>
<td>11/15</td>
<td>Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Workshop 3</td>
<td>11/15</td>
<td>Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Workshop 4</td>
<td>11/15</td>
<td>Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Workshop 5</td>
<td>11/15</td>
<td>Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Workshop 6</td>
<td>11/15</td>
<td>Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Workshop 7</td>
<td>11/15</td>
<td>Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Workshop 8</td>
<td>11/15</td>
<td>Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Workshop 9</td>
<td>11/15</td>
<td>Updated for Abaqus 2016</td>
</tr>
</tbody>
</table>
Lesson 1: Introduction

Lesson content:

- General Considerations
- Surface-based Contact
- Contact Examples
- Ingredients of a Contact Model

30 minutes
Lesson 2: Contact Workflow

Lesson content:

- Defining Contact Pairs
- Defining Surfaces for Contact Pairs
- Defining General Contact
- Workshop Preliminaries
- Workshop 1: Compression of a Rubber Seal (IA)
- Workshop 1: Compression of a Rubber Seal (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson 3: Surface-based Contact

Lesson content:

- Contact Formulations
- Contact Discretization
- Contact Enforcement Methods
- Relative Sliding Between Bodies
- Output of Contact Results
- Summary
- Workshop 2: Lap Joint Analysis (IA)
- Workshop 2: Lap Joint Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson 4: Contact Logic and Diagnostics Tools

Lesson content:

- Newton Method
- The Contact Algorithm
- Contact Diagnostics: Visual
- Contact Diagnostics: Text
- Workshop 3: Bolted Flange Analysis (IA)
- Workshop 3: Bolted Flange Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson 5: Contact Properties

Lesson content:

- Pressure-Overclosure Models
- Friction Models
- Friction Enforcement
- Workshop 4: Disk Forging Analysis (IA)
- Workshop 4: Disk Forging Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson 6: Interference Fits

Lesson content:

- Initial Overclosure
- Strain-free Adjustments
- Interference Fit Problems
- Interference Fit Techniques for General Contact
- Interference Fit Techniques for Contact Pairs
- Interference Fit Example
- Precise Specification of Clearances
- Geometric Smoothing for Curved Surfaces
- Workshop 5: Interference Fit Analysis (IA)
- Workshop 5: Interference Fit Analysis (KW)
- Workshop 6: Syringe Analysis (IA)
- Workshop 6: Syringe Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson 7: Additional Features

Lesson content:

- Beam Contact
- Tie Constraints
- Rigid Bodies and Contact
- Analytical Rigid Surfaces
- Pre-Tensioning of Cross-Sections
- Pressure Penetration
- Workshop 7: Pipe Reel Analysis (IA)
- Workshop 7: Pipe Reel Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson 8: Modeling Tips

Lesson content:

- Initial Rigid Body Motion
- Overconstraint
- Contact with Quadratic Elements
- Unsymmetric Matrices in Finite-Sliding Problems
- Dynamic Instabilities
- Modeling Corners and Edges
- Workshop 8: Snap Fit Analysis (IA)
- Workshop 8: Snap Fit Analysis (KW)
- Workshop 9: Analysis of a Radial Shaft Seal (IA)
- Workshop 9: Analysis of a Radial Shaft Seal (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Appendix 1: Node-to-Surface Formulation

Appendix content:

- Discretization
- Finite Sliding: Surface Considerations
- Small Sliding Characteristics
- Small Sliding: Local Contact Plane
- Small Sliding: Surface Considerations
Appendix 2: Contact Elements

Appendix content:

- Surface-Based vs. Contact Element Approach
- Contact Elements
- Contact Element Output
- Contact Element Visualization
Appendix 3: Dynamic Contact using Implicit Integration

Appendix content:

- Time Integration Issues
- Implicit Dynamics
- Damping
- Impact Problems
- Contact in Linear Perturbation Procedures