
2013 SIMULIA Community Conference 1
www.3ds.com/simulia

System Integration as Key for Improving and
Speeding up the Preliminary Design Phase

of Aero Engines
Philipp Kupijai1, Dieter Bestle1 and Daniel Kickenweitz2

1 Brandenburg University of Technology Cottbus, 2 Rolls-Royce Deutschland Ltd & Co KG

Abstract: Usually the development of a new engine is initialized by the request of an aircraft
manufacturer who formulates basic requirements for the propulsion system. Preliminary engine
design is then the first design phase at the aero-engine manufacturer where the engineer’s task is
to develop a proper engine concept fulfilling all requirements and to respond to the aircraft
company in a short time. At this early design stage only simple models can be used, but the
decisions made are far-reaching and need to be precise. Therefore, engine component scaling
tools are applied to increase prediction accuracy. Accessing these methods, which have been
developed by different component specialists, implies high manual effort due to manual data
transfer and due to the fact that design is always an iterative process. This paper demonstrates an
automated design process utilizing Java based Isight components which are a robust, secure and
fast alternative to common Excel sheets and may even be the superior solution. The process will
be illustrated by design and optimization studies on two application examples showing the benefits
in terms of saved runtime and better solutions than can be obtained by experience driven, human
search.

Keywords: aero engine, automation, multi-objective design optimization, process integration, Isight

1. Introduction

Preliminary engine design is a challenging task. Only few information and short time is available
but relatively high prediction accuracy expected. In general, a combination of generic methods and
knowledge based engineering (KBE) tools, which reflect more realistic effects and increase e.g.
efficiency prognoses, are combined. The basic procedure is shown in Figure 1. After receiving the
engine requirements from the aircraft company, the engine manufacturer begins with the system
level preliminary design by iteratively using KBE tools implemented as Excel sheets and an
engine performance program being an industrial in-house code. Data have to be copied manually
from one program to the other, again and again for a couple of iterations. After finding an iterated
solution, a validation of the data set is performed on component level with tools of higher
accuracy. As a result the general arrangement can be drawn for the engine bid and engine weight
and costs can be predicted. This procedure is a time consuming approach, especially due to the
high manual effort during the system level preliminary design. Therefore, often not much time is
left for design studies to really find the best solution. Hence, there exists a strong demand for an
automated design and optimization process.

2 2013 SIMULIA Community Conference
www.3ds.com/simulia

This paper is structured in three main parts. Firstly, an assessment of Excel and Java within design
processes and their behavior in Isight is given. Then, the generation of the automated design
process is explained, finally followed by two application examples of automated design processes.

2. Assessment of Excel and Java Behavior in Isight Processes

There are several approaches to realize an automated design process. Using batch or shell scripting
is a rather direct and cheap solution, however, the use of commercial system integration platforms
like Isight from Dassault Systemes (2011) are more advantageous due to training and support
capabilities by the vendor, graphical user interfaces for easy use and a huge number of
functionalities which are already available. It would be possible to take the existing process and
just put the components in an Isight workflow. However, due to the author’s experience Excel is
not the best choice for Isight processes. E.g., Excel execution in Isight can fail if pop-ups are used.
Moreover, some Excel VBA macros do not run in Isight. In general, the use of VBA macros in
Excel may be critical because not all macros are compatible with different Excel versions,
e.g. Excel 2007 does not know all macros from Excel 2003. An update to a later Excel version
thus may cause trouble, and a lot of rework could become necessary to solve arising macro
problems. Further, a great amount of effort is required to realize version control in Excel. In
contrast to common programming languages, to the author’s knowledge there is no simple version
control tool for Excel available with access to a repository. Especially if no protected cells are
used in distributed Excel sheets, a user can change his local copies which can lead to
inconsistencies. This problem becomes even worse if Excel sheets are planned to be used as black
boxes, e.g. by sub-contractors, and unwanted knowledge transfer has to be avoided. Grossman
(2008) suggests a procedure, but this is associated with huge effort. Additionally, the risk of

performance model

aircraft manufacturer

thermodynamic
cycle

engine module
scaling (KBE)

weight

costs

fan compressor combustor turbine …
component level

preliminary design
data validation

system level
preliminary design

engine manufacturer

general
arrangement

requirements engine bid

Figure 1. General preliminary engine design process.

2013 SIMULIA Community Conference 3
www.3ds.com/simulia

programming errors may be higher in Excel sheets compared to classical programming languages.
McConnell (1996) comments that this is not due to Excel itself but due to the, in general, more
sloppy way of programming Excel sheets where basic programming rules are neglected. Panko
(1998) quantifies in his study the alarming high error rate of Excel sheets used by big companies
for their finances and accounting. The fact that Excel cells can be both values and formulas
simultaneously can be beneficial but may also increase the risk of errors.
In contrast to Excel, classical programming languages like the script language Java can be
managed with version control, handled as black boxes, and they run more stable in Isight. Further
it is simpler to comment source code. A common argument of Excel users is that Java requires a
higher level of programming skills than Excel, but this is not completely true. In order to generate
a professional Excel sheet dealing with the disadvantages mentioned above, high Excel
programming skills are necessary. Therefore, the question arises, why not benefit from the
advantages of Java programs?
One of the major advantages of Java is the higher computing speed compared to Excel, as the
following example illustrates. A simple calculation with the few successive steps

 2, , , ,z x y z z z z x y z z z z= ⋅ = = + + = = (1)

has been implemented in an Excel sheet and in a Java based Isight component. Then, two Isight
processes have been set up as shown in Figure 2, both varying the input parameters x

and y using a

DoE (Design of Experiments). Both processes use the same seed for generating exactly the same
parameter values, where two different sample sizes are used in the DoEs: 1000 and 10,000. Both
processes are repeated ten times, where the runtime is shown in Figure 3a. Red symbols mark
DoEs with 10,000 samples and blue symbols the DoE with 1000 samples. In both studies, Excel
(marked with squares) requires much more runtime than Java (marked with circles), respectively.
However, also an important fact is that the Excel runtime increases during large DoEs (ordinate is
plotted with logarithmic scale!). Additionally the allocated RAM increases from execution to
execution if the Isight Design Gateway and Runtime Gateway are not closed after each execution
of a DoE. For a comparison between Excel and Isight runtimes, also the speed-up factor

Figure 2. Processes for runtime comparison between Excel and Java in Isight.

4 2013 SIMULIA Community Conference
www.3ds.com/simulia

 Excel

Java

t
t

α = (2)

is displayed in Figure 3b for each execution. For this simple example the speed-up factor varies
between 3.5 and 8. However, Kupijai and Bestle (2011) experienced even speed-up factors up to
300 if Excel files become larger and more complex. Obviously, this speed-up is a good reason for
choosing Java instead of Excel, and the effort for transferring existing Excel sheets to Java based
Isight components is well justified.

3. Generation of an automated preliminary engine design process

The initial industrial design process for aero engines accesses a series of Excel sheets which had to
be replaced by Java components. The major effort during setting up the automated design process
has been turned out to be the conversion procedure. Although theoretically well known that a
structured programming approach is highly beneficial, in practice it looks different due to strong
time limits and the pressure on the programmers to deliver results. Figure 4 illustrates the different
steps during the conversion phase. Firstly, the source code (Excel/VBA) has been analyzed and the
methods extracted. This step is very useful for finding and correcting errors, and the methods
themselves can be improved. Afterwards program architecture can be developed, where common
methods, like numerical or thermodynamical methods, wherever possible are extracted to external

1 Intel® Core™2 Duo CPU P8700 @ 2.53GHz, 2GB RAM

2 4 6 8 10

10
1

10
2

ru
nt

im
e

in
s

test run number
2 4 6 8 10

3

4

5

6

7

8

sp
ee

d-
up

fa
ct

or
α

test run number

Excel DoE 10,000

Java

DoE 1000

DoE 1000

DoE 10,000

b)a)

Figure 3. Runtime1 comparison between Java and Excel in Isight: a) Excel and

Java runtime for DoEs with 1000 (blue) and 10,000 (red) samples, b)
speed-up factor for DoEs with 1000 (blue) and 10,000 (red) samples

2013 SIMULIA Community Conference 5
www.3ds.com/simulia

classes for reuse or use and existing in-house or open source classes are used. Only then the (Java)
source code should be written and the graphical user interface implemented. Dassault Systemes
(2011) already provides the interfaces between the new Java program and Isight
(sdk.runtime.Component, desktop.sdk.DesktopEditor, etc.).
Finally, two very important phases follow which are often neglected or handled without the
required care: Program and methods have to be validated and documented. The upper part of
Figure 4 shows a qualitative time bar relating the effort for different development phases based on
the author’s experience. Validation and documentation require about the same time and effort like
the previous phases. For a simple conversion without any change on the methods, the validation
has been performed within an Isight process where a DoE varies the design parameters, Excel and
Isight are executed in parallel, and the results are compared to each other. Documentations have
been provided at different levels: HTML Java docs in Java source code, Word and PDF manuals,
and HTML user help included in the Isight component.
A general goal is to create a robust design process, where robustness refers to stable running.
Another aspect is a meaningful error handling as shown in Figure 5. The approach tries to avoid
termination of processes wherever possible. If the design process or optimization consists of a
high number of evaluations, it has to be decided if an error incidence compromises the general
process execution or only the current evaluation, e.g. if a parameter is out of allowed range. If the
error is not fatal, it has to be checked whether the error can be corrected by the system itself and
how a warning should be communicated to the user. Therefore, it may be beneficial to abstain
from calling exceptions which lead to a process termination wherever possible.

source code
analysis

programming GUI validation docu time

source code analyses Excel/VBA develop architecture

programming Java
source code

extract methods

GUI
development

documentation validation

Figure 4. Phases of conversion procedure from Excel sheets into Java based

Isight components based on classical programming development
approach and estimation of qualitative amount of phase time compared
to overall time.

6 2013 SIMULIA Community Conference
www.3ds.com/simulia

The KBE tools have been implemented as Java based Isight components. Further an interface to
the in-house performance program has been established. All components have been integrated to
an automated design process called Computational Preliminary Power-Plant Optimization
(C3PO). The design evaluation within C3PO follows the process flow shown in the activity
diagram in Figure 6. After the initialization of the design process, the iteration between the
performance calculation and the engine component scaling starts. The performance calculation
involves the design point calculation and a series of off-design calculations. The engine
component scaling is performed separately for the different engine components, like intake, fan,
engine section stator (ESS), fan OGV, booster, HPC, combustor, HPT, LPT, cooling flows for the
turbine, and some additional process parameters, respectively. Mainly those components predict
efficiencies, basic geometry and architectural properties like number of stages etc. After each
iteration some post processing is performed checking the convergence and whether errors occurred
or not. Finally, if the iteration has finished, engine mass is predicted. The corresponding Isight
workflow is shown in Figure 7 where only the part for a single engine evaluation is shown. The
C3PO task can of course be integrated into different super processes with different kind of drivers,
like DoE or optimizations. Two application examples are given in the next section.

Error incidence call exception,
print error message terminate process

fatal error?
risk for safe process

execution?

error correction
possible?

correct error

warning
message

necessary?

print warning

visualize error,
print error message

[no]

[no]

[yes]

[yes] [yes]

Figure 5. General error handling within KBE Isight components.

2013 SIMULIA Community Conference 7
www.3ds.com/simulia

4. Application examples of the automated design process

In the following, two different application examples are shown in order to demonstrate the benefit
of the proper automated design process. The first example is a design study within a European
Project called Crescendo (2009-2012), where a coupled collaborative aircraft engine optimization
has been performed by different partners. The idea of this approach is to integrate the engine
model by the engine manufacturer as so called “rubber” engine within the aircraft manufacturer’s
optimization process. Lammen et al. (2013) explain in detail the collaborative optimization
approach. The rubber engine consists of a surrogate model, Forrester et al. (2008), which is built

Figure 6. Activity diagram for C3PO engine evaluation using the Mars

performance program and Rolls-Royce Master Data Set (MDS) for data
management.

8 2013 SIMULIA Community Conference
www.3ds.com/simulia

on a data set consisting of 1125 engine configurations in a first collaborative design process and
on 400 configurations in a second loop, respectively. However, this paper only reports on the
engine design part of the first iteration.
The design parameter vector

T

3 405
MTO MCL

N N FF F T T D⎡ ⎤= ⎣ ⎦p (3)

summarizes net thrust at maximum the take-off MTO
NF and maximum climb MCL

NF

thrust flight
cases which are of importance for the aircraft manufacturer, as well as temperatures at compressor
outlet 3T and turbine inlet 405T , which have impact on the engine core, as well as the fan

diameter FD . Figure 8 shows results of a design study where specific fuel consumption is plotted
against engine weight. Minimizations of these two quantities are two general design objectives for
aero engines.
Besides the fact that this design study could not have been performed without the automated
design process, the following consideration may compare the required runtime with the estimated
runtime that would have been necessary for the manual approach. Let NT

be net runtime of the

process which only depends on the number DN of evaluated designs and the mean evaluation

time for a single design Nt , i.e. N D NT N t= ⋅ . If the net time exceeds the time of a working day

8dt h= or even a working week 40Wt h= , the breaks between days 16BDt h= and weeks

48BWEt h= have to be considered. Therefore, a crude estimation of required gross time for an
manual process may be given as

Figure 7. Automated design process C3PO in Isight

2013 SIMULIA Community Conference 9
www.3ds.com/simulia

 N N
N BD BWE

d W

T TT T t t
t t

⎢ ⎥ ⎢ ⎥
= + ⋅ + ⋅⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
. (4)

This is, of course, only a simplified equation neglecting effects like holidays, illness, additional
work tasks, tiring of the engineer, and assuming a constant mean evaluation time constNt = . A
comparison of this estimated runtime of the manual approach with actual C3PO runtime yields a
total process speed-up factor of 25. If only the engineer’s time for initializing the process is
considered the speed up factor is even 300.
The second application example deals with a multi-objective design optimization. In accordance to
Figure 8, the goals are to minimize specific fuel consumption SFC and engine mass m :

 () ()
3

min SFC m
∈

⎡ ⎤⎣ ⎦
T

p
p p (5)

where the design vector [] 3
3 405FD T T= ∈p consists of fan diameter FD , compressor

outlet temperature 3T , and HPT stator outlet temperature 405T . The goal of this bi-criterion design
problem is to find a proper set of non-dominated designs in the shortest time. A possible approach
is to use multi-objective genetic algorithms (MOGA) which have the advantages of finding
multiple Pareto-optimal designs in a single sweep, reducing the risk of getting trapped in local
minima of multimodal objective functions and being robust against noisy or non-existing design
evaluations which occur in case of inconsistent data sets. Isight offers several such optimization
algorithms. The following optimization study uses the Archive-based Micro Genetic Algorithm
AMGA introduced by Tiwari et al. (2008), because the algorithm showed best performance.

engine mass m

sp
ec

ifi
c

fu
el

co
ns

um
pt

io
n

S
F

C

Δm = 1[klb]

ΔSFC = 0.01
[

lb
lbf·h

]

Figure 8. Results from engine design study where each color refers to a different

thrust class.

10 2013 SIMULIA Community Conference
www.3ds.com/simulia

In order to further speed-up the optimization process, different approaches have been
implemented, where one approach is the use of response surface models

 () () ()ˆ , , , n
ff f ε= + ∈p p b p b p . (6)

Here the original model behavior ()f p is approximated by a simplified mathematical model

()ˆ ,f p b depending on the design vector p and some model parameters b which are adapted to

the specific model functions; (),fε p b is the error between the original model and the response
surface model. Further, the problem formulation in Equation 5 has been scalarized as

 ()() ()
3

ˆ ˆmin , s.t. , cSFC m m
∈

≤
p

p b p b (7)

where ˆSFC is the response model for SFC and m̂ for engine mass. The idea of the scalarization
is to reduce the problem dimension to a single objective minimization problem and to use the
second objective as constraint ˆ cm m≤ with moving the bounds cm , i.e. the optimization is
repeated with different constraint settings in order to move along the Pareto front. The advantage
of this approach is that for scalar optimization problems more efficient algorithms are available,
e.g. Covariance Matrix Adaption Evolution Strategy CMA-ES introduced by Hanson (2006)
which has been implemented in Isight. Flassig and Swoboda (2011) demonstrate the robust
performance of this algorithm. More details about the surrogate model based engine optimization
study are given by Kupijai et al. (2012).
Some results are shown in Figure 9 where the dashed line shows results from the AMGA

0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05
0.8

0.85

0.9

0.95

1

1.05

1.1

relative specific fuel consumption SFC/SFCref

re
la

ti
ve

en
gi

ne
m

as
s

m
/
m

r
e
f

Benchmark
Pareto front

response surface
model prediction

re-evaluated RSM predictions

manually optimized
reference design f

(
pref

)

Figure 9. Optimization results based on response surface model and reduced

problem formulation.

2013 SIMULIA Community Conference 11
www.3ds.com/simulia

optimization with the original model and grey diamonds illustrate optimal designs predicted by the
surrogate model. However, in order to trust the surrogate model predictions, those designs have to
be re-evaluated with the original evaluation process. The results of this re-evaluation are marked
by white squares demonstrating that the surrogate model provides comparable results with the
those of the original model.
However, the runtime, as displayed in Figure 10, shows the great benefit of the approach. The time
reduction compared to the manual approach according to estimation in Equation 4 reveals a speed-
up factor of about 19 when using the automated process C3PO and about 97 when additional
acceleration approaches like problem scalarization and surrogate models are used.

5. Conclusion

The paper briefly describes the generation of an automated Isight based design process for flight
engine preliminary design. Excel and Java as potential evaluation tools in automated design
processes are compared and discussed where clear advantages of Java are pointed out. Different
steps for the conversion procedure from Excel to Java are identified. The automated design
process enables to run large design studies and multi-objective optimization. Two example
applications of the automated design process C3PO are shown where the benefits of the automated
design process become obvious.

Figure 10. Runtime comparison for different optimization approaches.

12 2013 SIMULIA Community Conference
www.3ds.com/simulia

6. Acknowledgment

The research has been carried out within the CRESCENDO Integrated Project, which is partly
sponsored by the European Union’s Seventh Framework Program (FP7/2007-2013) under grant
agreement No. 234344 (www.crescendo-fp7.eu). In addition, support by Rolls-Royce Deutschland
is greatly acknowledged.

7. References

1. CRESCENDO (2009-2012). “Collaborative Robust Engineering using Simulation
Capabilities Enabling Next Design Optimisation”. European Union’s Seventh Framework
Program. URL: www.crescendo-fp7.eu.

2. Dassault Systemes (2011). Isight Version 5.5, Development Guide.
3. Flassig, P. and M. Swoboda (2011). “Current Isight Applications Supporting Optimal

Aerodynamic Compressor Design”. In: Proceedings of ADOS - Aerodynamic Design
Optimisation Seminar, Derby.

4. Forrester, A., A. Sobester and A. Keane (2008). “Engineering Design via Surrogate
Modelling: A Practical Guide”. Chichester: John Wiley and Sons.

5. Grossman, T. A. (2008). “Source Code Protection for Applications Written in Microsoft
Excel and Google Spreadsheet”. CoRR (4774). abs/0801.4774.

6. Hansen, N. (2006). “The CMA Evolution Strategy: A Comparing Review”. Stud-Fuzz 192,
75–102.

7. Kupijai, P., and Bestle, D., 2011. “Beschleunigung der Triebwerksvorauslegung durch
Verwendung problemangepasster Isight-Komponenten”. In: Proceedings of the Deutsche
SIMULIA-Konferenz. Bamberg.

8. Kupijai, P., D. Bestle, P. Flassig and D. Kickenweitz (2012). “Automated Multi-Objective
Optimization Process for Preliminary Engine Design”. In: Proceedings of ASME Turbo
Expo, Copenhagen, GT2012-68612.

9. Lammen, W., D. Kickenweitz, T. Laudan and P. Kupijai (2012). „Integrate Engine
Manufacturer’s Knowledge into the Preliminary Aircraft Sizing Process”. To be published in
Proceedings of the 7th International Conference Supply on the wings, AIRTEC, Frankfurt.

10. McConnell, S. (1996). “Rapid Development: Taming Wild Software Schedules”. Microsoft
Press.

11. Panko, R. R. (1998). “What We Know About Spreadsheet Errors”. Journal of End User
Computing’s 10 (2), 15 – 21.

12. Tiwari, S., G. Fadel, P. Koch and K. Deb (2008). “AMGA: An Archive-based Micro Genetic
Algorithm for Multi-objective Optimization”. In GECCO’08: Proceedings of the 10th
Annual Conference on Genetic and Evolutional Computation.

