Course objectives
Upon completion of this course you will be able to:

- Import, edit, and repair CAD geometry.
- Import and edit orphan meshes.
- Use virtual topology to ease the meshing of complicated geometry.
- Partition geometry to enable different meshing techniques.

Targeted audience
Simulation Analysts

Prerequisites
None
Day 1

Lecture 1 Geometry Import and Repair

- Demonstration 1 Geometry Import and Repair: Lens Model
- Demonstration 2 Geometry Import, Diagnostics, and Defeaturing
- Workshop 1 Geometry Import and Repair: Machine Part
- Workshop 2 Geometry Repair: Piston Model
- Workshop 3 Creating a Shell From a Thin Solid

Lecture 2 Orphan and Native Meshes

- Demonstration 3 Importing and Editing an Orphan Mesh
- Demonstration 4 Virtual Topology: Piston Model
- Demonstration 5 Virtual Topology: U-Joint Model
- Workshop 4 Importing, Editing, and Extracting Geometry from a Mesh
- Workshop 5 Virtual Topology: Bracket Model
Day 2

Lecture 3 Meshing and Partitioning

- Demonstration 6 Partitioning and Mixed Meshing
- Demonstration 7 Sweep Meshing Techniques
- Workshop 6 Hex Meshing Intersecting Pipes
- Workshop 7 Hex Meshing a Cardan Joint
- Workshop 8 Additional Geometry Repair and Meshing Exercises

Lecture 4 Bottom-Up Meshing

- Demonstration 8 Bottom-Up Meshing
- Workshop 9 Bottom-Up Meshing
SIMULIA is the Dassault Systèmes brand for Realistic Simulation solutions

- Portfolio of established, best-in-class products
 - Abaqus, Isight, Tosca, fe-safe
 - All using a common extended licensing pool
SIMULIA's Power of the Portfolio

<table>
<thead>
<tr>
<th>Tool</th>
<th>Features</th>
<th>Applications</th>
</tr>
</thead>
</table>
| Abaqus| - Routine and Advanced Simulation
- Linear and Nonlinear, Static and Dynamic
- Fluid, Thermal, Electrical, Acoustics
- Extended Physics through Co-simulation
- Model Preparation and Visualization | Realistic Human Simulation
High Speed Crash & Impact
Noise & Vibration |
| Isight| - Process Integration
- Design Optimization
- Parametric Optimization
- Six Sigma and Design of Experiments | Material Calibration
Workflow Automation
Design Exploration |
| Tosca | - Non-Parametric Optimization
- Structural and Fluid Flow Optimization
- Topology, Sizing, Shape, Bead Optimization | Conceptual/Detailed Design
Weight, Stiffness, Stress
Pressure Loss Reduction |
| fe-safe| - Durability Simulation
- Low Cycle and High Cycle Fatigue
- Weld, High Temperature, Non-metallics | Safety Factors
Creep-Fatigue Interaction
Weld Fatigue |
Join the Community!

How can you maximize the robust technology of the SIMULIA Portfolio?
Connect with peers to share knowledge and get technical insights.

Go to www.3ds.com/slc to log in or join!

Let the SIMULIA Learning Community be Your Portal to 21st Century Innovation
Discover new ways to explore how to leverage realistic simulation to drive product innovation. Join the thousands of Abaqus and Isight users who are already gaining valuable knowledge from the SIMULIA Learning Community.

For more information and registration, visit 3ds.com/simulia-learning.

©2013 Dassault Systèmes. All rights reserved.
SIMULIA SERVICES
PROVIDING HIGH QUALITY SIMULATION AND TRAINING SERVICES TO ENABLE OUR CUSTOMERS TO BE MORE PRODUCTIVE AND COMPETITIVE.

Training Schedule & Registration
We offer regularly scheduled public seminars as well as training courses at customer sites. An extensive range of courses are available, ranging from basic introductions to advanced courses that cover specific analysis topics and applications. On-site courses can be customized to focus on topics of particular interest to the customer, based on the customer’s prior specification. To view the worldwide course schedule and to register for a course, visit the links below.

North American
- By Location
- By Course

International
- By Location
- By Course

Live Online Training
- Full Schedule
Legal Notices

The software described in this documentation is available only under license from Dassault Systèmes or its subsidiaries and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiaries.

© Dassault Systèmes, 2015

Printed in the United States of America.

Abaqus, the 3DS logo, and SIMULIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the Abaqus Installation and Licensing Guide.
<table>
<thead>
<tr>
<th>Revision Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 1</td>
</tr>
<tr>
<td>11/15 Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Lecture 2</td>
</tr>
<tr>
<td>11/15 Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Lecture 3</td>
</tr>
<tr>
<td>11/15 Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Lecture 4</td>
</tr>
<tr>
<td>11/15 Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Demonstration 1</td>
</tr>
<tr>
<td>11/15 Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Demonstration 2</td>
</tr>
<tr>
<td>11/15 Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Demonstration 3</td>
</tr>
<tr>
<td>11/15 Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Demonstration 4</td>
</tr>
<tr>
<td>11/15 Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Demonstration 5</td>
</tr>
<tr>
<td>11/15 Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Demonstration 6</td>
</tr>
<tr>
<td>11/15 Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Demonstration 7</td>
</tr>
<tr>
<td>11/15 Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Demonstration 8</td>
</tr>
<tr>
<td>11/15 Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Workshop 1</td>
</tr>
<tr>
<td>11/15 Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Workshop 2</td>
</tr>
<tr>
<td>11/15 Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Workshop 3</td>
</tr>
<tr>
<td>11/15 Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Workshop 4</td>
</tr>
<tr>
<td>11/15 Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Workshop 5</td>
</tr>
<tr>
<td>11/15 Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Workshop 6</td>
</tr>
<tr>
<td>11/15 Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Workshop 7</td>
</tr>
<tr>
<td>11/15 Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Workshop 8</td>
</tr>
<tr>
<td>11/15 Updated for Abaqus 2016</td>
</tr>
<tr>
<td>Workshop 9</td>
</tr>
<tr>
<td>11/15 Updated for Abaqus 2016</td>
</tr>
</tbody>
</table>
Lesson 1: Geometry Import and Repair

Lesson content:
- Introduction
- Geometry Import
- CAD Associative Import
- CAD Standalone Import
- Neutral Geometry Formats
- Geometry Repair
- Query and Diagnostics Tools
- Geometry Import Flowchart
- Example
- Shell Midsurface Creation
- Workshop Preliminaries
- Demonstration 1 Geometry Import and Repair: Lens Model
- Demonstration 2 Geometry Import, Diagnostics, and Defeaturing
- Workshop 1 Geometry Import and Repair: Machine Part
- Workshop 2 Geometry Repair: Piston Model
- Workshop 3 Creating a Shell From a Thin Solid

4 hours
Lesson 2: Orphan and Native Meshes

Lesson content:
- Introduction
- Dependent and Independent Part Instances
- Orphan Meshes
- Mesh Editing
- Creating Geometry from an Orphan Mesh
- Combined Orphan and Native Meshes
- Mesh Generation Techniques
 - Free meshing
 - Swept meshing
 - Structured meshing
- Virtual Topology
- Demonstration 3: Importing and Editing an Orphan Mesh
- Demonstration 4: Virtual Topology: Piston Model
- Demonstration 5: Virtual Topology: U-Joint Model
- Workshop 4: Importing, Editing, and Extracting Geometry from a Mesh
- Workshop 5: Virtual Topology: Bracket Model

3.5 hours
Lesson content:

- Enabling Various Meshing Techniques
- Controlling Mesh Density and Gradation
- Methods of Gaining More Control over the Mesh
- Creating and Merging Meshable Regions
- Hex Meshing Revolved Regions
- Mesh Stack Direction
- Parametric Modeling
- Assigning Element Types
- Verifying Mesh Quality
- Mass and Mesh Queries
- Midside Nodes
- Demonstration 6: Partitioning and Mixed Meshing
- Demonstration 7: Sweep Meshing Techniques
- Workshop 6: Hex Meshing Intersecting Pipes
- Workshop 7: Hex Meshing a Cardan Joint
- Workshop 8: Additional Geometry Repair and Meshing Exercises
Lesson 4: Bottom-Up Meshing

Lesson content:

- Introduction
- Basic Features
- Example
- Summary
- Demonstration 8: Bottom-Up Meshing
- Workshop 9: Bottom-Up Meshing

75 minutes