Modeling Extreme Deformation and Fluid Flow with Abaqus
Course objectives
Upon completion of this course you will be able to:

- Create Eulerian meshes and define the initial material location within an Eulerian mesh
- Specify initial conditions, boundary conditions and loads to materials in the Eulerian domain
- Use general contact to model Eulerian-Lagrangian interactions
- Create SPH meshes
- Automatically convert conventional continuum elements to SPH particles
- Define initial conditions, boundary conditions, and loads on SPH particles
- Define contact interactions between SPH particles an element-based or analytical surfaces
- Understand the differences between the CEL, SPH, and CFD approaches

Targeted audience
Simulation Analysts

Prerequisites
This course is recommended for engineers with experience using Abaqus
Day 1

- Lecture 1 Introduction
- Lecture 2 Overview of CEL (Coupled Eulerian-Lagrangian) Analysis
- Lecture 3 Creating a CEL Model
- Workshop 1 Deformation of an Elastic Dam under Time-dependent Water Pressure
- Lecture 4 Abaqus/CAE Volume Fraction Tool
- Lecture 5 CEL Modeling Techniques
- Workshop 2 Bird Strike Impact on Double-walled Aircraft Fuselage
Day 2

- Lecture 6: CEL for Fluid Applications
- Lecture 7: Overview of SPH (Smoothed Particle Hydrodynamics)
- Lecture 8: SPH Modeling Techniques
- Workshop 3: Bird Strike on an Airplane Engine Blade
- Lecture 9: Overview of Abaqus/CFD
- Workshop 4: Unsteady flow across a circular cylinder
- Lecture 10: Comparison of CEL, CFD, and SPH
Additional Material

- Appendix 1: SPH Theory
Join the Community!

How can you maximize the robust technology of Abaqus FEA and Isight?
Connect with peers to share knowledge and get technical insights

Let the SIMULIA Learning Community be Your Portal to 21st Century Innovation
Discover new ways to explore how to leverage realistic simulation to drive product innovation. Join the thousands of Abaqus and Isight users who are already gaining valuable knowledge from the SIMULIA Learning Community.

For more information and registration, visit 3ds.com/simulia-learning.

©2013 Dassault Systèmes. All rights reserved.
Legal Notices

The Abaqus Software described in this documentation is available only under license from Dassault Systèmes or its subsidiary and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiary.

© Dassault Systèmes, 2014

Printed in the United States of America.

Abaqus, the 3DS logo, SIMULIA, and CATIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the Abaqus 6.14 Installation and Licensing Guide.
Revision Status

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Date</th>
<th>Updated for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 1</td>
<td>5/14</td>
<td>6.14</td>
</tr>
<tr>
<td>Lecture 2</td>
<td>5/14</td>
<td>6.14</td>
</tr>
<tr>
<td>Lecture 3</td>
<td>5/14</td>
<td>6.14</td>
</tr>
<tr>
<td>Lecture 4</td>
<td>5/14</td>
<td>6.14</td>
</tr>
<tr>
<td>Lecture 5</td>
<td>5/14</td>
<td>6.14</td>
</tr>
<tr>
<td>Lecture 6</td>
<td>5/14</td>
<td>6.14</td>
</tr>
<tr>
<td>Lecture 7</td>
<td>5/14</td>
<td>6.14</td>
</tr>
<tr>
<td>Lecture 8</td>
<td>5/14</td>
<td>6.14</td>
</tr>
<tr>
<td>Lecture 9</td>
<td>5/14</td>
<td>6.14</td>
</tr>
<tr>
<td>Lecture 10</td>
<td>5/14</td>
<td>6.14</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>5/14</td>
<td>6.14</td>
</tr>
<tr>
<td>Workshop 1</td>
<td>5/14</td>
<td>6.14</td>
</tr>
<tr>
<td>Workshop 2</td>
<td>5/14</td>
<td>6.14</td>
</tr>
<tr>
<td>Workshop 3</td>
<td>5/14</td>
<td>6.14</td>
</tr>
<tr>
<td>Workshop 4</td>
<td>5/14</td>
<td>6.14</td>
</tr>
</tbody>
</table>
Lesson 1: Introduction

Lesson content:

- SIMULIA Multiphysics
- Coupled Eulerian-Lagrangian (CEL) approach
- Smoothed Particle Hydrodynamics (SPH) approach
- Abaqus/CFD

1 hour
Lesson content:

- CEL Analysis Technique
- CEL Examples
- Detailed case study: Tire Hydroplaning/Aquaplaning
Lesson 3: Creating a CEL Model

Lesson content:

- Case Study Introduction: Front-load washing machine
- Defining the Eulerian Domain
- Eulerian-Lagrangian Coupling
- Postprocessing—Basic tips
- Postprocessing—Additional suggestions
- Summary
- Workshop Preliminaries
- Workshop 1: Deformation of an Elastic Dam under Time-dependent Water Pressure
Lesson 4: Abaqus/CAE Volume Fraction Tool

Lesson content:

- Introduction
- Using the volume fraction tool
- Tips

30 minutes
Lesson content:

- Element types and procedures
- Initial conditions, boundary conditions, and loads
- Eulerian mesh motion
- Contact
- Mesh density
- Adaptive mesh refinement
- Materials and material instances
- Output and postprocessing
- Comparison to Lagrangian analysis
- Limitations
- Workshop 2: Bird Strike Impact on Double-walled Aircraft Fuselage
Lesson 6: CEL for Fluid Applications

Lesson content:

- EOS Materials
- CEL and Flow Problems
- Flow Benchmarks
- Hourglass Control
- Boundary Reflections
- Tips
- Troubleshooting Checklist

2 hours
Lesson 7: Overview of SPH (Smoothed Particle Hydrodynamics)

Lesson content:

- Introduction
- Examples
 - Water-wave impact
 - Priming a Pump
 - Bottle Drop
 - Garden Hose
 - Taylor Test
 - Projectile Impact on a Plate
 - Hail Impact
- SPH Basics
- SPH Interpolation
Lesson 8: SPH Modeling Techniques

Lesson content:

- Abaqus Usage Overview
- Particle elements
- Model definition
- Optional controls
- Converting finite elements to SPH particles
- Limitations
- Workshop 3: Bird Strike on an Airplane Engine Blade
Lesson content:

- Abaqus/CFD
- Fluid-Structure Interaction (FSI)
- Native FSI using Abaqus
- Target Applications
- Execution Procedure
- Workshop 4: Unsteady Flow Across a Circular Cylinder
Lesson content:

- Abbreviations
- Material considerations
- Contact considerations
- Geometry and mesh considerations
- Analysis type considerations
- Computational considerations
- Summary tables
 - Functionality-based comparison
 - Application-based comparison
Appendix 1: SPH Theory

Appendix content:

- Introduction
- Basic Properties of Kernels
- Particle Approximation
- SPH Interpolation
- Lucy’s Weight Function
- Characteristic Properties of SPH
- SPH Applications
- References

45 minutes